MEASUREMENT OF POROSITY AND GAS PERMEABILITY OF TIGHT ROCKS BY THE PULSE DECAY METHOD

Size: px
Start display at page:

Download "MEASUREMENT OF POROSITY AND GAS PERMEABILITY OF TIGHT ROCKS BY THE PULSE DECAY METHOD"

Transcription

1 Geosciences and Engineering, Vol. 1, No. 1 (01), pp MEASUREMENT OF POROSITY AND GAS PERMEABILITY OF TIGHT ROCKS BY THE PULSE DECAY METHOD ANDRÁS GILICZ TIBOR BÓDI EON Földgáz Storage, H-1051Budapest, Széchenyi István sqr. 7 8, andras.gilicz@eon-foldgaz.com Miskolc University, Applied Geo Science Research Institute, H-3515 Miskolc-Egyetemváros, P.O.Box. bodit@akki.hu Abstract Due to rising gas demand there is an increasing focus towards unconventional tight and shale gas reservoirs, which contain by several order of magnitude more gas, than conventional reservoirs although under more difficult circumstances. For production their key petrophysical parameters (porosity and permeability) have to be determined. The main difficulty is, that their permeability is low, typically in the nano and 0.1 md range, therefore conventional steady state measurement techniques cannot be applied. For this type of measurements the so called pressure pulse decay method is used. In this technique a pressure wave propagates through the core. Its decline time is inversely proportional to permeability, whereas the final equilibrium pressure is characteristic for the porosity of the core. In the Applied Geo Science Research Institute of Miskolc University a unique apparatus was developed a few years ago, which can carry out the pulse decay technique on full diameter radial cores. Complete measurement technique and interpretation software was developed for this purpose. In laboratories worldwide however the conventional linear plug measurement is still used widespread, so it was decided to extend the existing interpretation software with the algorithms of the linear plug measurements to obtain a flexible tool, which can interpret both types of measurements with the same easiness. The extension took place by solving the governing partial differential equation of the measurement with linear geometry, and implement the solution into the existing software. The software developed simulates the measurement itself, so no simplifying assumptions are needed for evaluation. Practical examples show the applicability of the new tool. 1. Methodology The scheme of the measurement is shown in Figure 1. As can be seen two vessels (V 1, V ) are connected to the inlet and outlet face of the core having a pore volume of V p. The whole system is filled up initially with gas or fluid all the valves being open. After equilibrium has been reached, Valve 1 is closed, and the pressure of the inlet vessel V 1 is increased slightly (c.5%). By opening Valve 1 the pressure difference between vessels V 1 and V declines through the core. Decline is measured in time with a data acquisition system. Besides other input values this recording is used to evaluate the measurement for permeability and possibly porosity.

2 66 András Gilicz Tibor Bódi Figure 1 In the figure above a linear plug is visible. The corresponding laboratory equipment is shown in Figure. If the core plug is a full diameter whole core, the measurement principle is still the same, but the core holder is different. This is shown in Figure [1], the corresponding lab apparatus is depicted in Figure 3. This core holder is slightly more complex than the conventional linear one but has several advantages [1]: The radial whole core is larger than the conventional linear plug, so it represents the reservoir more correctly. Radial flow takes place in the core, just like the flow in the vicinity of wells. Both porosity and permeability can be obtained from the same measurement simultaneously. The measurement is quick and easily reproducible, reproducibility is excellent. Core preparation works are simpler. The measurement can be carried out under reservoir conditions. Core load can be regulated in both axial and radial directions, so reservoir stress conditions can be simulated. Description of the radial measurement method was described in an earlier paper [1]. It has to be noted however that this unique radial measurement technique is not widely used in laboratories worldwide; rather the conventional linear plug technique is used. So the idea came to develop a flexible tool, which combines the two measurement techniques, i.e. both radial and linear. The physical development of such a device is however a complicated and costly task, which can be accomplished on longer term only, but the development of the software, was already possible, this paper describes this intermediate situation. So the problem to be solved was to extend the existing radial interpretation software with the conventional linear one.

3 Measurement of Porosity and Gas Permeability of Tight Rocks 67 Figure Figure 3

4 68 András Gilicz Tibor Bódi Figure 4. Evaluation, interpretation methods. The radial pulse decay technique has been discussed in other papers already [1, ], this is not the scope of this work. In this paper the linear pulse decay technique is discussed only. To evaluate a linear pulse decay measurement, Jones has proposed a technique [4]. According to his method the logarithm of the normalized pressure difference change is linear in time: p ln = b + m1 t p 0 (1) Permeability can be calculated from the m 1 slope. kw ( ) m1µ wl cw + cv1 = 1 1 A + V 1 V () So the principle of the Jones method is to depict measurement points according to Equation, and calculate permeability from the slope of the fitted straight line. As an example, Figure 5. depicts such an evaluation, which was carried out with water on a core sample of a tight, unconventional reservoir. Blue dots depict measurement points, whereas the blue line is fitted to the points.

5 Measurement of Porosity and Gas Permeability of Tight Rocks 69 Evaluation of "Pulse Decay" permeability measurement with Jones method porosity of tested sample φ = 6.7 % 1.0 p/ p 0 p ln = t p0 k w ( c + c ) m1µ wl w = 1 1 A + V1 V1 V1 n = md Time, s Figure 5 There is an other evaluation method also, where the mathematical model simulating the whole measurement is fitted to measurement points. Such a solution was published by Haskett et al [3]. Their solution however is full with dimensionless variables, conversion factors, etc. which makes it difficult to understand and apply, so it was decided to develop our own solution, which was called RIAES LPD. The governing equation of flow within the linear core is the partial differential equation of hydraulic diffusivity: where P P = C x t (3) P = p p ini (4) Initial conditions are: p(x; t = -0) = p ini (5) Boundary conditions are for x = 0, and t > 0 p u (t = 0) = p1 (6) p d (t = 0) = p (7) p u (t) = p(x = 0; t). (8) dp p C 1 1 = (9) dt x x = 0

6 70 András Gilicz Tibor Bódi where i.e. for x = L, t > 0 C1 µ cvu ka = (10) p d (t) = p(x = L; t) (11) further dp p C = (1) dt x x = L C µ cvd =, (13) ka C = ϕµc. (14) k In general p = p ini, but not necessarily. With this notation the solution can be given quite generally. Equations 8 and 11 express pressure continuity between core ends and attached vessels, whereas equations 9 and 1 express mass balance, i.e. the rate of pressure change is proportional to in- and outlet fluxes of the core. Equation 3 was solved via Laplace transform. The general solution is as follows: where n M t 1 M C α (15) n= 1 αn 1 P( x, t ) = P + e C F F M1 = CP cos( α n x) + C1P1 cos αn (L x) (16) C 1 C α M n = P sin( α nx) + P1 sin α n (L x) C (17) L (C1 + C ) C1C L F1 = cos( α nl) αn Cαn C (C1 + C )L F = + sin( α 3 nl) α n nc α and α n s are the roots of the following transcendent equation: (C1 + C )Cα tg( α n nl) = C1C αn C α n s can be calculated numerically. (18) (19) (0)

7 Measurement of Porosity and Gas Permeability of Tight Rocks 71 Pressures of the vessels are measured at the in- and outlet end of the core (i.e. at x = 0, and x = L) so the mathematical solution has to be taken at these locations. Accordingly: M 1 x 0 C P C 1 P 1 cos( n L) = = + α (1) M1 CP x L cos( nl) C1P = 1 = α + () C1Cα M n P x 0 1 sin( nl) = C = α (3) C1Cα M n P x L sin( nl) = C = α (4) The above formulas were implemented into the software the graphical interface of the software is shown below in Figure 6. Figure 6 An example application with the new software is shown in Figure 7.

8 7 András Gilicz Tibor Bódi Figure 7 3. Conclusions The pulse decay technique was used to determine the permeability of a core originating from a Hungarian unconventional gas reservoir. Measurements were done with water. Interpretation was done with both the Jones and our method, and results were compared. The comparison is shown in Figure 8 and Table E E-03 Water permeability ( RIAES LPD), md 3.0E-03.5E-03.0E E E E-04 Regression coefficient R = E E E E E-03.0E-03.5E E E E-03 Water permeability (Jones), md Figure 8

9 Measurement of Porosity and Gas Permeability of Tight Rocks 73 Number Porosity (%) Permeability (Jones) (md) Table 1 Permeability (AFKI) (md) E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-04.03E E E E E E E-04 The following conclusions can be drawn: There is a strong correlation between the two measurement methods. The Jones method slightly underestimates the values obtained by the numerical method. This is most probably because the Jones method has some limiting assumptions. In case of using water, porosity measurement was not possible unlike in the case of gas as a measurement medium. The two methods give consistent results in cases, when the straight line fit of the Jones method is easy and straightforward. If the match of the Jones line is good, than the match of the numerical model is good, and vice versa.

10 74 András Gilicz Tibor Bódi In case of a linear fit there is some degree of freedom to fit the straight line, which however is not possible with the numerical method. The ideal medium for measurement is gas, not water, or any other fluid. Gas does not contaminate the core, there is a large compressibility contrast between the gas and the steel core holder, and the real reservoir fluid is also gas. Nomenclature p pressure difference p 0 pressure difference at t = 0 t time b intersection m 1 slope µ viscosity l length A cross section c w isothermal compressibility of water c 1 isothermal compressibility of the measurement system V 1 volume of the inlet pressure V volume of the outlet vessel c compressibility C see eq. 14. C 1 see eq. 10. C see eq. 13. F 1, see eq. 15. k permeability M numerator M 1, members in eq. 15. P p p ini p pressure p u inlet pressure p d outlet pressure p 1 initial inlet pressure p initial outlet pressure x distance V u inlet vessel volume V p pore volume V d outlet vessel volume Greek letters φ porosity µ viscosity α n positive roots of eqn. 0 Acknowledgement: This works was carried out ad part of the TÁMOP-4..1.B-10//KONV project in t5he framework of the New Hungarian Development Plan. The realization of this project is supported by the European Union, co-financed by the European Social Fund. REFERENCES [1] Bódi, Tibor Gilicz, András: Tömött kőzetek porozitásának és gázpermeabilitásának egyidejű meghatározása a dinamikus nyomásváltozás mérésével. XXVII. Nemzetközi Olaj- és Gézipari Konferencia Hungary, Siófok 008. szeptember CD A [] Gilicz, András: Application of the Pulse Decay Technique. SPE 688, presented at the 66 th Annual Technical Conference and Exhibition of the SPE held in US Texas, Oct. 6 9, [3] Haskett Narahara: A Method for Simultaneous Determination of Permeability and Porosity in Low Permeability Cores. SPE Formation Evaluation, September 1988, [4] Jones, S. C.: A Technique for Faster Pulse Decay Permeability Measurement in Tight Rock. SPE Formation Evaluation, 1997 March. [5] Serag El Din, et al.: Whole Core Versus Plugs: Integratin Log and Core Data to Decrease Uncertainty in Petrophysical Interpretation and STOIP Calculations. SPE

DEVELOPMENT OF AUTOMATIC CONTROL OF MULTI-STAGE TRIAXIAL TESTS AT THE UNIVERSITY OF MISKOLC

DEVELOPMENT OF AUTOMATIC CONTROL OF MULTI-STAGE TRIAXIAL TESTS AT THE UNIVERSITY OF MISKOLC Geosciences and Engineering, Vol. 2, No. 3 (2013), pp. 37 43. DEVELOPMENT OF AUTOMATIC CONTROL OF MULTI-STAGE TRIAXIAL TESTS AT THE UNIVERSITY OF MISKOLC BALÁZS CSUHANICS ÁKOS DEBRECZENI Institute of Mining

More information

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure:

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure: Chapter Seven Horizontal, steady-state flow of an ideal gas This case is presented for compressible gases, and their properties, especially density, vary appreciably with pressure. The conditions of the

More information

Two Questions and Three Equations on Distance of Investigation

Two Questions and Three Equations on Distance of Investigation Two Questions and Three Equations on Distance of Investigation Hamed Tabatabaie and Louis Mattar, IHS Markit, August 2017 The distance of investigation concept is often used to answer two different types

More information

NEW SATURATION FUNCTION FOR TIGHT CARBONATES USING ROCK ELECTRICAL PROPERTIES AT RESERVOIR CONDITIONS

NEW SATURATION FUNCTION FOR TIGHT CARBONATES USING ROCK ELECTRICAL PROPERTIES AT RESERVOIR CONDITIONS SCA2016-055 1/6 NEW SATURATION FUNCTION FOR TIGHT CARBONATES USING ROCK ELECTRICAL PROPERTIES AT RESERVOIR CONDITIONS Oriyomi Raheem and Hadi Belhaj The Petroleum Institute, Abu Dhabi, UAE This paper was

More information

Propagation of Radius of Investigation from Producing Well

Propagation of Radius of Investigation from Producing Well UESO #200271 (EXP) [ESO/06/066] Received:? 2006 (November 26, 2006) Propagation of Radius of Investigation from Producing Well B.-Z. HSIEH G. V. CHILINGAR Z.-S. LIN QUERY SHEET Q1: Au: Please review your

More information

EXAMINATION OF AN OPTIMIZED REPLACEABLE CUTTING TOOTH OF EXCAVATOR

EXAMINATION OF AN OPTIMIZED REPLACEABLE CUTTING TOOTH OF EXCAVATOR Geosciences and Engineering, Vol. 1, No. (01), pp. 337 34. EXAMINATION OF AN OPTIMIZED REPLACEABLE CUTTING TOOTH OF EXCAVATOR ZOLTÁN VIRÁG 1 SÁNDOR SZIRBIK 1 Department of Geotechnical Equipment, University

More information

Rate Transient Analysis COPYRIGHT. Introduction. This section will cover the following learning objectives:

Rate Transient Analysis COPYRIGHT. Introduction. This section will cover the following learning objectives: Learning Objectives Rate Transient Analysis Core Introduction This section will cover the following learning objectives: Define the rate time analysis Distinguish between traditional pressure transient

More information

STRESS-DEPENDENT POROSITY AND PERMEABILITY OF A SUITE OF SAMPLES FROM SAUDI ARABIAN SANDSTONE AND LIMESTONE RESERVOIRS

STRESS-DEPENDENT POROSITY AND PERMEABILITY OF A SUITE OF SAMPLES FROM SAUDI ARABIAN SANDSTONE AND LIMESTONE RESERVOIRS STRESS-DEPENDENT POROSITY AND PERMEABILITY OF A SUITE OF SAMPLES FROM SAUDI ARABIAN SANDSTONE AND LIMESTONE RESERVOIRS M. A. Mohiuddin 1, G. Korvin 2, A. Abdulraheem 1, M. R. Awal 1, K. Khan 1, M. S. Khan

More information

Chapter 6. Conclusions. 6.1 Conclusions and perspectives

Chapter 6. Conclusions. 6.1 Conclusions and perspectives Chapter 6 Conclusions 6.1 Conclusions and perspectives In this thesis an approach is presented for the in-situ characterization of rocks in terms of the distribution of hydraulic parameters (called SBRC

More information

RELATIONSHIP BETWEEN CAPILLARY PRESSURE AND RESISTIVITY INDEX

RELATIONSHIP BETWEEN CAPILLARY PRESSURE AND RESISTIVITY INDEX SCA2005-4 /2 ELATIONSHIP BETWEEN CAPILLAY PESSUE AND ESISTIVITY INDEX Kewen Li *, Stanford University and Yangtz University and Wade Williams, Core Lab, Inc. * Corresponding author This paper was prepared

More information

Novel Approaches for the Simulation of Unconventional Reservoirs Bicheng Yan*, John E. Killough*, Yuhe Wang*, Yang Cao*; Texas A&M University

Novel Approaches for the Simulation of Unconventional Reservoirs Bicheng Yan*, John E. Killough*, Yuhe Wang*, Yang Cao*; Texas A&M University SPE 168786 / URTeC 1581172 Novel Approaches for the Simulation of Unconventional Reservoirs Bicheng Yan*, John E. Killough*, Yuhe Wang*, Yang Cao*; Texas A&M University Copyright 2013, Unconventional Resources

More information

THE IMPACT OF HETEROGENEITY AND MULTI-SCALE MEASUREMENTS ON RESERVOIR CHARACTERIZATION AND STOOIP ESTIMATIONS

THE IMPACT OF HETEROGENEITY AND MULTI-SCALE MEASUREMENTS ON RESERVOIR CHARACTERIZATION AND STOOIP ESTIMATIONS SCA2011-49 1/6 THE IMPACT OF HETEROGENEITY AND MULTI-SCALE MEASUREMENTS ON RESERVOIR CHARACTERIZATION AND STOOIP ESTIMATIONS Moustafa Dernaika 1, Samy Serag 2 and M. Zubair Kalam 2 1 Ingrain Inc., Abu

More information

Faculty of Science and Technology MASTER S THESIS

Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Faculty of Science and Technology MASTER S THESIS MSc Petroleum Engineering / Reservoir Engineering Spring semester, 2015 Open access Writer: Mahmoud S M Alaassar (Writer

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

Evaluation of Core Heterogeneity Effect on Pulse-decay Experiment

Evaluation of Core Heterogeneity Effect on Pulse-decay Experiment SCA2017-033 1/13 Evaluation of Core Heterogeneity Effect on Pulse-decay Experiment Bao Jia, Jyun-Syung Tsau and Reza Barati University of Kansas This paper was prepared for presentation at the International

More information

SPE Uncertainty in rock and fluid properties.

SPE Uncertainty in rock and fluid properties. SPE 77533 Effects on Well Test Analysis of Pressure and Flowrate Noise R.A. Archer, University of Auckland, M.B. Merad, Schlumberger, T.A. Blasingame, Texas A&M University Copyright 2002, Society of Petroleum

More information

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis Unit 14. Differential Data Analysis Overview The design equations (reactor models) for the perfectly mixed batch reactor and for the PFR are differential equations. This presents a small problem when data

More information

Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks

Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks RPSEA Piceance Basin Tight Gas Research Review Xiaolong Yin, Assistant Professor Petroleum Engineering, Colorado School

More information

A Multi-Continuum Multi-Component Model for Simultaneous Enhanced Gas Recovery and CO 2 Storage in Stimulated Fractured Shale Gas Reservoirs Jiamin

A Multi-Continuum Multi-Component Model for Simultaneous Enhanced Gas Recovery and CO 2 Storage in Stimulated Fractured Shale Gas Reservoirs Jiamin A Multi-Continuum Multi-Component Model for Simultaneous Enhanced Gas Recovery and CO 2 Storage in Stimulated Fractured Shale Gas Reservoirs Jiamin Jiang M.S. Candidate Joined Fall 2013 1 Main Points Advanced

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 8426 Second edition 2008-02-01 Hydraulic fluid power Positive displacement pumps and motors Determination of derived capacity Transmissions hydrauliques Pompes et moteurs volumétriques

More information

Pressure-Transient Behavior of DoublePorosity Reservoirs with Transient Interporosity Transfer with Fractal Matrix Blocks

Pressure-Transient Behavior of DoublePorosity Reservoirs with Transient Interporosity Transfer with Fractal Matrix Blocks SPE-190841-MS Pressure-Transient Behavior of DoublePorosity Reservoirs with Transient Interporosity Transfer with Fractal Matrix Blocks Alex R. Valdes-Perez and Thomas A. Blasingame, Texas A&M University

More information

Robert Czarnota*, Damian Janiga*, Jerzy Stopa*, Paweł Wojnarowski* LABORATORY MEASUREMENT OF WETTABILITY FOR CIĘŻKOWICE SANDSTONE**

Robert Czarnota*, Damian Janiga*, Jerzy Stopa*, Paweł Wojnarowski* LABORATORY MEASUREMENT OF WETTABILITY FOR CIĘŻKOWICE SANDSTONE** AGH DRILLING, OIL, GAS Vol. 33 No. 1 2016 http://dx.doi.org/10.7494/drill.2016.33.1.167 Robert Czarnota*, Damian Janiga*, Jerzy Stopa*, Paweł Wojnarowski* LABORATORY MEASUREMENT OF WETTABILITY FOR CIĘŻKOWICE

More information

Measurement of Conductivity of Liquids

Measurement of Conductivity of Liquids Name: Lab Section: Date: ME4751, Energy Systems Laboratory Measurement of Conductivity of Liquids Objective: The objective of this experiment is to measure the conductivity of fluid (liquid or gas) and

More information

MULTISCALE MODELING OF GAS TRANSPORT AND STORAGE IN SHALE RESOURCES

MULTISCALE MODELING OF GAS TRANSPORT AND STORAGE IN SHALE RESOURCES MULTISCALE MODELING OF GAS TRANSPORT AND STORAGE IN SHALE RESOURCES Ali Takbiri-Borujeni 12/02/2014 WHAT TO EXPECT An introduction to gas transport modeling techniques and their complexities at different

More information

A NEW SERIES OF RATE DECLINE RELATIONS BASED ON THE DIAGNOSIS OF RATE-TIME DATA

A NEW SERIES OF RATE DECLINE RELATIONS BASED ON THE DIAGNOSIS OF RATE-TIME DATA A NEW SERIES OF RATE DECLINE RELATIONS BASED ON THE DIAGNOSIS OF RATE-TIME DATA A Thesis by ANASTASIOS S. BOULIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks

Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks RPSEA Piceance Basin Tight Gas Research Review Xiaolong Yin, Assistant Professor Petroleum Engineering, Colorado School

More information

Flow of Non-Newtonian Fluids within a Double Porosity Reservoir under Pseudosteady State Interporosity Transfer Conditions

Flow of Non-Newtonian Fluids within a Double Porosity Reservoir under Pseudosteady State Interporosity Transfer Conditions SPE-185479-MS Flow of Non-Newtonian Fluids within a Double Porosity Reservoir under Pseudosteady State Interporosity Transfer Conditions J. R. Garcia-Pastrana, A. R. Valdes-Perez, and T. A. Blasingame,

More information

PET467E-Analysis of Well Pressure Tests 2008 Spring/İTÜ HW No. 5 Solutions

PET467E-Analysis of Well Pressure Tests 2008 Spring/İTÜ HW No. 5 Solutions . Onur 13.03.2008 PET467E-Analysis of Well Pressure Tests 2008 Spring/İTÜ HW No. 5 Solutions Due date: 21.03.2008 Subject: Analysis of an dradon test ith ellbore storage and skin effects by using typecurve

More information

AN EXPERIMENTAL STUDY OF WATERFLOODING FROM LAYERED SANDSTONE BY CT SCANNING

AN EXPERIMENTAL STUDY OF WATERFLOODING FROM LAYERED SANDSTONE BY CT SCANNING SCA203-088 /6 AN EXPERIMENTAL STUDY OF WATERFLOODING FROM LAYERED SANDSTONE BY CT SCANNING Zhang Zubo, Zhang Guanliang 2, Lv Weifeng, Luo Manli, Chen Xu, Danyong Li 3 Research Institute of Petroleum Exploration

More information

OPTIMAL DIMENSIONING OF PIPES ABOVE GROUND

OPTIMAL DIMENSIONING OF PIPES ABOVE GROUND MultiScience - XXX. microca International Multidisciplinary Scientific Conference University of Miskolc, Hungary, 1- April 016, ISBN 978-963-358-113-1 OPTIMAL IMENSIONING OF PIPES ABOVE GROUN 1. INTROUCTION

More information

Far East Journal of Applied Mathematics

Far East Journal of Applied Mathematics Far East Journal of Applied Mathematics Volume, Number, 29, Pages This paper is available online at http://www.pphmj.com 29 Pushpa Publishing House EVELOPMENT OF SOLUTION TO THE IFFUSIVITY EQUATION WITH

More information

SPE =. (3) h=0.7035p c / ρ (1)

SPE =. (3) h=0.7035p c / ρ (1) SPE 7142 Estimation of Saturation Height Function Using Capillary Pressure by Different Approaches Mahmound Jamiolahmady, Mehran Sohrabi and Mohammed Tafat, Inst. of Petroleum Engineering, Heriot-Watt

More information

Integrating Lab and Numerical Experiments to Investigate Fractured Rock

Integrating Lab and Numerical Experiments to Investigate Fractured Rock Integrating Lab and Numerical Experiments to Investigate Fractured Rock Bradford H. Hager Director, Earth Resources Laboratory and Cecil and Ida Green Professor Department of Earth, Atmospheric and Planetary

More information

Coalbed Methane Properties

Coalbed Methane Properties Coalbed Methane Properties Subtopics: Permeability-Pressure Relationship Coal Compressibility Matrix Shrinkage Seidle and Huitt Palmer and Mansoori Shi and Durucan Constant Exponent Permeability Incline

More information

Available online at ScienceDirect. Energy Procedia 59 (2014 )

Available online at   ScienceDirect. Energy Procedia 59 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 59 (2014 ) 366 373 European Geosciences Union General Assembly 2014, EGU 2014 Laboratory measurements of fluid transport properties

More information

Mercia Mudstone Formation, caprock to carbon capture and storage sites: petrophysical and petrological characteristics

Mercia Mudstone Formation, caprock to carbon capture and storage sites: petrophysical and petrological characteristics Mercia Mudstone Formation, caprock to carbon capture and storage sites: petrophysical and petrological characteristics 1: University of Liverpool, UK 2: University of Newcastle, UK 3: FEI, Australia 4:

More information

MODELING ASPHALTENE DEPOSITION RELATED DAMAGES THROUGH CORE FLOODING TESTS

MODELING ASPHALTENE DEPOSITION RELATED DAMAGES THROUGH CORE FLOODING TESTS SCA2010-33 1/6 MODELING ASPHALTENE DEPOSITION RELATED DAMAGES THROUGH CORE FLOODING TESTS Ali Rezaian ; Morteza Haghighat Sefat; Mohammad Alipanah; Amin Kordestany, Mohammad Yousefi Khoshdaregi and Erfan

More information

Determination of Capillary pressure & relative permeability curves

Determination of Capillary pressure & relative permeability curves Determination of Capillary pressure & relative permeability curves With Refrigerated Centrifuge Multi speed centrifuge experiments Introduction As the porous diaphragm method see Vinci s CAPRI, the centrifuge

More information

Pressure Transient Analysis COPYRIGHT. Introduction to Pressure Transient Analysis. This section will cover the following learning objectives:

Pressure Transient Analysis COPYRIGHT. Introduction to Pressure Transient Analysis. This section will cover the following learning objectives: Pressure Transient Analysis Core Introduction to Pressure Transient Analysis This section will cover the following learning objectives: Describe pressure transient analysis (PTA) and explain its objectives

More information

Modeling and Simulation of Natural Gas Production from Unconventional Shale Reservoirs

Modeling and Simulation of Natural Gas Production from Unconventional Shale Reservoirs International Journal of Clean Coal and Energy, 2015, 4, 23-32 Published Online May 2015 in SciRes. http://www.scirp.org/journal/ijcce http://dx.doi.org/10.4236/ijcce.2015.42003 Modeling and Simulation

More information

Understanding Fractures and Pore Compressibility of Shales using NMR Abstract Introduction Bulk

Understanding Fractures and Pore Compressibility of Shales using NMR Abstract Introduction Bulk SCA6-7 /6 Understanding Fractures and Pore Compressibility of Shales using NMR M. Dick, D. Green, E.M. Braun, and D. Veselinovic Green Imaging Technologies, Fredericton, NB, Canada Consultant, Houston,

More information

Effect of Sorption/Curved Interface Thermodynamics on Pressure transient

Effect of Sorption/Curved Interface Thermodynamics on Pressure transient PROCEEDINGS, Twentieth Workshop on Geothermal Rey~volr Englneerlng Stanford Unhrenlty, Stanfoni, Callfornla, January 2426 1995 SGP-m-150 Effect of Sorption/Curved Interface Thermodynamics on Pressure transient

More information

A HYBRID SEMI-ANALYTICAL AND NUMERICAL METHOD FOR MODELING WELLBORE HEAT TRANSMISSION

A HYBRID SEMI-ANALYTICAL AND NUMERICAL METHOD FOR MODELING WELLBORE HEAT TRANSMISSION PROCEEDINGS, Thirtieth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31-February 2, 5 SGP-TR-176 A HYBRID SEMI-ANALYTICAL AND NUMERICAL METHOD FOR MODELING

More information

Robustness to formation geological heterogeneities of the limited entry technique for multi-stage fracturing of horizontal wells

Robustness to formation geological heterogeneities of the limited entry technique for multi-stage fracturing of horizontal wells Rock Mech Rock Eng DOI 10.1007/s00603-015-0836-5 TECHNICAL NOTE Robustness to formation geological heterogeneities of the limited entry technique for multi-stage fracturing of horizontal wells Brice Lecampion

More information

LABORATORY NUMBER 9 STATISTICAL ANALYSIS OF DATA

LABORATORY NUMBER 9 STATISTICAL ANALYSIS OF DATA LABORATORY NUMBER 9 STATISTICAL ANALYSIS OF DATA 1.0 INTRODUCTION The purpose of this laboratory is to introduce the student to the use of statistics to analyze data. Using the data acquisition system

More information

TRITIUM PEAK METHOD AND 3 H/ 3 HE DATING TECHNIQUE USE FOR ESTIMATING SHALLOW GROUNDWATER RECHARGE

TRITIUM PEAK METHOD AND 3 H/ 3 HE DATING TECHNIQUE USE FOR ESTIMATING SHALLOW GROUNDWATER RECHARGE TRITIUM PEAK METHOD AND H/ HE DATING TECHNIQUE USE FOR ESTIMATING SHALLOW GROUNDWATER RECHARGE László Kompár 1, Péter Szűcs 2, László Palcsu, József Deák 4 research fellow 1, DSc, head of department, professor

More information

Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas Reservoir

Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas Reservoir SPE 141058 Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas Reservoir A.Kalantari-Dahaghi, S.D.Mohaghegh,SPE, Petroleum Engineering and Analytic Research Laboratory(PEARL)

More information

A NOVEL APPROACH FOR THE RAPID ESTIMATION OF DRAINAGE VOLUME, PRESSURE AND WELL RATES. A Thesis NEHA GUPTA

A NOVEL APPROACH FOR THE RAPID ESTIMATION OF DRAINAGE VOLUME, PRESSURE AND WELL RATES. A Thesis NEHA GUPTA A NOVEL APPROACH FOR THE RAPID ESTIMATION OF DRAINAGE VOLUME, PRESSURE AND WELL RATES A Thesis by NEHA GUPTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of

More information

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models Unit 34. 2-D and 3-D Tubular Reactor Models Overview Unit 34 describes two- and three-dimensional models for tubular reactors. One limitation of the ideal PFR model is that the temperature and composition

More information

DETERMINING THE SATURATION EXPONENT BASED ON NMR PORE STRUCTURE INFORMATION

DETERMINING THE SATURATION EXPONENT BASED ON NMR PORE STRUCTURE INFORMATION SCA216-74 1/6 DETERMINING THE SATURATION EXPONENT BASED ON NMR PORE STRUCTURE INFORMATION Xu Hongjun 1,2, Fan Yiren 1, Zhou Cancan 2, Hu Falong 2, Li Chaoliu 2, Yu Jun 2 and Li Changxi 2 1School of Geosciences,

More information

Norbert P. Szabó and Mihály Dobróka

Norbert P. Szabó and Mihály Dobróka Society of Petroleum Engineers Norbert P. Szabó and Mihály Dobróka Department of Geophysics University of Miskolc dobroka@uni-miskolc.hu Foreword Formation Evaluation Using Well-Logging Data Petrophysical

More information

DEMONSTRATION OF MASS TRANSFER USING AERATION OF WATER

DEMONSTRATION OF MASS TRANSFER USING AERATION OF WATER DEMONSTRATION OF MASS TRANSFER USING AERATION OF WATER Sultana R. Syeda *, B.M. S. Arifin, Md. M. Islam and Anup Kumar Department of Chemical Engineering, Bangladesh University of Engineering and Technology

More information

SPE These in turn can be used to estimate mechanical properties.

SPE These in turn can be used to estimate mechanical properties. SPE 96112 Pressure Effects on Porosity-Log Responses Using Rock Physics Modeling: Implications on Geophysical and Engineering Models as Reservoir Pressure Decreases Michael Holmes, SPE, Digital Formation,

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

Chapter 3 Permeability

Chapter 3 Permeability 3.2 Darcy s Law In 1856, Darcy investigated the flow of water through sand filters for water purification. His experimental apparatus is shown in Figure 3.11. By empirical observation Figure 3.11 Schematic

More information

Flow of shale gas in tight rocks using a non-linear transport model with pressure dependent model parameters

Flow of shale gas in tight rocks using a non-linear transport model with pressure dependent model parameters Engineering Conferences International ECI Digital Archives Sixth International Conference on Porous Media and Its Applications in Science, Engineering and Industry Proceedings 7-4-2016 Flow of shale gas

More information

KOZENY-CARMAN EQUATION REVISITED. Jack Dvorkin Abstract

KOZENY-CARMAN EQUATION REVISITED. Jack Dvorkin Abstract KOZENY-CARMAN EQUATION REVISITED Jack Dvorkin -- 009 Abstract The Kozeny-Carman equation is often presented as permeability versus porosity, grain size, and tortuosity. When it is used to estimate permeability

More information

Estimating porosity of carbonate rocks using sequentially applied neural network based, seismic inversion.

Estimating porosity of carbonate rocks using sequentially applied neural network based, seismic inversion. Estimating porosity of carbonate rocks using sequentially applied neural network based, seismic inversion. Balazs Nemeth BHP Canada Summary In this case study, an inversion problem, that is too complex

More information

PERMEABILITY, POROSITY AND KLINKENBERG COEFFICIENT DETERMINATION ON CRUSHED POROUS MEDIA

PERMEABILITY, POROSITY AND KLINKENBERG COEFFICIENT DETERMINATION ON CRUSHED POROUS MEDIA SCA2010-32 1/12 PERMEABILITY, POROSITY AND KLINKENBERG COEFFICIENT DETERMINATION ON CRUSHED POROUS MEDIA Sandra Profice 1, Didier Lasseux 1, Yves Jannot 2, Naime Jebara 3 and Gérald Hamon 3 1 I2M TREFLE,

More information

Shale Gas Reservoir Simulation in Eclipse

Shale Gas Reservoir Simulation in Eclipse PNG 512- Project Report Shale Gas Reservoir Simulation in Eclipse Submitted By: Priyank Srivastava Thought by: Dr. Turgay Ertekin Spring-2017 Model Description From Given Eclipse File Reservoir dimensions

More information

Effect of Pressure-Dependent Natural-Fracture Permeability on Shale-Gas Well Production

Effect of Pressure-Dependent Natural-Fracture Permeability on Shale-Gas Well Production Effect of Pressure-Dependent Natural-Fracture Permeability on Shale-Gas Well Production Erdal Ozkan Colorado School of Mines Based on SPE159801, by, Cho, Y., Apaydin, O. G., and Ozkan, E. 1 Motivations

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

A New Method for Calculating Oil-Water Relative Permeabilities with Consideration of Capillary Pressure

A New Method for Calculating Oil-Water Relative Permeabilities with Consideration of Capillary Pressure A Ne Method for Calculating Oil-Water Relative Permeabilities ith Consideration of Capillary Pressure K. Li, P. Shen, & T. Qing Research Institute of Petroleum Exploration and Development (RIPED), P.O.B.

More information

Relative Permeability Measurement and Numerical Modeling of Two-Phase Flow Through Variable Aperture Fracture in Granite Under Confining Pressure

Relative Permeability Measurement and Numerical Modeling of Two-Phase Flow Through Variable Aperture Fracture in Granite Under Confining Pressure GRC Transactions, Vol. 36, 2012 Relative Permeability Measurement and Numerical Modeling of Two-Phase Flow Through Variable Aperture Fracture in Granite Under Confining Pressure Noriaki Watanabe, Keisuke

More information

PORE PRESSURE EVOLUTION AND CORE DAMAGE: A COMPUTATIONAL FLUID DYNAMICS APPROACH

PORE PRESSURE EVOLUTION AND CORE DAMAGE: A COMPUTATIONAL FLUID DYNAMICS APPROACH SCA211-41 1/6 PORE PRESSURE EVOLUTION AND CORE DAMAGE: A COMPUTATIONAL FLUID DYNAMICS APPROACH I. Zubizarreta, M. Byrne, M.A. Jimenez, E. Roas, Y. Sorrentino and M.A. Velazco. Senergy. Aberdeen, United

More information

Waterflooding Performance of Communicating Stratified Reservoirs With Log-Normal Permeability Distribution

Waterflooding Performance of Communicating Stratified Reservoirs With Log-Normal Permeability Distribution Waterflooding Performance of Communicating Stratified Reservoirs With Log-Normal Permeability Distribution Noaman El-Khatib, SPE, King Saud U. Summary An analytical solution is developed for waterflooding

More information

Ingrain Laboratories INTEGRATED ROCK ANALYSIS FOR THE OIL AND GAS INDUSTRY

Ingrain Laboratories INTEGRATED ROCK ANALYSIS FOR THE OIL AND GAS INDUSTRY Ingrain Laboratories INTEGRATED ROCK ANALYSIS FOR THE OIL AND GAS INDUSTRY 3 INGRAIN We Help Identify and Develop the Most Productive Reservoir by Characterizing Rocks at Pore Level and Upscaling to the

More information

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE PROCEEDINGS, Twenty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 25-27, 1999 SGP-TR-162 AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION

More information

DETERMINATION OF ROCK QUALITY IN SANDSTONE CORE PLUG SAMPLES USING NMR Pedro Romero 1, Gabriela Bruzual 2, Ovidio Suárez 2

DETERMINATION OF ROCK QUALITY IN SANDSTONE CORE PLUG SAMPLES USING NMR Pedro Romero 1, Gabriela Bruzual 2, Ovidio Suárez 2 SCA22-5 /6 DETERMINATION OF ROCK QUALITY IN SANDSTONE CORE PLUG SAMPLES USING NMR Pedro Romero, Gabriela Bruzual 2, Ovidio Suárez 2 PDVSA-Intevep, 2 Central University of Venezuela ABSTRACT NMR T 2 distribution

More information

Multiscale Investigation of Fluid Transport in Gas Shales. Rob Heller and Mark Zoback

Multiscale Investigation of Fluid Transport in Gas Shales. Rob Heller and Mark Zoback Multiscale Investigation of Fluid Transport in Gas Shales Rob Heller and Mark Zoback Multiscale Fluid Flow Process Control Production July 5 July 6 Valko and Lee, 1 Production Rate July 4 Hypotheses: 3

More information

Chapter Four. Experimental

Chapter Four. Experimental Chapter Four 4.1 Materials N,N-Diethyl monoethanolamine (purity 98%) used in all experiments was purchased from Spectrochem Pvt. Ltd., Mumbai. N-Ethyl monoethanolamine, N-(- aminoethyl)ethanolamine, diethanolamine,

More information

Modeling of 1D Anomalous Diffusion In Fractured Nanoporous Media

Modeling of 1D Anomalous Diffusion In Fractured Nanoporous Media LowPerm2015 Colorado School of Mines Low Permeability Media and Nanoporous Materials from Characterisation to Modelling: Can We Do It Better? IFPEN / Rueil-Malmaison - 9-11 June 2015 CSM Modeling of 1D

More information

1.5 Permeability Tests

1.5 Permeability Tests 1-17 1.5 Permeability Tests 1.5.1 General - To determine the coefficient of permeability(or coefficient of hydraulic conductivity) k - General method for determining k directly. 1) Constant-head method

More information

Graphical Analysis and Errors - MBL

Graphical Analysis and Errors - MBL I. Graphical Analysis Graphical Analysis and Errors - MBL Graphs are vital tools for analyzing and displaying data throughout the natural sciences and in a wide variety of other fields. It is imperative

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

Apparent Permeability Effective Stress Laws: Misleading Predictions Resulting from Gas Slippage, Northeastern British Columbia

Apparent Permeability Effective Stress Laws: Misleading Predictions Resulting from Gas Slippage, Northeastern British Columbia Apparent Permeability Effective Stress Laws: Misleading Predictions Resulting from Gas Slippage, Northeastern British Columbia E.A. Letham, University of British Columbia, Vancouver, BC, ealetham@gmail.com

More information

Characteristics of the Triassic Upper Montney Formation (Unit C), West-Central Area, Alberta

Characteristics of the Triassic Upper Montney Formation (Unit C), West-Central Area, Alberta Characteristics of the Triassic Upper Montney Formation (Unit C), West-Central Area, Alberta Omar Derder NeoSeis Technology Group Ltd., Calgary, Alberta omarderder@neoseis.com Abstract Unconventional hydrocarbon

More information

ractical Geomechanics for Unconventional Resources

ractical Geomechanics for Unconventional Resources P ractical Geomechanics for Unconventional Resources 24-26 October 2012, Calgary, Canada Practical Geomechanics for Unconventional Resources Nowadays, unconventional resources have been brought into the

More information

Never switch on the equipment without the assistants explicit authorization!

Never switch on the equipment without the assistants explicit authorization! Biot Savart s law 1 Objective The objective of this experiment is to verify Biot-Savart s law for certain geometries. Over the course of the preparation, the actual experiment and the writing of the report

More information

Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone

Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone P.I. Krakowska (AGH University of Science and Technology in Krakow), P.J. Madejski* (AGH University of Science and

More information

Basic Analysis of Data

Basic Analysis of Data Basic Analysis of Data Department of Chemical Engineering Prof. Geoff Silcox Fall 008 1.0 Reporting the Uncertainty in a Measured Quantity At the request of your supervisor, you have ventured out into

More information

Demonstrating Competency and Equivalency of Two Commercial SPRT Calibration Facilities

Demonstrating Competency and Equivalency of Two Commercial SPRT Calibration Facilities Demonstrating Competency and Equivalency of Two Commercial SPRT Calibration Facilities T. J. Wiandt 1,2 1 Fluke Corporation, Hart Scientific Division, American Fork, Utah United States. 2 E-mail: tom.wiandt@hartscientific.com

More information

9 th International Conference on Quantitative InfraRed Thermography July 2-5, 2008, Krakow - Poland Application of infrared thermography for validation of numerical analyses results of a finned cross-flow

More information

MODA. Modelling data documenting one simulation. NewSOL energy storage tank

MODA. Modelling data documenting one simulation. NewSOL energy storage tank MODA Modelling data documenting one simulation NewSOL energy storage tank Metadata for these elements are to be elaborated over time Purpose of this document: Definition of a data organisation that is

More information

Measuring Methane Adsorption in Shales Using NMR

Measuring Methane Adsorption in Shales Using NMR SCA217-89 Page 1 of 7 Measuring Methane Adsorption in Shales Using NMR M.J. Dick 1, C. Muir 1, D. Veselinovic 1, and D. Green 1 1 Green Imaging Technologies, Fredericton, NB, Canada This paper was prepared

More information

Understanding hydraulic fracture variability through a penny shaped crack model for pre-rupture faults

Understanding hydraulic fracture variability through a penny shaped crack model for pre-rupture faults Penny shaped crack model for pre-rupture faults Understanding hydraulic fracture variability through a penny shaped crack model for pre-rupture faults David Cho, Gary F. Margrave, Shawn Maxwell and Mark

More information

Enhanced Formation Evaluation of Shales Using NMR Secular Relaxation*

Enhanced Formation Evaluation of Shales Using NMR Secular Relaxation* Enhanced Formation Evaluation of Shales Using NMR Secular Relaxation* Hugh Daigle 1, Andrew Johnson 1, Jameson P. Gips 1, and Mukul Sharma 1 Search and Discovery Article #41411 (2014)** Posted August 11,

More information

Numerical simulations of the edge tone

Numerical simulations of the edge tone Numerical simulations of the edge tone I. Vaik, G. Paál Department of Hydrodynamic Systems, Budapest University of Technology and Economics, P.O. Box 91., 1521 Budapest, Hungary, {vaik, paal}@vizgep.bme.hu

More information

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood R. Sanaee *, G. F. Oluyemi, M. Hossain, and M. B. Oyeneyin Robert Gordon University *Corresponding

More information

Rock Physics Laboratory at the PIRC (rooms 1-121, B-185)

Rock Physics Laboratory at the PIRC (rooms 1-121, B-185) Rock Physics Laboratory at the PIRC (rooms 1-121, B-185) Description: The Rock Physics Lab at The PIRC examines the properties of rocks throughout experimental, imagining and numerical techniques. It focuses

More information

Pressure Drop Separation during Aqueous Polymer Flow in Porous Media

Pressure Drop Separation during Aqueous Polymer Flow in Porous Media Pressure Drop Separation during Aqueous Polymer Flow in Porous Media D.C. Raharja 1*, R.E. Hincapie 1, M. Be 1, C.L. Gaol 1, L. Ganzer 1 1 Department of Reservoir Engineering, Clausthal University of Technology

More information

Geomechanical Controls on Hydraulic Fracturing in the Bakken Fm, SK

Geomechanical Controls on Hydraulic Fracturing in the Bakken Fm, SK Geomechanical Controls on Hydraulic Fracturing in the Bakken Fm, SK Chris Hawkes University of Saskatchewan Tight Oil Optimization Conference, Calgary AB, March 12, 2015 Outline Overview of Geomechanical

More information

Th Rock Fabric Characterization Using 3D Reflection Seismic Integrated with Microseismic

Th Rock Fabric Characterization Using 3D Reflection Seismic Integrated with Microseismic Th-17-01 Rock Fabric Characterization Using 3D Reflection Seismic Integrated with Microseismic M. Haege* (Schlumberger), S. Maxwell (Schlumberger), L. Sonneland (Schlumberger) & M. Norton (Progress Energy

More information

Geologic and Reservoir Characterization and Modeling

Geologic and Reservoir Characterization and Modeling Geologic and Reservoir Characterization and Modeling Scott M. Frailey and James Damico Illinois State Geological Survey Midwest Geologic Sequestration Science Conference November 8 th, 2011 Acknowledgements

More information

Keys to Successful Multi-Fractured Horizontal Wells In Tight and Unconventional Reservoirs

Keys to Successful Multi-Fractured Horizontal Wells In Tight and Unconventional Reservoirs Keys to Successful Multi-Fractured Horizontal Wells In Tight and Unconventional Reservoirs Presented by: Larry K. Britt NSI Fracturing & Britt Rock Mechanics Laboratory Key Questions for Horizontal Success

More information

An Open Air Museum. Success breeds Success. Depth Imaging; Microseismics; Dip analysis. The King of Giant Fields WESTERN NEWFOUNDLAND:

An Open Air Museum. Success breeds Success. Depth Imaging; Microseismics; Dip analysis. The King of Giant Fields WESTERN NEWFOUNDLAND: VOL. 7, NO. 4 2010 GEOSCIENCE & TECHNOLOGY EXPLAINED GEO EXPRO VOL. 7, NO. 4 2010 Success breeds Success geoexpro.com Country Profile: Senegal Ocean Bottom Node Seismic WESTERN NEWFOUNDLAND: An Open Air

More information

RELATIONSHIP BETWEEN RESERVOIR PRODUCTIVITY AND PORE PRESSURE DROP

RELATIONSHIP BETWEEN RESERVOIR PRODUCTIVITY AND PORE PRESSURE DROP RELATIONSHIP BETWEEN RESERVOIR PRODUCTIVITY AND PORE PRESSURE DROP Musaed N. J. Al-Awad Petroleum Eng. Dept, College of Eng., King Saud University, ABSTRACT The significance of permeability sensitivity

More information

SPE Copyright 2003, Society of Petroleum Engineers Inc.

SPE Copyright 2003, Society of Petroleum Engineers Inc. SPE 84475 Integrating Short-Term Pressure Buildup Testing and Long-Term Production Data Analysis to Evaluate Hydraulically-Fractured Gas Well Performance J.A. Rushing, SPE, Anadarko Petroleum Corp. and

More information

BUTANE CONDENSATION IN KEROGEN PORES AND IN SMECTITE CLAY: NMR RELAXATION AND COMPARISON IN LAB STUDY

BUTANE CONDENSATION IN KEROGEN PORES AND IN SMECTITE CLAY: NMR RELAXATION AND COMPARISON IN LAB STUDY SCA212-46 1/6 BUTANE CONDENSATION IN KEROGEN PORES AND IN SMECTITE CLAY: NMR RELAXATION AND COMPARISON IN LAB STUDY Jilin Zhang, Jin-Hong Chen, Guodong Jin, Terrence Quinn and Elton Frost Baker Hughes

More information

LAB 5: Induction: A Linear Generator

LAB 5: Induction: A Linear Generator 1 Name Date Partner(s) OBJECTIVES LAB 5: Induction: A Linear Generator To understand how a changing magnetic field induces an electric field. To observe the effect of induction by measuring the generated

More information