O1 History of Mathematics Lecture XIII Complex analysis. Monday 21st November 2016 (Week 7)

Size: px
Start display at page:

Download "O1 History of Mathematics Lecture XIII Complex analysis. Monday 21st November 2016 (Week 7)"

Transcription

1 O1 History of Mathematics Lecture XIII Complex analysis Monday 21st November 2016 (Week 7)

2 Summary Complex numbers Functions of a complex variable The Cauchy Riemann equations Contour integration Cauchy s theorems and theory What is an analytic function?

3 Early ideas about complex numbers Before 1600, very faint beginnings: Cardano (1545) [from quadratics] Bombelli (1572) [from cubics] Harriot (c. 1600) [from quartics] But: For the most part such roots were ignored: negative roots were described merely as false, but complex roots as impossible. (Mathematics emerging, p. 459.)

4 Ideas about complex numbers in the 17th century John Wallis, A treatise of algebra (1685): complex numbers based on insights derived from Euclidean geometry trigonometry properties of conics (See: Mathematics emerging, )

5 Wallis: justification of imaginary numbers A man starts at A and walks 5 yds to B, then retreats 2 yds to C: overall, he has covered 3 yds. If he instead retreats 8 yds to D, then we may say that he has covered -3 yds. Somewhere on the seashore, we gain 26 units of land from the sea, but lose 10 units. Thus, we have gained 16 units overall; if this is a perfect square, then it has side 4 units of length. If instead we lose 26 units of land, but gain 10, then we have lost 16 units overall, or gained -16.The area in question (assumed to be a square) might therefore be viewed as having side 16. (see: Leo Corry, A brief history of numbers, OUP, 2015, pp )

6 Wallis: imaginary numbers as geometric means (see: Leo Corry, A brief history of numbers, OUP, 2015, pp )

7 A new Impossibility in Algebra John Wallis, A treatise of algebra, p. 267 Of negative squares :... requires a new Impossibility in Algebra.

8 Complex numbers in the 18th century (1) Johann Bernoulli used them freely: As early as 1702 Johann Bernoulli... included some useful transformations which converted real integrals to imaginary ones, or conversely. At this point neither he nor anyone else had any compunction about swapping between real and imaginary in this way, especially since such transformations were extremely helpful. (Mathematics emerging, p. 468.)

9 Johann Bernoulli, 1702 (1) Johann Bernoulli, Solution d un problème concernant le calcul intégrale,..., Mémoires de l Académie royale des sciences, 1702:

10 Johann Bernoulli, 1702 (2) Johann Bernoulli, Solution d un problème concernant le calcul intégrale,..., Mémoires de l Académie royale des sciences, 1702: In the same way the differential adz bb + zz will be transformed into the differential of an imaginary logarithm adt 2bt 1; and conversely. (See: Mathematics emerging, )

11 Complex numbers in the 18th century (2) Leonhard Euler also used them freely: e.g., in Introductio in analysin infinitorum, 1748, 138: e +v 1 = cos.v + 1. sin.v & e v 1 = cos.v 1. sin.v (See: Mathematics emerging, )

12 Complex numbers become familiar objects Carl Friedrich Gauss and his proofs of the Fundamental Theorem of Algebra, 1799, 1815, etc. Gauss also in his Disquisitiones arithmeticae (1801): arithmetic of quadratic forms such as x 2 + y 2 ; roots of unity and applications to cyclotomy; etc. Jean Robert Argand and his diagram, 1806 (or Caspar Wessel, 1797) Abel, Galois, Cauchy, Hamilton everyone.

13 Complex analysis The origins of complex analysis may be seen in early achievements by Johann Bernoulli, Euler, and others, using complex transformations to evaluate real integrals. But is substitution of complex variables for real variables permissible? Euler (posthumous, 1794): yes Laplace (1785, 1812): yes Poisson (1812): doubtful Cauchy (1814): inspired by Laplace, set to work on the problem

14 Sources for the origins of complex analysis Secondary: Katz: 17.3 (3rd ed.); 22.3 (brief ed.) Frank Smithies: Cauchy and the creation of complex function theory, Cambridge University Press, 1997 Primary: as quoted by Smithies; some extracts reproduced in Mathematics emerging, 15.2.

15 Real and complex analysis united

16 Cauchy as creator of complex analysis Some of Cauchy s contributions to complex analysis: integration along paths and contours (1814) [1827] calculus of residues (1826) integration formulae (1831) inferences about Taylor series expansions applications to evaluation of difficult definite integrals of real functions

17 The Cauchy Riemann equations If f (z) = f (x + iy) = u(x, y) + iv(x, y) and f (z) exists then u x = v y, u y = v x. Smithies traces the equations back to d Alembert 1752, then Euler 1757, d Alembert 1761, Euler 1775, Lagrange 1781,... Cauchy , Riemann 1851.

18 Contour integration Definition of integral b a f (z) dz : Gauss, 1811 (unpublished and uninfluential); Cauchy, 1827 (written 1814) [Cauchy ] similar to 1823 definition of definite integral of a real function of a real variable [see Lecture X] Integral b a Gauss as above; f (z) dz independent of path from a to b : Cauchy as above.

19 Cauchy s integral formulae f (a) = 1 f (z) 2πi γ z a dz, f (n) (a) = n! f (z) dz 2πi γ (z a) n+1 (Cauchy in various versions from 1822 to 1831)

20 Taylor s Theorem for complex analytic functions Derivation of Taylor series in the form f (z) = c 0 + c 1 z + c 2 z c n z n +, where c n = 1 f (z) 2πi γ (z a) n+1 dz = f (n) (a) n! from Cauchy s Integral Formula: done by Cauchy in 1831.

21 Cauchy s calculus of residues Recall: if f (z) = c n (z a) n, then Res (f ; a) = c 1. n= Cauchy, 1826: residues of simple functions; also beginnings of calculus of residues Cauchy, : f (z) dz = 2πi residues inside Γ Γ

22 Cauchy s motivation Applications to evaluation of definite integrals on R or [0, ). Example: cos x 1 + x 2 dx = π e [1814/1827] Example: 0 sin x x dx = π 2 [1814/1827] Example: 0 sin x cos x π dx = dx = x 0 x 2 [1814/1827] Evaluation of infinite series, inversion of Laplace transforms, etc., etc.

23 Conformality Recall: a map f : R 2 R 2 or C C is said to be conformal if it preserves angles. Suppose f (a) 0. Write f (a) = re iα. By definition ( ) f (a + h) = f (a) + h f (a) + η where η 0 as h 0. So f (a + h) f (a) = re iα h + ηh and the local effect of f is to move a to f (a), scale by r, and rotate by α. So f : C C is conformal at all points where f (z) 0. Katz traces this back to Euler and Gauss. It is explicit and fundamental in Riemann, 1851.

24 The word analytic Words analysis, analytic have had many meanings: Classical: a method of investigating a problem, the opposite of synthesis c. 1600: algebra became known as the analytic art or just analysis, using finite equations 1669: Newton introduced analysis with infinite equations, that is, infinite series 1748: Euler wrote on the analysis of infinitely large and infinitely small quantities : in sections of journals, the Académie des Sciences, etc., Analyse could mean pure mathematics though with a bias to algebra, calculus, etc.; compare Géométrie also meaning pure mathematics, but with (perhaps) spatial bias 1821: Cauchy s cours d analyse shows similarities with our analysis courses today

25 What is an analytic function? Lagrange, 1797: function is analytic if it has a power-series expansion Cauchy s point of departure, : treated complex functions that are continuous and satisfy the Cauchy Riemann equations (always true for analytic functions in the sense of Lagrange), but used no special terminology Weierstrass, 1860s and later; Riemann, 1867: complex function f f (z + h) f (z) is analytic if lim h 0 exists (in region of interest) h Oxford, 2016: we follow Weierstrass, Riemann using words holomorphic, meromorphic, etc. as variants of analytic, with slightly different meanings

Chapter 1. Complex Numbers. 1.1 Complex Numbers. Did it come from the equation x = 0 (1.1)

Chapter 1. Complex Numbers. 1.1 Complex Numbers. Did it come from the equation x = 0 (1.1) Chapter 1 Complex Numbers 1.1 Complex Numbers Origin of Complex Numbers Did it come from the equation Where did the notion of complex numbers came from? x 2 + 1 = 0 (1.1) as i is defined today? No. Very

More information

Contents Part A Number Theory Highlights in the History of Number Theory: 1700 BC 2008

Contents Part A Number Theory Highlights in the History of Number Theory: 1700 BC 2008 Contents Part A Number Theory 1 Highlights in the History of Number Theory: 1700 BC 2008... 3 1.1 Early Roots to Fermat... 3 1.2 Fermat... 6 1.2.1 Fermat s Little Theorem... 7 1.2.2 Sums of Two Squares...

More information

ax 2 +bx+c = 0, M = R 4 X

ax 2 +bx+c = 0, M = R 4 X Complex Numbers Why shall we study complex analysis? We list several examples to illustrate why shall we study complex analysis. (Algebra) If we only limit ourselves to real numbers, the quadratic equation

More information

= 0. Theorem (Maximum Principle) If a holomorphic function f defined on a domain D C takes the maximum max z D f(z), then f is constant.

= 0. Theorem (Maximum Principle) If a holomorphic function f defined on a domain D C takes the maximum max z D f(z), then f is constant. 38 CHAPTER 3. HOLOMORPHIC FUNCTIONS Maximum Principle Maximum Principle was first proved for harmonic functions (i.e., the real part and the imaginary part of holomorphic functions) in Burkhardt s textbook

More information

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 30th October 2017 (Week 4)

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 30th October 2017 (Week 4) O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis Monday 30th October 2017 (Week 4) Summary French institutions Fourier series Early-19th-century rigour Limits, continuity,

More information

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 31st October 2016 (Week 4)

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 31st October 2016 (Week 4) O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis Monday 31st October 2016 (Week 4) Summary French institutions Fourier series Early-19th-century rigour Limits, continuity,

More information

Smalltalk 9/26/13. Is it all in your imagination? Brian Heinold

Smalltalk 9/26/13. Is it all in your imagination? Brian Heinold Smalltalk 9/26/13 Is it all in your imagination? Brian Heinold What is i? Definition: i = 1 What is i? Definition: i = 1 Specifically, i is a number such that i 2 = 1. What is i? Definition: i = 1 Specifically,

More information

Complex numbers, the exponential function, and factorization over C

Complex numbers, the exponential function, and factorization over C Complex numbers, the exponential function, and factorization over C 1 Complex Numbers Recall that for every non-zero real number x, its square x 2 = x x is always positive. Consequently, R does not contain

More information

COMPLEX ANALYSIS TOPIC V: HISTORICAL REMARKS

COMPLEX ANALYSIS TOPIC V: HISTORICAL REMARKS COMPLEX ANALYSIS TOPIC V: HISTORICAL REMARKS PAUL L. BAILEY Historical Background Reference: http://math.fullerton.edu/mathews/n2003/complexnumberorigin.html Rafael Bombelli (Italian 1526-1572) Recall

More information

Complex Analysis: A Round-Up

Complex Analysis: A Round-Up Complex Analysis: A Round-Up October 1, 2009 Sergey Lototsky, USC, Dept. of Math. *** 1 Prelude: Arnold s Principle Valdimir Igorevich Arnold (b. 1937): Russian The Arnold Principle. If a notion bears

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

Mathematical Methods for Engineers and Scientists 1

Mathematical Methods for Engineers and Scientists 1 K.T. Tang Mathematical Methods for Engineers and Scientists 1 Complex Analysis, Determinants and Matrices With 49 Figures and 2 Tables fyj Springer Part I Complex Analysis 1 Complex Numbers 3 1.1 Our Number

More information

Complex Analysis Problems

Complex Analysis Problems Complex Analysis Problems transcribed from the originals by William J. DeMeo October 2, 2008 Contents 99 November 2 2 2 200 November 26 4 3 2006 November 3 6 4 2007 April 6 7 5 2007 November 6 8 99 NOVEMBER

More information

Section V.3.Appendix. The Fundamental Theorem of Algebra

Section V.3.Appendix. The Fundamental Theorem of Algebra V.3.Appendix. The Fundamental Theorem of Algebra 1 Section V.3.Appendix. The Fundamental Theorem of Algebra Note. The Fundamental Theorem of Algebra states that the field of complex numbers, C, is algebraically

More information

The Complex Numbers c ). (1.1)

The Complex Numbers c ). (1.1) The Complex Numbers In this chapter, we will study the basic properties of the field of complex numbers. We will begin with a brief historic sketch of how the study of complex numbers came to be and then

More information

Math 1230, Notes 8. Sep. 23, Math 1230, Notes 8 Sep. 23, / 28

Math 1230, Notes 8. Sep. 23, Math 1230, Notes 8 Sep. 23, / 28 Math 1230, Notes 8 Sep. 23, 2014 Math 1230, Notes 8 Sep. 23, 2014 1 / 28 algebra and complex numbers Math 1230, Notes 8 Sep. 23, 2014 2 / 28 algebra and complex numbers Math 1230, Notes 8 Sep. 23, 2014

More information

O1 History of Mathematics Lecture XV Probability, geometry, and number theory. Monday 28th November 2016 (Week 8)

O1 History of Mathematics Lecture XV Probability, geometry, and number theory. Monday 28th November 2016 (Week 8) O1 History of Mathematics Lecture XV Probability, geometry, and number theory Monday 28th November 2016 (Week 8) Summary Early probability theory Probability theory in the 18th century Euclid s Elements

More information

Euler s Rediscovery of e

Euler s Rediscovery of e Euler s Rediscovery of e David Ruch May 9, 2018 1 Introduction The famous constant e is used in countless applications across many fields of mathematics, and resurfaces periodically in the evolution of

More information

THE MATHEMATICS OF EULER. Introduction: The Master of Us All. (Dunham, Euler the Master xv). This quote by twentieth-century mathematician André Weil

THE MATHEMATICS OF EULER. Introduction: The Master of Us All. (Dunham, Euler the Master xv). This quote by twentieth-century mathematician André Weil THE MATHEMATICS OF EULER Introduction: The Master of Us All All his life he seems to have carried in his head the whole of the mathematics of his day (Dunham, Euler the Master xv). This quote by twentieth-century

More information

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 23 COMPLEX ANALYSIS EXERCISES DOUGLAS ULMER 1. Meromorphic functions on the Riemann sphere It s often useful to allow functions to take the value. This exercise outlines one way to

More information

Class test: week 10, 75 minutes. (30%) Final exam: April/May exam period, 3 hours (70%).

Class test: week 10, 75 minutes. (30%) Final exam: April/May exam period, 3 hours (70%). 17-4-2013 12:55 c M. K. Warby MA3914 Complex variable methods and applications 0 1 MA3914 Complex variable methods and applications Lecture Notes by M.K. Warby in 2012/3 Department of Mathematical Sciences

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 September 5, 2012 Mapping Properties Lecture 13 We shall once again return to the study of general behaviour of holomorphic functions

More information

Fourth Week: Lectures 10-12

Fourth Week: Lectures 10-12 Fourth Week: Lectures 10-12 Lecture 10 The fact that a power series p of positive radius of convergence defines a function inside its disc of convergence via substitution is something that we cannot ignore

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

Modern Analysis Series Edited by Chung-Chun Yang AN INTRODUCTION TO COMPLEX ANALYSIS

Modern Analysis Series Edited by Chung-Chun Yang AN INTRODUCTION TO COMPLEX ANALYSIS Modern Analysis Series Edited by Chung-Chun Yang AN INTRODUCTION TO COMPLEX ANALYSIS Classical and Modern Approaches Wolfgang Tutschke Harkrishan L. Vasudeva ««CHAPMAN & HALL/CRC A CRC Press Company Boca

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Abstract awakenings in algebra: Early group theory in the works of Lagrange, Cauchy, and Cayley

Abstract awakenings in algebra: Early group theory in the works of Lagrange, Cauchy, and Cayley Abstract awakenings in algebra: Early group theory in the works of Lagrange, Cauchy, and Cayley Janet Heine arnett 12 January 2010 Introduction The problem of solving polynomial equations is nearly as

More information

Chennai Mathematical Institute B.Sc Physics Mathematical methods Lecture 1: Introduction to complex algebra

Chennai Mathematical Institute B.Sc Physics Mathematical methods Lecture 1: Introduction to complex algebra Chennai Mathematical Institute B.Sc Physics Mathematical methods Lecture 1: Introduction to complex algebra A Thyagaraja January, 2009 AT p.1/12 1. Real numbers The set of all real numbers (hereafter denoted

More information

Functioning in the Complex Plane

Functioning in the Complex Plane Functioning in the Complex Plane Alan Donald Philip D artagnan Kane Senior Thesis Saint Mary s College of California supervised by Dr.Machmer-Wessels May 17, 2016 1 Abstract In this paper we will explore

More information

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i Real Analysis Problem 1. If F : R R is a monotone function, show that F T V ([a,b]) = F (b) F (a) for any interval [a, b], and that F has bounded variation on R if and only if it is bounded. Here F T V

More information

O1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of rigour

O1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of rigour O1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of rigour Monday 22nd October 2018 (Week 3) Summary Publication and acceptance of the calculus

More information

Contents. Preface xi. vii

Contents. Preface xi. vii Preface xi 1. Real Numbers and Monotone Sequences 1 1.1 Introduction; Real numbers 1 1.2 Increasing sequences 3 1.3 Limit of an increasing sequence 4 1.4 Example: the number e 5 1.5 Example: the harmonic

More information

B Elements of Complex Analysis

B Elements of Complex Analysis Fourier Transform Methods in Finance By Umberto Cherubini Giovanni Della Lunga Sabrina Mulinacci Pietro Rossi Copyright 21 John Wiley & Sons Ltd B Elements of Complex Analysis B.1 COMPLEX NUMBERS The purpose

More information

12 Logarithmic Function

12 Logarithmic Function 12 Logarithmic Function The definition of logarithmic function From Calculus, the logarithmic function, log x : (0, ) R, is defined to be the inverse function of e x : R (0, ) gievn by 42 e log x = x,

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

Lecture 2: What is Proof?

Lecture 2: What is Proof? Lecture 2: What is Proof? Math 295 08/26/16 Webster Proof and Its History 8/2016 1 / 1 Evolution of Proof Proof, a relatively new idea Modern mathematics could not be supported at its foundation, nor construct

More information

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

Lecture Introduction

Lecture Introduction Lecture 1 1.1 Introduction The theory of Partial Differential Equations (PDEs) is central to mathematics, both pure and applied. The main difference between the theory of PDEs and the theory of Ordinary

More information

III. Consequences of Cauchy s Theorem

III. Consequences of Cauchy s Theorem MTH6 Complex Analysis 2009-0 Lecture Notes c Shaun Bullett 2009 III. Consequences of Cauchy s Theorem. Cauchy s formulae. Cauchy s Integral Formula Let f be holomorphic on and everywhere inside a simple

More information

2. Complex Analytic Functions

2. Complex Analytic Functions 2. Complex Analytic Functions John Douglas Moore July 6, 2011 Recall that if A and B are sets, a function f : A B is a rule which assigns to each element a A a unique element f(a) B. In this course, we

More information

Cotangent and the Herglotz trick

Cotangent and the Herglotz trick Cotangent and the Herglotz trick Yang Han Christian Wude May 0, 0 The following script introduces the partial fraction expression of the cotangent function and provides an elegant proof, using the Herglotz

More information

Complex Analysis. Travis Dirle. December 4, 2016

Complex Analysis. Travis Dirle. December 4, 2016 Complex Analysis 2 Complex Analysis Travis Dirle December 4, 2016 2 Contents 1 Complex Numbers and Functions 1 2 Power Series 3 3 Analytic Functions 7 4 Logarithms and Branches 13 5 Complex Integration

More information

Abstract awakenings in algebra: Early group theory in the works of Lagrange, Cauchy, and Cayley

Abstract awakenings in algebra: Early group theory in the works of Lagrange, Cauchy, and Cayley Abstract awakenings in algebra: Early group theory in the works of Lagrange, Cauchy, and Cayley Janet Heine arnett janet.barnett@colostate-pueblo.edu Department of Mathematics and Physics Colorado State

More information

MA30056: Complex Analysis. Revision: Checklist & Previous Exam Questions I

MA30056: Complex Analysis. Revision: Checklist & Previous Exam Questions I MA30056: Complex Analysis Revision: Checklist & Previous Exam Questions I Given z C and r > 0, define B r (z) and B r (z). Define what it means for a subset A C to be open/closed. If M A C, when is M said

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida Beyond Newton and Leibniz: The Making of Modern Calculus Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida Calculus Before Newton & Leibniz Four Major Scientific Problems

More information

AN INTRODUCTION TO COMPLEX ANALYSIS

AN INTRODUCTION TO COMPLEX ANALYSIS AN INTRODUCTION TO COMPLEX ANALYSIS O. Carruth McGehee A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto Contents Preface Symbols and Terms

More information

Math 126: Course Summary

Math 126: Course Summary Math 126: Course Summary Rich Schwartz August 19, 2009 General Information: Math 126 is a course on complex analysis. You might say that complex analysis is the study of what happens when you combine calculus

More information

Euler s Equation in Complex Analysis

Euler s Equation in Complex Analysis Euler s Equation in Complex Analysis Leqi Wang July 2017 Math 190s Duke University!1 Euler s Equation in Complex Analysis Abstract Euler s equation is one of the most beautiful identities throughout the

More information

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA 1 BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA This part of the Basic Exam covers topics at the undergraduate level, most of which might be encountered in courses here such as Math 233, 235, 425, 523, 545.

More information

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f . Holomorphic Harmonic Functions Basic notation. Considering C as R, with coordinates x y, z = x + iy denotes the stard complex coordinate, in the usual way. Definition.1. Let f : U C be a complex valued

More information

= 2 x y 2. (1)

= 2 x y 2. (1) COMPLEX ANALYSIS PART 5: HARMONIC FUNCTIONS A Let me start by asking you a question. Suppose that f is an analytic function so that the CR-equation f/ z = 0 is satisfied. Let us write u and v for the real

More information

The Value of Imaginary Numbers. Most of us are familiar with the numbers that exist on a one-dimensional scale called the number line, as

The Value of Imaginary Numbers. Most of us are familiar with the numbers that exist on a one-dimensional scale called the number line, as Paige Girardi Girardi 1 Professor Yolande Petersen Math 101, MW 11:40-1:05 April 6 2016 The Value of Imaginary Numbers Most of us are familiar with the numbers that exist on a one-dimensional scale called

More information

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2 Name: MthEd/Math 300 Williams Fall 2011 Midterm Exam 2 Closed Book / Closed Note. Answer all problems. You may use a calculator for numerical computations. Section 1: For each event listed in the first

More information

ADVANCED ENGINEERING MATHEMATICS

ADVANCED ENGINEERING MATHEMATICS ADVANCED ENGINEERING MATHEMATICS DENNIS G. ZILL Loyola Marymount University MICHAEL R. CULLEN Loyola Marymount University PWS-KENT O I^7 3 PUBLISHING COMPANY E 9 U Boston CONTENTS Preface xiii Parti ORDINARY

More information

Industrial revolution and reform of mathematics

Industrial revolution and reform of mathematics UDC 51(091) Industrial revolution and reform of mathematics G. A. Zverkina Moscow State University of Railway Engineering (MIIT) 9b9 Obrazcova Street, Moscow, 127994, Russia V. A. Trapeznikov Institute

More information

The Roots of Early Group Theory in the Works of Lagrange

The Roots of Early Group Theory in the Works of Lagrange Ursinus College Digital Commons @ Ursinus College Abstract Algebra Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) Fall 2017 The Roots of Early Group Theory

More information

1 Holomorphic functions

1 Holomorphic functions Robert Oeckl CA NOTES 1 15/09/2009 1 1 Holomorphic functions 11 The complex derivative The basic objects of complex analysis are the holomorphic functions These are functions that posses a complex derivative

More information

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is.

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is. The Exponential Function Lecture 9 The exponential function 1 plays a central role in analysis, more so in the case of complex analysis and is going to be our first example using the power series method.

More information

How Euler Did It. Today we are fairly comfortable with the idea that some series just don t add up. For example, the series

How Euler Did It. Today we are fairly comfortable with the idea that some series just don t add up. For example, the series Divergent series June 2006 How Euler Did It by Ed Sandifer Today we are fairly comfortable with the idea that some series just don t add up. For example, the series + + + has nicely bounded partial sums,

More information

Part IB Complex Analysis

Part IB Complex Analysis Part IB Complex Analysis Theorems Based on lectures by I. Smith Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

O1 History of Mathematics Lecture I Introduction. Monday 9th October 2017 (Week 1)

O1 History of Mathematics Lecture I Introduction. Monday 9th October 2017 (Week 1) O1 History of Mathematics Lecture I Introduction Monday 9th October 2017 (Week 1) Summary Arrangements: lectures, classes, the nature of the course Some advice on reading and taking notes The nature of

More information

What do you think are the qualities of a good theorem? it solves an open problem (Name one..? )

What do you think are the qualities of a good theorem? it solves an open problem (Name one..? ) What do you think are the qualities of a good theorem? Aspects of "good" theorems: short surprising elegant proof applied widely: it solves an open problem (Name one..? ) creates a new field might be easy

More information

O1 History of Mathematics Lecture IX Classical algebra: equation solving 1800BC AD1800. Monday 6th November 2017 (Week 5)

O1 History of Mathematics Lecture IX Classical algebra: equation solving 1800BC AD1800. Monday 6th November 2017 (Week 5) O1 History of Mathematics Lecture IX Classical algebra: equation solving 1800BC AD1800 Monday 6th November 2017 (Week 5) Summary Early quadratic equations Cubic and quartic equations Further 16th-century

More information

How large can a finite group of matrices be? Blundon Lecture UNB Fredericton 10/13/2007

How large can a finite group of matrices be? Blundon Lecture UNB Fredericton 10/13/2007 GoBack How large can a finite group of matrices be? Blundon Lecture UNB Fredericton 10/13/2007 Martin Lorenz Temple University, Philadelphia Overview Groups... and some of their uses Martin Lorenz How

More information

Oxford University Mathematical Institute. Complex Numbers

Oxford University Mathematical Institute. Complex Numbers Version of 30 September 2017 Oxford University Mathematical Institute Complex Numbers Notes by Peter M. Neumann (Queen s College) 1. Introduction Students coming to Oxford to study mathematics arrive with

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

February 1, 2005 INTRODUCTION TO p-adic NUMBERS. 1. p-adic Expansions

February 1, 2005 INTRODUCTION TO p-adic NUMBERS. 1. p-adic Expansions February 1, 2005 INTRODUCTION TO p-adic NUMBERS JASON PRESZLER 1. p-adic Expansions The study of p-adic numbers originated in the work of Kummer, but Hensel was the first to truly begin developing the

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Joseph Fourier (1768-1830) upon returning from Egypt in 1801 was appointed by Napoleon Prefect of the Department of Isères (where Grenoble

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

O1 History of Mathematics Lecture XII 19th-century rigour in real analysis, part 2: real numbers and sets. Monday 14th November 2016 (Week 6)

O1 History of Mathematics Lecture XII 19th-century rigour in real analysis, part 2: real numbers and sets. Monday 14th November 2016 (Week 6) O1 History of Mathematics Lecture XII 19th-century rigour in real analysis, part 2: real numbers and sets Monday 14th November 2016 (Week 6) Summary Proofs of the Intermediate Value Theorem revisited Convergence

More information

Working Group report: A brief history of functions for mathematics educators. Keywords: history of mathematics; functions; BSHM

Working Group report: A brief history of functions for mathematics educators. Keywords: history of mathematics; functions; BSHM Working Group report: A brief history of functions for mathematics educators Leo Rogers and Sue Pope British Society for the History of Mathematics (BSHM); Manchester Metropolitan University Despite the

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Introduction to Complex Analysis - excerpts. B.V. Shabat

Introduction to Complex Analysis - excerpts. B.V. Shabat Introduction to Complex Analysis - excerpts B.V. Shabat June 2, 2003 2 Chapter 1 The Holomorphic Functions We begin with the description of complex numbers and their basic algebraic properties. We will

More information

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that 18.354J Nonlinear Dynamics II: Continuum Systems Lecture 1 9 Spring 2015 19 Stream functions and conformal maps There is a useful device for thinking about two dimensional flows, called the stream function

More information

4 Uniform convergence

4 Uniform convergence 4 Uniform convergence In the last few sections we have seen several functions which have been defined via series or integrals. We now want to develop tools that will allow us to show that these functions

More information

COMPLEX NUMBERS ALGEBRA 7. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Complex Numbers 1/ 22 Adrian Jannetta

COMPLEX NUMBERS ALGEBRA 7. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Complex Numbers 1/ 22 Adrian Jannetta COMPLEX NUMBERS ALGEBRA 7 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Complex Numbers 1/ 22 Adrian Jannetta Objectives This presentation will cover the following: Introduction to complex numbers.

More information

Curriculum Map for Mathematics HL (DP1)

Curriculum Map for Mathematics HL (DP1) Curriculum Map for Mathematics HL (DP1) Unit Title (Time frame) Sequences and Series (8 teaching hours or 2 weeks) Permutations & Combinations (4 teaching hours or 1 week) Standards IB Objectives Knowledge/Content

More information

English and L A TEX for Mathematicians

English and L A TEX for Mathematicians English and L A TEX for Mathematicians Melchior Grützmann melchiorgfreehostingcom/english Department of Mathematics 12 th April, 2012 Outline Last week: Structure of an article Prehistoric and antique

More information

A history of Topology

A history of Topology A history of Topology Version for printing Geometry and topology index History Topics Index Topological ideas are present in almost all areas of today's mathematics. The subject of topology itself consists

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS November 8, 203 ANALYTIC FUNCTIONAL CALCULUS RODICA D. COSTIN Contents. The spectral projection theorem. Functional calculus 2.. The spectral projection theorem for self-adjoint matrices 2.2. The spectral

More information

Complex Numbers, Basics

Complex Numbers, Basics i Complex Numbers, Basics The shortest path between two truths in the real domain passes through the complex domain." (Jaques Hadamard 1865 1963) 1 E1 1 E2 Introduction It was one of the early problems

More information

LECTURE-13 : GENERALIZED CAUCHY S THEOREM

LECTURE-13 : GENERALIZED CAUCHY S THEOREM LECTURE-3 : GENERALIZED CAUCHY S THEOREM VED V. DATAR The aim of this lecture to prove a general form of Cauchy s theorem applicable to multiply connected domains. We end with computations of some real

More information

MEAN VALUE THEOREMS FUNCTIONS OF SINGLE & SEVERAL VARIABLES

MEAN VALUE THEOREMS FUNCTIONS OF SINGLE & SEVERAL VARIABLES MATHEMATICS-I MEAN VALUE THEOREMS FUNCTIONS OF SINGLE & SEVERAL VARIABLES I YEAR B.TECH By Y. Prabhaker Reddy Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad. Name

More information

Math 421 Midterm 2 review questions

Math 421 Midterm 2 review questions Math 42 Midterm 2 review questions Paul Hacking November 7, 205 () Let U be an open set and f : U a continuous function. Let be a smooth curve contained in U, with endpoints α and β, oriented from α to

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

Rigorization of Calculus. 18 th Century Approaches,Cauchy, Weirstrass,

Rigorization of Calculus. 18 th Century Approaches,Cauchy, Weirstrass, Rigorization of Calculus 18 th Century Approaches,Cauchy, Weirstrass, Basic Problem In finding derivatives, pretty much everyone did something equivalent to finding the difference ratio and letting. Of

More information

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43 INDEX Abel s identity, 131 Abel s test, 131 132 Abel s theorem, 463 464 absolute convergence, 113 114 implication of conditional convergence, 114 absolute value, 7 reverse triangle inequality, 9 triangle

More information

Assignment 2 - Complex Analysis

Assignment 2 - Complex Analysis Assignment 2 - Complex Analysis MATH 440/508 M.P. Lamoureux Sketch of solutions. Γ z dz = Γ (x iy)(dx + idy) = (xdx + ydy) + i Γ Γ ( ydx + xdy) = (/2)(x 2 + y 2 ) endpoints + i [( / y) y ( / x)x]dxdy interiorγ

More information

Mathematical Transition

Mathematical Transition Lecture 3 Mathematical Transition For the construction of the regular pentagon, we used the five solutions, z 0, z 1, z 2, z 3, z 4,of Z 5 1=0, thus the five numbers z k =cos(2πk/5) + i sin(2πk/5), k =0,

More information

FROM HOLOMORPHIC FUNCTIONS TO HOLOMORPHIC SECTIONS

FROM HOLOMORPHIC FUNCTIONS TO HOLOMORPHIC SECTIONS FROM HOLOMORPHIC FUNCTIONS TO HOLOMORPHIC SECTIONS ZHIQIN LU. Introduction It is a pleasure to have the opportunity in the graduate colloquium to introduce my research field. I am a differential geometer.

More information

Identities for the gamma and hypergeometric functions: an overview from Euler to the present

Identities for the gamma and hypergeometric functions: an overview from Euler to the present Identities for the gamma and hypergeometric functions: an overview from Euler to the present Julie Patricia Hannah School of Mathematics University of the Witwatersrand Johannesburg South Africa Under

More information