Preliminary Study on Magnetic Induction Intensity Induced by Plasma During Hypervelocity Impact

Size: px
Start display at page:

Download "Preliminary Study on Magnetic Induction Intensity Induced by Plasma During Hypervelocity Impact"

Transcription

1 Chinese Journal of Aeronautics 22(2009) Chinese Journal of Aeronautics Preliminary Study on Magnetic Induction Intensity Induced by Plasma During Hypervelocity Impact Tang Enling a,b, *, Zhang Qingming b, Zhang Jian a a School of Equipment Engineering, Shenyang Ligong University, Shenyang , China b State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing , China Received 10 August 2008; accepted 17 November 2008 Abstract An experimental system has been built to produce and measure the magnetic field in the backward ejected matter during hypervelocity impact. The designs of measurement system and coil, the choice of associated equipment, and the system calibration are also described in detail. The measurement of magnetic induction intensity for different given coil positions and azimuth angles are performed with two-stage light-gas gun. On condition that impact velocities are approximately equal and incidence angles are 45, 60 and 90 respectively, the relationship between average magnetic induction intensity and impact angle at different time spans is obtained. Experimental results show that the average magnetic induction intensity with incidence angle of 90 is larger than those with incidence angles of 45and 60. Keywords: hypervelocity impact; plasma; magnetic fields; measurement system; magnetic induction intensity 1. Introduction 1 The plasma was considered to be generated by partial vaporization and ionization of the projectile and target material under the extreme conditions of hypervelocity impact [1-8]. R. Hide [8] suggested that hypervelocity impacts could produce magnetic fields through the hydromagnetic interaction of impact-generated electrically conductive plasma. The electromagnetic properties of plasma produced by hypervelocity impact have been exploited by researchers as a diagnostic tool to explain the jumbled state of potential magnetic field on the lunar surface [9-11] and the loss of Olympus experimental communication satellite [12]. Ionization and formation of plasma due to impact of fast dust particles have been investigated extensively in order to study cometary dust particles encountered during space flight [13]. This article aims at establishing the measurement system of magnetic field induced by plasma which is *Corresponding author. Tel.: address: tangenling@126.com Foundation items: National Natural Science Foundation of China ( ); Talent Resources Development Special Funds of Shenyang ( ); Doctoral Initiation Special Fund of Shenyang Ligong University generated during hypervelocity impact, and acquiring the relational feature of average magnetic induction intensity to impact angle with different given coil positions, azimuth angles and time spans during early impact stage. 2. Theory Refs.[14],[15] considered that thermally driven electrical currents and their associated magnetic fields could be generated in plasma clouds during the early stage of hypervelocity impacts. He developed a simple theoretical model of impact-generated magnetic fields. The model describing the rate of magnetic induction intensity changing with time (B/t) is derived from generalized Ohm s law 1 nk T J E ub (1) c en where J is the electric current distribution; E and B are the electric and magnetic field intensities, u and the plasma s fluid velocity and electrical conductivity; c is the speed of light, k Boltzmanns constant; and n, T and e are the electron number density, temperature and charge, respectively. Applying Maxwell s equation to Eq.(1) obtains Elsevier Ltd. Open access under CC BY-NC-ND license. doi: /s (08)

2 388 Tang Enling et al. / Chinese Journal of Aeronautics 22(2009) No.4 2 B ck c 2 ( T n) B ( u B) (2) t en 4 The first term on the right part of Eq.(2) represents source term which arises from drift current due to nonzero pressure gradients [14] ; the second term represents the diffusion of B through the electrically conductive plasma; the third term represents advection of B due to fluid motion. Refs.[9],[10],[14],[15] also considered that the maximum magnetic field intensity could be estimated from Eq.(2). The distribution of ionized fraction within the vapor cloud may be considerable complexity due to jetting, entrained or ricocheted fragments and the internal shear heating of the projectile and target [16]. If the diffusion term in Eq.(2) can be neglected [14], the order-of-magnitude estimate of the maximum magnetic induction intensity B max coming from impact-generated plasma can be obtained by setting B/t =0 max ~ ck T n B (3) eu r n where u is the magnitude of the plasma velocity (usually approximated by the gas expansion velocity) and T/r and n/n represent temperature and density gradients being considered as the functions of position within plasma cloud. Eq.(3) shows that the spontaneous impact-generated magnetic field is not strongly affected by the absolute level of electron number density n but relies on the fluctuations of electron number density n/n. 3. Experiment The experimental investigation of magnetic field production is performed with the two-stage light-gas gun installed in the Laboratory of High Pressure Physics of Southwest Jiaotong University. The gas gun is capable of launching macroscopic projectiles with the velocity up to 7 km/s, and the target chamber is vacuumized to achieve its vacuity being less than 100 Pa for the superhigh velocity impact experiment Experimental basic supposition In the experiment, the shock-induced ionization of the air ahead of the projectile may exist and form a plasma layer near the surface of spherical metal projectile. The effect of plasma on the measurement of magnetic induction intensity is supposed to be negligible, because the residual gas pressure of target chamber is less than 100 Pa and the hydrogen gas after the projectile is expanded into the front half chamber, which is effectively separated from the behind half chamber Experimental system Two-stage light-gas gun launching macroscopic projectile is a metal sphere. After flying certain distance in target chamber, the metal sphere is separated from the sabot, and then impacts the target. Coils are located at the downrange positions of backing plate through support setting, which is located far away from the mainstream of ejectors generated by hypervelocity impact. The measured signals in expanding plasma cloud are obtained by search coil and input measuring system which transports voltage signals by coaxial cables. Weak voltage signals collected by coils are amplified by differential operational amplifier and input to oscilloscope. Fig.1 is the block diagram of system construction. Fig.1 Block diagram of system construction Experimental system layout In order to position the coils, a Cartesian coordinates system (X, Y, Z) with the origin at the impact point is used, where +Z denotes the height above the target surface, +Y the distance from the impact point to the upper range, and +X the distance away from the projectile flying line which meets the right-handed rule. Coil space layouts for three sets of experiments are the same that each set of experiment is equipped with two coils symmetrically arranged on both sides of the plane which is perpendicular to the target and trajectory. The coordinates of the centers of coil 1 and coil 2 are (50, 175, 185) and (50, 175, 185), respectively. Coil plane is perpendicular to backing plate with an angle of 45 between flight line and coil center line. Fig.2 shows the experimental system layout Design of coil measurement system The rapidly changing magnetic field produced during hypervelocity impact in the laboratory is measured with search coils. The electromotive force (EMF) induced within each coil is proportional to the rate-ofchange of the magnetic field and is changing with time (B/t). The voltage is damped by 10 k resistors and amplified by a differential operational amplifier. After being amplified, the signals are input to the digital acquisition system. Fig.3 is the diagrammatic sketch of coil measurement system, where R L is self-integral resistance which determines the smooth degree of measured signal. The coils consist of 300 turns of 30 gauge (American Wire Guide) copper magnet wire wound helically on a plastic coil form approximately 6 cm in diameter.

3 No.4 Tang Enling et al. / Chinese Journal of Aeronautics 22(2009) Fig.2 Experimental system layout. Fig.3 Diagrammatic sketch of coil measurement system. All the coils are shielded by grounded aluminum foil with thickness of 2 mm. Due to the grounded aluminum foil, the electrostatic component of the coil signals is negligible. The signal coming from each coil is routed through an amplifier with the gains of 10, 100, 300, 1 000, , and input to two channels of digital oscilloscope. Four-channel voltage preamplifier is chosen for all the experiments. The model number of the differential operational amplifier is HB-854, which is developed by Weak Signal Detection Center of Nanjing University of China Experimental parameters (1) Basic impact parameters The materials for both projectile and target are all LY12-Al. Projectile is a solid sphere with a diameter of 6.4 mm. Thickness of LY12-Al targets is 23 mm. The basic impact parameters are listed in Table 1. Table 1 Basic impact parameters d 1 V( t) C( k) C( k) Ac F (i kb ( k)) (5) dt where C(k) is a calibration function being dependent on frequency and proportional to the number of coil turns. Applying the Fourier transforms of both sides and rearranging them yields F( V ( t)) B ( k) (6) i kacc ( k) and finally it yields 1 F( V ( t)) B () t F Ak ( ) (7) where A(k)=ikA c C(k) is the spectral response of a search coil to a spectrally flat magnetic field source. A(k) can be found by recording the response V 0 (t) of a search coil embedded in a known white noise magnetic field source. A Helmholtz coil is connected to a digital white noise current source to provide B 0 (t), so that F( V0 ( t)) Ak ( ) (8) F( B0 ( t)) Fig.4 shows the spectral response of the search coils used in our study. The average search coil response is about 0.4 mv/nt for 300 turns coil when the frequency is between 1 khz and 150 khz. Experimental code Impact velocity /(kms 1 ) Impact angle /() Chamber pressure/pa (2) System calibration [9] The magnetic flux passing through a search coil can be represented by an inverse Fourier transform c c 1 () t A B() t A F ( B ( k)) (4) where A c is the coil area and B(k) the Fourier transform of the magnetic field intensity B(t). The response of the search coil V(t) is given by Fig.4 Spectrum of coil response function. 4. Experimental Results and Analysis 4.1. Typical original data Electromagnetic pulse excited by magnetic speed

4 390 Tang Enling et al. / Chinese Journal of Aeronautics 22(2009) No.4 measurement system of projectile is used as the outer trigger signal of oscilloscope, then starts recording the signal when being triggered. One can well understand the working process from Fig.2. Fig.5 shows the results of a series of hypervelocity impacts (6.4 mm aluminum projectiles, 300 turns, mean velocity 5.94 km/s) are conducted. The distance between velocity measuring coil center and impact point is mm for all the experiments. Experimental results show that the starting times of signals for two coils of each set of experiment have very good synchronism and approximate equal amplitude values of signal Analysis of magnetic induction intensity According to Fig.6, one can obtain the results that the order of magnitude and amplitude value for the Fig.5 Variation of induced electromotive force with time. Fig.6 Variation of magnetic induction intensity with time.

5 No.4 Tang Enling et al. / Chinese Journal of Aeronautics 22(2009) magnetic induction intensity are congruent with those obtained by the others [10-11]. Due to the fact that the voltage signals of every coil are amplified by differential operational amplifier and its dynamic range is finite, some of the high frequency signals are clipped and the low pass cut-off frequency is 150 khz for all the experiments Average magnetic induction intensity at different time spans Fig.7 is the average magnetic induction intensity at different time spans during early impact stage. According to Fig.7, one can know that when impact velocities are close, the average magnetic induction intensity is very sensitive to the impact angles at different time spans during early impact stage. Average magnetic induction intensity of upright impact is larger than those of the impact angles being 45 and 60. The above mentioned results may be explained that the Fig.7 Average magnetic induction intensity at different impact angles and time spans. T n product for large impact angle (counted from r n the plane of target) is large. 5. Conclusions Experiments indicate that the coil measurement system can give credible measuring results for magnetic induction intensity induced by plasma during hypervelocity impact. Experimental results show that the average magnetic induction intensity at incidence angle of 90 is larger than those at incidence angles of 45and 60 at different time spans during early impact stage. This is only preliminary work in the field and there is a long way to go in the future. Acknowledgments These experiments are performed with the support and help of Professor Liu Fusheng, Engineer Zhang Mingjian and Xue Xuedong in the Laboratory of High Pressure Physics of Southwest Jiaotong University, so the authors of the article thank them devoutly. References [1] Tang E L, Zhang Q M, He Y H, et al. Preliminary study on diagnostic techniques for transient plasma generated by hypervelocity impact. Plasma Science and Technology 2008; 10(6): [2] Tang E L, Zhang Q M, Huang Z P. Electron temperature diagnosis of plasma generated during hypervelocity impact. Transactions of Beijing Institute of Technology 2007; 27(5): [in Chinese] [3] Tang E L, Zhang Q M, Ouyang J T. Fast diagnosis of transient plasma by Langmuir probe. Journal of Beijing Institute of Technology 2007; 16(3): [4] Tang E L, Zhang Q M, Zhang J. Characteristic parameter measurement of plasma generated during hypervelocity impact on LY12 aluminum target. Journal of Projectiles, Rockets, Missiles and Guidance 2008; 28(4): [in Chinese]

6 392 Tang Enling et al. / Chinese Journal of Aeronautics 22(2009) No.4 [5] Hood L L, Huang Z. Formation of magnetic anomalies antipodal to lunar impact basins: two-dimensional model calculations. Journal of Geophysics Research 1991; 96(B6): [6] Schultz P H. Impact vaporization of easily volatized targets: experimental results and implications. Lunar Planet Science 1988; 19: [7] Schultz P H, Srnka L J. Cometary collisions on the Moon and Mercury. Nature 1980; 284: [8] Hide R. Comments on the Moon s magnetism. Moon 1972; 4(1-2): 39. [9] Crawford D A, Schultz P H. Laboratory observations of impact-generated magnetic fields. Nature 1988; 336: [10] Crawford D A, Schultz P H. Laboratory investigations of impact-generated plasma. Journal of Geophysics Research 1991; 96(E3): [11] Crawford D A, Schultz P H. The production and evolution of impact-generated magnetic fields. International Journal of Impact Engineering 1993; 14: [12] Caswell R D, McBride N, Taylor A. Olympus end of life anomalya perseid meteoroid impact event. International Journal of Impact Engineering 1995; 17 (1-3): [13] Kissel J, Krueger F R. Ion formation by impact of fast dust particles and comparison with related techniques. Applied Physics A: Materials Science & Processing 1987; 42(1): [14] Srnka L J. Spontaneous magnetic field generation in hypervelocity impacts. Proceeding of Lunar Science Conference. 1977; [15] Stamper J A. Spontaneous magnetic fields in laserproduced plasmas. Physical Review Letters 1971; 26(17): [16] Schultz P H, Gault D E. Decapitated impactors in the laboratory and on the planets. Abstracts of the Lunar and Planetary Science Conference. 1990; 21: Biography: Tang Enling Born in 1971, he received Ph.D. degree from Beijing Institute of Technology in His main research interests are hypervelocity impact, plasma diagnostic, impact light flash and pulsed plasma thruster (PPT). tangenling@126.com

Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate

Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate TANG Enling ( ) 1, ZHANG Lijiao ( ) 1, ZHANG Qingming ( ) 2, SHI Xiaohan ( ) 1, WANG Meng ( ) 1, WANG Di

More information

Non-Phase-Difference Rogowski Coil for Measuring Pulsed Plasma Thruster Discharge Current

Non-Phase-Difference Rogowski Coil for Measuring Pulsed Plasma Thruster Discharge Current Non-Phase-Difference Rogowski Coil for Measuring Pulsed Plasma Thruster Discharge Current IEPC-2015-49/ISTS-2015-b-49 Presented at Joint Conference of 30th International Symposium on Space Technology and

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Electrical Phenomena TUTORIAL 1 Coulomb's Inverse Square Law 1 A charge of 2.0 x 10-8 C is placed a distance of 2.0

More information

ELECTROMANETIC PULSE PROPAGATION IN A COAXIAL CABLE

ELECTROMANETIC PULSE PROPAGATION IN A COAXIAL CABLE ELECTROMANETIC PULSE PROPAGATION IN A COAXIAL CABLE The mechanical waves on a stretched string are easily generated and observed but not easily studied in quantitative detail. The propagating waves in

More information

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework PHYSICS ADVANCED HIGHER Unit 3 Electromagnetism Homework 1 DATA SHEET COMMON PHYSICAL QUANTITIES Quantity Symbol Value Quantity Symbol Value Gravitational acceleration on Earth Radius of Earth Mass of

More information

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE CHAPTER-8 DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE 8.1 Introduction The behavior of materials is different when they are subjected to dynamic loading [9]. The testing of materials under dynamic conditions

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *9832786353* PHYSICS 9702/43 Paper 4 A Level Structured Questions October/November 2018 2 hours Candidates

More information

11 SEPTEMBER This document consists of printed pages.

11 SEPTEMBER This document consists of printed pages. S 11 SEPTEMBER 2017 6 Write your name, centre number, index number and class in the spaces at the top of this page and on all work you hand in. Write in dark blue or black pen on both sides of the paper.

More information

Study on Energy Law of Similitude for Laser Propulsion in Repetitively-pulsed Mode

Study on Energy Law of Similitude for Laser Propulsion in Repetitively-pulsed Mode Chinese Journal of Aeronautics (9) 583-589 Chinese Journal of Aeronautics www.elsevier.com/locate/cja Study on Energy aw of Similitude for aser Propulsion in Repetitively-pulsed Mode Hong Yanji a, *, Cao

More information

DAVID A. CRAWFORD* AND PETER H. SCHULTZ**

DAVID A. CRAWFORD* AND PETER H. SCHULTZ** DAVID A. CRAWFORD* AND PETER H. SCHULTZ** *Computational Physics and Mechanics Dept. 9232, Sandia National Laboratories, Albuquerque, NM, 87 185, USA; **Department of Geological Sciences, Brown University,

More information

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1. 1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. 2 magnetic 1 flux linkage / 0 10 2 Wb-turns 1 2 5 10 15 t / 10 3 s Fig. 3.1 The generator has a flat coil

More information

Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.)

Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.) Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.) Stanford University Dept. of Aeronautics & Astronautics 1 Modeling ADEOS-III Failure E = 10kV/m Assume magnetic field penetration into slots

More information

Accelerated Taylor State Plumes in SSX

Accelerated Taylor State Plumes in SSX Accelerated Taylor State Plumes in SSX Manjit Kaur Swarthmore College, Swarthmore, PA 19081 J. E. Shrock 18, J. Han 17, D. A. Schaffner & M. R. Brown Research supported by DOE OFES & ARPA-e ALPHA 24 August

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor 1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor Bai-zhou Li 1, Yu Wang 2, Qi-chang Zhang 3 1, 2, 3 School of Mechanical

More information

Experiments with brush projectiles in a parallel augmented railgun

Experiments with brush projectiles in a parallel augmented railgun Experiments with brush projectiles in a parallel augmented Johan Gallant Department of Weapons Systems and Ballistics Royal Military Academy Brussels, Belgium Pascale Lehmann Division of Accelerators and

More information

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA Experimental Investigations of Magnetic Reconnection J Egedal MIT, PSFC, Cambridge, MA Coronal Mass Ejections Movie from NASA s Solar Dynamics Observatory (SDO) Space Weather The Solar Wind affects the

More information

Experiment Guide for RC Circuits

Experiment Guide for RC Circuits Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

More information

PHYSICS 202 FINAL EXAM Wednesday, May 12, 2004, 8-10 am SECTION:

PHYSICS 202 FINAL EXAM Wednesday, May 12, 2004, 8-10 am SECTION: PHYSICS 202 FINAL EXAM Wednesday, May 12, 2004, 8-10 am NAME: SECTION: 517 518 519 520 Note: 517 Recitation Mon 4:10 518 Recitation Wed 10:20 519 Recitation Wed 8:00 520 Recitation Mon 1:50 There are a

More information

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

1. The diagram shows the electric field lines produced by an electrostatic focussing device. 1. The diagram shows the electric field lines produced by an electrostatic focussing device. Which one of the following diagrams best shows the corresponding equipotential lines? The electric field lines

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

T10 [186 marks] y 2. w 2

T10 [186 marks] y 2. w 2 T10 [186 marks] 1. A particle of charge q is at point S in a uniform electric field of strength E. The particle moves a distance w parallel to the field lines and then a distance y perpendicular to the

More information

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605

NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD. Sample Examination EA605 Name: NEW SOUTH WALES DEPARTMENT OF EDUCATION AND TRAINING Manufacturing and Engineering ESD Sample Examination EA605 EDDY CURRENT TESTING AS3998 LEVEL 2 GENERAL EXAMINATION 6161C * * * * * * * Time allowed

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

Last Revision: August,

Last Revision: August, A3-1 HALL EFFECT Last Revision: August, 21 2007 QUESTION TO BE INVESTIGATED How to individual charge carriers behave in an external magnetic field that is perpendicular to their motion? INTRODUCTION The

More information

Development of axial flux HTS induction motors

Development of axial flux HTS induction motors Available online at www.sciencedirect.com Procedia Engineering 35 (01 ) 4 13 International Meeting of Electrical Engineering Research ENIINVIE-01 Development of axial flux HTS induction motors A. González-Parada

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *7372632194* PHYSICS 9702/42 Paper 4 A Level Structured Questions February/March 2017 2 hours Candidates

More information

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS UNIT 2: ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS MODULE 1: ELECTRICITY AND MAGNETISM GENERAL OBJECTIVES On completion of this Module, students should: 1. understand

More information

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Bolometry H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Revised May 28, 2002 1. Radiated power Time and space resolved measurements of the total plasma radiation can be done by means

More information

Physics 196 Final Test Point

Physics 196 Final Test Point Physics 196 Final Test - 120 Point Name You need to complete six 5-point problems and six 10-point problems. Cross off one 5-point problem and one 10-point problem. 1. Two small silver spheres, each with

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE Derek SHACKLETON, Oceaneering Multiflex UK, (Scotland), DShackleton@oceaneering.com Luciana ABIB, Marine Production Systems do Brasil, (Brazil), LAbib@oceaneering.com

More information

UNIVERSITY COLLEGE LONDON EXAMINATION FOR INTERNAL STUDENTS

UNIVERSITY COLLEGE LONDON EXAMINATION FOR INTERNAL STUDENTS UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For the following qualifications..- B. Sc. M. Sci. Physics 1B26: Electricity and Magnetism COURSE CODE : PHYSIB26 UNIT VALUE

More information

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Kent Lee, Dean Henze, Patrick Smith, and Janet Chao University of San Diego (Dated: May 1, 2013)

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 8, 2012 NAME: (Last) Please Print (Given) Time: 3 hours STUDENT

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

The Simulation Analysis of Electromagnetic Repulsion Mechanism for. High-voltage Current-Limiting Fuse

The Simulation Analysis of Electromagnetic Repulsion Mechanism for. High-voltage Current-Limiting Fuse 2nd International Conference on Materials Engineering and Information Technology Applications (MEITA 2016) The Simulation Analysis of Electromagnetic Repulsion Mechanism for High-voltage Current-Limiting

More information

The Simulation of Wraparound Fins Aerodynamic Characteristics

The Simulation of Wraparound Fins Aerodynamic Characteristics The Simulation of Wraparound Fins Aerodynamic Characteristics Institute of Launch Dynamics Nanjing University of Science and Technology Nanjing Xiaolingwei 00 P. R. China laithabbass@yahoo.com Abstract:

More information

Using a Mercury itc with thermocouples

Using a Mercury itc with thermocouples Technical Note Mercury Support Using a Mercury itc with thermocouples Abstract and content description This technical note describes how to make accurate and reliable temperature measurements using an

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Chapter 7. Electrodynamics

Chapter 7. Electrodynamics Chapter 7. Electrodynamics Summary: Electrostatics and Magnetostatics E / B E B J P E M 1 mb e D E P H B/ M D H f J f E V B A b P Pn b Jb M K M n b D E B H (1 ) (1 ) e m 7.1 Electromotive Force 7.1.1 Ohm

More information

PHYSICAL SCIENCES: PAPER I

PHYSICAL SCIENCES: PAPER I NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2017 PHYSICAL SCIENCES: PAPER I Time: 3 hours 200 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 15 pages, an

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path? T5-1 [237 marks] 1. A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when

More information

Paper submitted to: Physical Review Letters. Title: The energy distribution structure and dynamic characteristics of energy release in

Paper submitted to: Physical Review Letters. Title: The energy distribution structure and dynamic characteristics of energy release in Paper submitted to: Physical Review Letters Title: The energy distribution structure and dynamic characteristics of energy release in electrostatic discharge process Authors: Qingming Liu 1, Huige Shao

More information

Electric Rocket Engine System R&D

Electric Rocket Engine System R&D Electric Rocket Engine System R&D In PROITERES, a powered flight by an electric rocket engine is planed; that is, orbital transfer will be carried out with a pulsed plasma thruster (PPT). We introduce

More information

Langmuir Probe Measurements of a Magnetoplasmadynamic Thruster

Langmuir Probe Measurements of a Magnetoplasmadynamic Thruster Langmuir Probe Measurements of a Magnetoplasmadynamic Thruster IEPC-201-187 Presented at the rd International Electric Propulsion Conference, The George Washington University Washington, D.C. USA Yang

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *2358498204* PHYSICS 9702/42 Paper 4 A Level Structured Questions February/March 2018 2 hours Candidates

More information

Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle

Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle Helicon Plasma Thruster Experiment Controlling Cross-Field Diffusion within a Magnetic Nozzle IEPC-2013-163 Presented at the 33rd International Electric Propulsion Conference, The George Washington University

More information

3. On cold, dark fall nights, why does frost preferentially form on the horizontal surfaces of cars and not on their vertical surfaces?

3. On cold, dark fall nights, why does frost preferentially form on the horizontal surfaces of cars and not on their vertical surfaces? Part I 7-Minute Questions 1. A tennis ball of mass m is held just above a basketball of mass M! m and radius R. The bottom of the basketball is held a height h above the ground. With their centers vertically

More information

SIMULATION MODEL OF INDUCTION HEATING IN COMSOL MULTIPHYSICS

SIMULATION MODEL OF INDUCTION HEATING IN COMSOL MULTIPHYSICS Acta Electrotechnica et Informatica, Vol. 15, No. 1, 2015, 29 33, DOI: 10.15546/aeei-2015-0005 29 SIMULATION MODEL OF INDUCTION HEATING IN COMSOL MULTIPHYSICS Matúš OCILKA, Dobroslav KOVÁČ Department of

More information

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT PHYSICS 202 203: CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT MM MARKS: 70] [TIME: 3 HOUR General Instructions: All the questions are compulsory Question no. to 8 consist of one marks questions, which

More information

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field. 1 (a) Fig. 2.1 shows a horizontal current-carrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles

More information

Preliminary experiment of plasma current startup by ECR wave on SUNIST spherical tokamak

Preliminary experiment of plasma current startup by ECR wave on SUNIST spherical tokamak The 3 rd IAEA TCM on Spherical Torus and the 11 th STW, St. Petersburg Preliminary experiment of plasma current startup by ECR wave on spherical tokamak HE Yexi, ZHANG Liang, *FENG Chunhua, FU Hongjun,

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Figure 1, Schematic Illustrating the Physics of Operation of a Single-Stage Hall 4

Figure 1, Schematic Illustrating the Physics of Operation of a Single-Stage Hall 4 A Proposal to Develop a Double-Stage Hall Thruster for Increased Efficiencies at Low Specific-Impulses Peter Y. Peterson Plasmadynamics and Electric Propulsion Laboratory (PEPL) Aerospace Engineering The

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Measurement of the electric field at the near field radiating by electrostatic discharges

Measurement of the electric field at the near field radiating by electrostatic discharges Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 15-17, 2007 43 Measurement of the electric field at the near field radiating

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination August 15, 2007 General Instructions: In all cases, be sure to state your system of units. Show all your work, write only on one side of the designated paper, and

More information

Experiments with a Supported Dipole

Experiments with a Supported Dipole Experiments with a Supported Dipole Reporting Measurements of the Interchange Instability Excited by Electron Pressure and Centrifugal Force Introduction Ben Levitt and Dmitry Maslovsky Collisionless Terrella

More information

fusion production of elements in stars, 345

fusion production of elements in stars, 345 I N D E X AC circuits capacitive reactance, 278 circuit frequency, 267 from wall socket, 269 fundamentals of, 267 impedance in general, 283 peak to peak voltage, 268 phase shift in RC circuit, 280-281

More information

Magnetized Material (contd.) and Electromagnetic Induction

Magnetized Material (contd.) and Electromagnetic Induction Magnetized Material (contd.) and Electromagnetic Induction Lecture 28: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In the first half of this lecture we will continue

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl Neutron Transport Calculations Using Monte-Carlo Methods Sean Lourette Fairport High School Advisor: Christian Stoeckl Laboratory for Laser Energetics University of Rochester Summer High School Research

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter

Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter Yifeng Wei, Zhiyong Zhang, Yunlong Zhang*, Sicheng Wen, Chi Wang, Zhiying Li, Changqing Feng, Xiaolian Wang,

More information

TSOKOS LSN 5-1 TO 5-5 TEST REVIEW

TSOKOS LSN 5-1 TO 5-5 TEST REVIEW IB HYSICS Name: DEIL HYSICS eriod: Date: # Marks: BADDEST CLASS ON CAMUS TSOKOS LSN 5-1 TO 5-5 TEST REIEW 4. This question is about forces on charged particles. (a) (b) A charged particle is situated in

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *1643892600* PHYSICS 9702/42 Paper 4 A2 Structured Questions October/November 2011 2 hours Candidates

More information

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use Final report on DOE project number DE-FG07-99ID13772 High Pressure Xenon Gamma-Ray Spectrometers for Field Use Principle Investigator: Glenn K. Knoll Co-investigator: David K. Wehe, Zhong He, University

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level XtremePapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *0305126326* PHYSICS 9702/41 Paper 4 A2 Structured Questions October/November 2013 2

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Study on Acoustically Transparent Test Section of Aeroacoustic Wind Tunnel

Study on Acoustically Transparent Test Section of Aeroacoustic Wind Tunnel Journal of Applied Mathematics and Physics, 2018, 6, 1-10 http://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 Study on Acoustically Transparent Test Section of Aeroacoustic Wind

More information

Cambridge International Examinations Cambridge International Advanced Level

Cambridge International Examinations Cambridge International Advanced Level Cambridge International Examinations Cambridge International Advanced Level *2203241344* PHYSICS 9702/42 Paper 4 A2 Structured Questions May/June 2015 2 hours Candidates answer on the Question Paper. No

More information

Flow and dynamo measurements in the HIST double pulsing CHI experiment

Flow and dynamo measurements in the HIST double pulsing CHI experiment Innovative Confinement Concepts (ICC) & US-Japan Compact Torus (CT) Plasma Workshop August 16-19, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.

More information

Gas-filled Detectors

Gas-filled Detectors Gas-filled Detectors Radiation Gas-filled Detectors In a gas-filled detector, the io9nization provides electrons and positive ions. The acceleration of these charged particles obeys the simple equation

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A jeweler needs to electroplate gold (atomic mass 196.97 u) onto a bracelet. He knows

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: Date: AP REVIEW 4 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a positively charged glass rod is used to charge a metal

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15)

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE EE6302-ELECTROMAGNETIC THEORY UNIT 4 PART A 1. Define mutual inductance and self inductance. (A/M-15) Self inductance is the ration between the induced

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *3828804905* PHYSICS 9702/42 Paper 4 A Level Structured Questions May/June 2017 2 hours Candidates answer

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

COMPRESSIBLE BOUNDARY LAYER HEAT FLUX MEASUREMENT USING EMBEDDED THERMOCOUPLES

COMPRESSIBLE BOUNDARY LAYER HEAT FLUX MEASUREMENT USING EMBEDDED THERMOCOUPLES COMPRESSIBLE BOUNDARY LAYER HEAT FLUX MEASUREMENT USING EMBEDDED THERMOCOUPLES Zhao xuejun1*, Ma yuanhong**, Xiao weizhong3*** *China Academy of Aerospace Aerodynamics, ** China Academy of Aerospace Aerodynamics,

More information

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler University of California Berkeley Physics H7B Spring 999 (Strovink) SOLUTION TO PROBLEM SET Solutions by P. Pebler Purcell 7.2 A solenoid of radius a and length b is located inside a longer solenoid of

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

CBSE Examination Paper

CBSE Examination Paper CBSE Examination Paper Time allowed : 3 hours Maximum marks: 70 General Instructions: Same as CBSE Examination Paper SET I 1. Using the concept of force between two infinitely long parallel current carrying

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Research and Development of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites

Research and Development of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites Research and Development of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites IEPC--39 Presented at the 3nd International Electric Propulsion Conference, Wiesbaden Germany Tomoyuki Ikeda, Kazuya

More information

Physics 3211: Electromagnetic Theory (Tutorial)

Physics 3211: Electromagnetic Theory (Tutorial) Question 1 a) The capacitor shown in Figure 1 consists of two parallel dielectric layers and a voltage source, V. Derive an equation for capacitance. b) Find the capacitance for the configuration of Figure

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *9061759643* PHYSICS 9702/41 Paper 4 A2 Structured Questions October/November 2012

More information

Relativistic Behavior Detection through Electron Acceleration

Relativistic Behavior Detection through Electron Acceleration Relativistic Behavior Detection through Electron Acceleration Henry Shackleton MIT Department of Physics (Dated: April 28, 2017) Classical and relativistic mechanics differ in their predictions of how

More information

A Foucault s pendulum design

A Foucault s pendulum design A Foucault s pendulum design Horacio R. Salva, Rubén E. Benavides, Julio C. Perez, and Diego J. Cuscueta Citation: Review of Scientific Instruments 81, 1151 (1); doi: 1.163/1.3494611 View online: http://dx.doi.org/1.163/1.3494611

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM ELECTRICITY AND MAGNETISM Chapter 1. Electric Fields 1.1 Introduction 1.2 Triboelectric Effect 1.3 Experiments with Pith Balls 1.4 Experiments with a Gold-leaf Electroscope 1.5 Coulomb s Law 1.6 Electric

More information

Lightning Phenomenology Notes Note 23 8 Jan Lightning Responses on a Finite Cylindrical Enclosure

Lightning Phenomenology Notes Note 23 8 Jan Lightning Responses on a Finite Cylindrical Enclosure Lightning Phenomenology Notes Note 23 8 Jan 2014 Lightning Responses on a Finite Cylindrical Enclosure Kenneth C. Chen and Larry K. Warne Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185,

More information

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Progress In Electromagnetics Research C, Vol. 40, 243 256, 203 ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Roberto Ferrero, Mirko Marracci, and Bernardo Tellini * Department of

More information

Lab 4: The Classical Hall Effect

Lab 4: The Classical Hall Effect Lab 4: The Classical Hall Effect Background A particle with charge q moving with a velocity v in a uniform magnetic field B will experience a force F, F = q( v B ) (1) 1 Introduction Understanding the

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information