ATTITUDE DETERMINATION AND CONTROL OF MICROSATELLITE USING TYPE-1 AND TYPE-2 FUZZY LOGIC

Size: px
Start display at page:

Download "ATTITUDE DETERMINATION AND CONTROL OF MICROSATELLITE USING TYPE-1 AND TYPE-2 FUZZY LOGIC"

Transcription

1 BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LIX (LXIII), Fasc. 1, 2013 SecŃia AUTOMATICĂ şi CALCULATOARE ATTITUDE DETERMINATION AND CONTROL OF MICROSATELLITE USING TYPE-1 AND TYPE-2 FUZZY LOGIC BY ALI ASAEE, SAEED BALOCHIAN * and SAEED HESHMATI Islamic Azad University, Gonabad, Iran, Department of Electrical Engineering, Gonabad Branch Received: February 25, 2013 Accepted for publication: March 28, 2013 Abstract. Attitude controlling has been investigated from various points of view and different controllers have been designed. In addition to respecting microsatellite limitations, control algorithm needs to have high reliability in noise. This is because of the nonlinearity, complexity and uncertainty satellite model. It is essential to use smart controllers in microsatellite control systems which don t have high accuracy attitude sensors and whose control operator does not have high capability facing turbulent torque. Since control input is a torque, attitude control system operators are torque generators. For optimal maneuver, the controlling torque applied to the nonlinear satellite system must have proper size and quality. Reaction wheels, thrusters, magnetic coils and control moment gyroscopes (CMG) are some of the most important satellite operators. In this study we have used fuzzy controllers of type 1 and 2 in three axis control with high accuracy. Finally, simulation results are given to show the effectiveness of the proposed method. Key words: attitude determination, fuzzy type 1 and 2 control, rotation, Euler angle Mathematics Subject Classification: 93C42, 94D05, 37M05. * Corresponding author; saeed.balochian@gmail.com

2 52 Ali Asaee, Saeed Balochian and Saeed Heshmati 1. Introduction Satellite attitude represents its orientation in space with respect to different coordinate systems. The system for attitude determination and control is one of the most important subsystems of a satellite, since the accuracy of its mission depends on this subsystem capability. In other words, this subsystem represents the satellite visual sense and feeling in space. This is very important in small satellites. The algorithm and control system needs to be as simple and fast as possible and with Low-volume hardware and software. These are all because of small size limitation of these satellites. Thus micro satellite designing engineers are trying to use the techniques and parts overcoming the limitation and optimizing system output rate. Generally the reasons of attitude controlling subsystem presence are as follows (Sidi, 2007; Overby, 2004): a) In communication satellites, antennas are required to be focused to a certain point on earth with high accuracy. b) In earth observing satellites, cameras are required to be focused to a certain point in earth so give an acceptable video coverage of the region. c) In orbital maneuvers desired attitude must be provided. d) For maximum use of solar energy solar cells must be pointed to the sun. A satellite attitude survey includes attitude controlling and the way of it and also prediction of its next move. The general block diagram of attitude determination and control is shown in Fig. 1. Fig. 1 Block diagram of attitude determination and control. A satellite attitude determination can be done toward the sun, stars, the earth and magnetic field. This is done by using different sensors and operators. Sensors send the satellite position errors to the satellite central processor system, that uses the controlling algorithm to produce controlling rule and sends signals to actuators. The actuators produce required torque to control satellite attitude (Larson & Wertz, 1999; Overby, 2004). Attitude control means placing the satellite in a specific predetermined direction. This consists of attitude stabilization and control maneuver. In attitude stabilization the goal is keeping the satellite in its position and in

3 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, attitude control maneuver is changing from one state to another. In microsatellite attitude control system (includes operators and controlling algorithm) must be chosen in a way that consumes less power so desired optimal satellite life for its mission is guaranteed. So far, various control methods have been used to control the satellite attitude. The first attitude control system was designed in Mercury and Vestok satellites returning to Earth s atmosphere. Most of the controlling systems were based on the thruster before the discovery of the photoelectric cells using solar energy to provide electrical power. James Wertz is one of the ones that analyses determination and control attitude of a satellite in his book (Wertz, 1978). One of the most important parameters that specify the dynamics of the attitude is the system inertia matrix. In a real case the satellite mass properties may be inaccurate or change over cargo movements. Thus nonlinear attitude control needs to be adaptable in unknown system parameters and resistant to external disturbances. Attitude detection of a rigid spacecraft with an imprecise inertial matrix in external disturbances has been investigated by adaptive control in reference (Luo et al., 2005). It reveals that in no disturbed situation, for all initial values of the Euler angles, the inverse optimal adaptive attitude controller converges well to the desired position. The approach of applying MIMO feedback for designing the attitude control system of a satellite based on a nonlinear model with inconclusive parameters in the presence of disturbances is presented in reference (Nudehi et al., 2008). A bang-bang fuzzy controller for a satellite with reaction wheel operator is designed in reference (Nagi et al., 2012). However the environment model is not mentioned. An adaptive fuzzy system in combination with attitude controlling H 2 H has is used by Cheng and Shu for a nonlinear system with uncertain and imprecise inertia matrix in external disturbance in (Cheng & Shu, 2009). In our current paper we first investigate the nonlinear modeling of a satellite attitude and its dynamic. Then three fuzzy controllers for Euler angles are designed. Finally the designed controller is evaluated through MATLAB simulation. 2. Modeling a Microsatellite The aim of the attitude determination system is to calculate the attitude of the body coordinate with respect to a specified coordinate system. Thus firstly orbital motion coordinate systems will be mentioned. Then the rotation between these systems will be discussed. Finally situational dynamics of microsatellite will be investigated. Different coordinate systems are illustrated in Fig. 2.

4 54 Ali Asaee, Saeed Balochian and Saeed Heshmati Fig. 2 Different coordinate systems Rotation Since Newton s laws only work in inertial coordinate systems, motion equations cannot be written in a body fix coordinate system. Hence determining the relationship between the components of a vector is needed. There are several ways to show the rotation between two coordinates system such as (Kaplan, 2006). Direction Cosine Matrix Euler angle Euler angles/axis Quaternions Gibbs vectors 2.2. Quaternions The main reason of using quaternions instead of Euler angle is avoiding singularity. Quaternions, usually denoted by q, extend the complex numbers by having a real part η and three imaginary parts indicated by vector ε (Wertz, 1978). If the coordinate system rotates with angle θ around vector λ, it can be written: η ε1 ε θ θ 1 η= cos, ε = ε 2 sin,. 2 = λ q= (1) 2 ε 2 ε3 ε 3

5 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, Quaternions satisfy the relationship q q = 1 that means: T η + ε + ε + ε = (2) 2.3. Attitude Equations Suppose that a rigid body is moving in an inertial coordinate system; this motion can be described by the center of mass translational motion and the rotational motion of object around the center of mass Attitude Dynamics Assume the A vector in I and B systems. The following equation is known as the Coriolis law (Sidi, 2007): d d A = A + ω A. (3) I B dt dt This equation shows that the A vector observed rate of changes from the fixed system I is equal to its rate of changes in the mobile system B (it moves with the speed v toward I system) plus the poduct ω A. The angular momentum of the whole body is: m i ( ω r) h= r m i i i 2 2 = i ωx ( yi + zi ) mi ωy yi ximi ωz xi zimi mi mi m i j ωy ( xi + zi ) mi ωx yi ximi ωz yi zimi mi mi m i k ωz ( xi + yi ) mi ωx zi ximi ωy yi zimi. mi mi m i In this equation ωx, ωy, ω z are the particle angular velocities around i, 2 2 Ixx = yi + zi mi, Ixy = yi ximi and j, k. The momentum definitions are ( ) I = x z m. There is a same definition for other axes. The simplified form of xz i i i m i eq. (4) is as follows: m i m i (4)

6 56 Ali Asaee, Saeed Balochian and Saeed Heshmati h= i ω I ω I ω I + j ω I ω I ω I x xx y xy z xz y yy x yx z yz + k ω I ω I ω I z zz x zx y zy. (5) The matrix forms of eq. (5) is as follows Ixx Ixy Ixz ωx h= I yx I yy I yz ω y = Iω. (6) I zx Izy I zz ω z In symmetric mode we have I = I, I = I, I = I. Matrix I is xy yx xz zx yz zy known as inertia matrix. With proper selection of the axes, the inertia matrix can be transformed to a diagonal form. The center of these axes is the center of mass. They are known as main inertia axes and are reached by a fix rotation from primary fixed body system. The relationship between angular momentum and applied torque is: τ = hɺ = hɺ + ω h (7) I This equation is known as Euler s moment equation (Sidi, 2007; Wertz, 1978). By assuming X B, YB, Z B as inertia axis, finally we will have: B ( ) τ = I ɺ ω + ω ω I I, (8) x x x y z z y τ = I ɺ ω + ω ω ( I I ), (9) y y y x z x z τ = I ɺ ω + ω ω ( I I ). (10) z z z x y y x These are nonlinear equations and do not have analytical solutions (Sidi, 2007). In this equations applied torques are control and disturbance torques Attitude Kinetic Kinetic equations describe the satellite orientation and, as mentioned, there are various ways of describing it. One of them is using quaternions (Sidi, 2007; Wertz, 1978). where d 1 q= Ω ɺ q, (11) dt 2

7 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, ωz ω y ωx ωz 0 ωx ωy Ωɺ = ωy ωx 0 ω. (12) z ωx ω y ωz 0 The relationship between quaternions and Euler s angles is: φ= asin( 2 q q q q ), (13) ( q1q3 q2q4 ) θ = atan , (14) q 1 q2 q3 + q 4 2( q1q 2 q3q4 ) ψ = atan (15) q1 + q2 + q3 + q 4 where: atan 2 is a tangent function with bounds between 180 and 180 instead of 90 and Disturbance Torques Applying on the Satellite Here are disturbance sources that must be considered (Kaplan, 2006): gravity gradient, magnetic disturbance, aerodynamic drag, solar radiation pressure Gravitational Moment Applying on the Satellite The Earth's gravity gradient torque is one of the most important external torques applying on satellites in orbits that are near the Earth. An asymmetrical body towards the Earth's gravity field tends to set the axis with the minimum inertia in field direction. The amount of this torque can be reached from the following equation (Kaplan, 2006). 2 3 ωo ( I z I y ) a23a 33 τ 3 ω ( ) 3 ω ( ) B 2 2 B B g = o Iz I x a13a33 = o RO 3 IRO3 2 3 ωo ( Ix I y ) a13a23 (16) 2.5. Reaction Wheel Reaction wheels are preferred in attitude control systems with high control accuracy and medium rate maneuver due to constant smooth control

8 58 Ali Asaee, Saeed Balochian and Saeed Heshmati with minimum disturbance torque noise. The amount of torque reached by reaction wheel is 0.01 to 1 N/m. Within a spacecraft if a symmetric rotatory object accelerates around its rotational axis, angular torque will be produced. It may have Initial fixed momentum of h r. As this is considered for internal spacecraft, its increase does not change total momentum of system instead exchange the momentum (negative on) with the spacecraft (h = h r +h B ). This is the angular momentum conservation principle. In order to control the attitude in space three reaction wheels are needed. The required angular momentum can be reached from accelerating electrical motors rotors which their rotational axis are in same vector of X B, Y B, Z B body axis (Ge & Cheng, 2006). As control operator in this micro satellite is a reaction wheel. In satellite model simulation there are used the Norwegian satellite parameters (Overby, 2004). 3. Fuzzy Control The word fuzzy means ambiguous, dumb, inaccurate, confusing, confused, tangled or invalid. When fuzzy systems are used in controllers, they are depicted as fuzzy controllers. The fuzzy controllers are nonlinear controllers with a specific structure. They provide successful application of fuzzy theory in practical cases. Zadeh introduced type-2 fuzzy sets as a generalization of ordinary fuzzy sets. They will be called as type-1 fuzzy systems. In a type-2 fuzzy set, the degree of membership for each point is a normal fuzzy number which can vary in range of [0, 1]. These sets are appropriate for membership functions with uncertainty. In the other word, the approach of a type-1 fuzzy set is modeling the uncertainties by a number between 0 and 1 that is a crisp number. In fact the degree of belonging of each element to a type-1 fuzzy set is an exact crisp number while the degree of belonging of each element to a type-2 fuzzy set can be a verbal (linguistic) amount (Mendel, 2007). In this study, a fuzzy control is used in a closed-loop system. It is shown in Fig. 3. Fig. 3 Block diagram of a fuzzy controller in a closed-loop system.

9 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, Since the three axes of the body have separate dynamics, the design for each axis can be done independently. Thus three separate controllers are used to control the attitude. We expect that appropriate control torques to maneuver and stabilize the satellite by reaction wheel mechanism for each controller. The desired attitude is achieved through the torque that each controller can apply around a satellite axis. The simplest torque control law is based on Euler s angles errors. For the Roll, Pitch and Yaw angle, the obtained values are compared with the reference values providing the Euler s angles errors. Then each error signal with its derivative is given to the corresponding controller and it produces appropriate control signal. We are going to design the controller using both types of fuzzy sets. The type-1 will be designed first, then the type Type-1 Fuzzy Controller The type-1 fuzzy control system includes a fuzzifier, a rule base, an inference engine and a defuzzifier. The fuzzification means defining fuzzy sets for input and output variables. The basic knowledge of each variable definition scope is needed to define these sets. We assume that if Euler s angles go out of the range [-1, 1], the system will be out of control. The maximum of error changes is assumed in range of [-0.3, 0.3]. Here, for each input variable (error and its derivative) five type-1 fuzzy sets with triangular and trapezoidal membership functions are defined, abbreviated as NB for big negatives, NS for small negatives, Z for zero, PB for big positives and PS for small positives. Therefore 25 fuzzy rules exist in the rule base. In Figs. 4 and 5 membership functions for the two inputs are shown. Fig. 4 The first input membership functions. Fig. 5 The second input (error derivative) membership functions.

10 60 Ali Asaee, Saeed Balochian and Saeed Heshmati The output of each type-1 fuzzy controllers is a torque that must be applied to its axis. The value of this torque is considered in the range of [-0.4, 0.4] because of practical limitations. Seven membership functions are considered for that. Memberships of output variable are shown in Fig. 6. (NB for big negative, NM for medium negative, NS for small negative, Z for zero, PB for big positive, PM for medium positive, PS for small positives). Fig. 6 The output membership functions. In the next step some fuzzy rules are inserted to the rule base. Fuzzy rule base is the heart of a fuzzy system; i.e. the other elements of fuzzy system are effectively and efficiently used to implement them (Wang, 1997). Used rules are presented in Table 1. Table 1 Rule Base We used Mamdani minimum Inference Engine, Singleton fuzzifier and Center Gravity defuzzifier in the controller of the system. The control surface is shown in Fig. 7.

11 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, Fig. 7 Control level. After designing the controller, its performance is checked and tested in MATLAB Type-2 Fuzzy Controller The design of a type-2 fuzzy controller is similar to the design of the type-1 controller that was mentioned above. Here we investigate the Roll angle controller. (The process of designing the controllers for the Yaw and Pitch angles is same). The fuzzifing step is defining fuzzy sets for input and output variables. The basic knowledge of each variable definition scope is needed to define these sets. We assume that if Euler s angles go out of the range [-1, 1], the system will be out of control. The maximum of error changes is assumed in range of [-0.3, 0.3]. Here, for each input variable (error and its derivative) five type-1 fuzzy sets with triangular and trapezoidal membership functions are defined. Uncertainty in membership functions must be considered in type-2 fuzzy sets. Hence in membership function figures there are narrow picks instead of lines. The width of pick shows the uncertainty (Figs. 8 and 9). There will be 25 fuzzy rules in rule base by defining membership functions for inputs. Fig. 8 The first input membership functions with uncertainty.

12 62 Ali Asaee, Saeed Balochian and Saeed Heshmati Fig. 9 The second input membership functions with uncertainty. The output of each fuzzy controller is a torque that must be applied to its axis. The value of this torque is considered in the range of [-0.5, 0.5] because of practical limitations. Seven triangular membership functions with uncertainty are considered for that (Fig. 10). The control level is shown in Fig. 11. Fig. 10 The output (torque) membership functions with uncertainty. a b Fig. 11 The control level from different angles.

13 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, In the next step some fuzzy rules will be defined. The value of control signal will be calculated by them. The value of the error and its derivative must be considered too. The rules are the ones used in type-1 fuzzy controller. After designing the controller, its performance is checked and tested in MATLAB. 4. Simulation The controller performance can be investigated from 2 points of view: attitude maneuver and stability. In the following they will be discussed. For better visualization and understanding of fuzzy controller type-1 response, it will be compared to an ordinary PID controller. A) Attitude Stabilization: This means returning to the equilibrium point Θ= ( φ, θ, ψ ) = (0,0,0). It is called zero input state. In this state the Euler s angles are equal to the initial value Θ 0= ( φ0, θ0, ψ 0). We suppose a controller applies a proper torque to lead the value of these angles to zero. In Figs. 12 and 13 the response of attitude control system by fuzzy controller type 1 and PID are shown respectively. Fig. 12 The attitude control system output at attitude stability state using fuzzy control type 1. Fig. 13 The attitude control system output at attitude stability state by PID control.

14 64 Ali Asaee, Saeed Balochian and Saeed Heshmati Figs. 14 and 15 show the torque produced by fuzzy controller type 1 and PID controller in attitude stability state. Fig. 14 The torque produced by fuzzy controller type 1 at attitude stability state. Fig. 15 The torque produced by PID controller at attitude stability state. Now the other state will be discussed. B) Maneuver Attitude: It is the ability of setting the satellite in the predefined desire attitude. It is considered that the value of Euler s angles is zero value. We are going to rotate the satellite in a direction so that the angles reach to 10 degree (In this case the reference value is 10). In Figs. 16 and 17 the response of attitude control system using fuzzy controller and PID controller in attitude maneuver state are shown, respectively.

15 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, Fig. 16 The attitude control system output using type-1 fuzzy control at maneuver state. Fig. 17 The attitude control system output using PID control at maneuver state. Figs. 18 and 19 show the torque produced by type-1 fuzzy controller and PID controller in attitude maneuver state.

16 66 Ali Asaee, Saeed Balochian and Saeed Heshmati Fig. 18 The torque produced by the type-1 fuzzy controller in maneuver state. Fig. 19 The torque produced by PID controller in maneuver state. According to Euler s torque equations each external disturbance apply to the body adds an Angular Momentum to the satellite system. Therefore the satellite attitude changes with increase in Angular Momentum without active attitude control. C) Adding noise to system. In the next step performance of fuzzy controller type one in disturbances is evaluated by applying noise to the system is at its maneuver state. The noise is applied as a torque. Figs. 20 and 21 show the output and produced torque of the attitude control system by fuzzy control type 1 at maneuver state in presence of the noise.

17 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, Fig. 20 The output of the attitude control system by fuzzy control type 1 at maneuver state in presence of the noise. Fig. 21 The produced torques by type-1fuzzy control at Maneuver state in the presence of noise. Now the response of attitude control system by fuzzy control type 1 at maneuver state will be discussed. In Fig. 22 the torque produced by three controls (Roll, Pitch and Yaw) are shown. Fig. 22 The attitude control system output by fuzzy control type 2 at maneuver state.

18 68 Ali Asaee, Saeed Balochian and Saeed Heshmati Here the performance of type-2 fuzzy controller will be investigated in presence of the noise. Figs. 23 and 24 show the output of the attitude control system and its effect. Fig. 23 The attitude control system output by type-2 fuzzy control at maneuver state in presence of the noise. Fig. 24 The produced torque of attitude control system by type-2 fuzzy control at maneuver state in presence of the noise. 5. Conclusions It can be seen that the transient response when using the type-1 fuzzy controller has less fluctuations in comparison with the PID. The settling time is smaller too. Both controllers can lead the steady state error to zero. According to achieved diagrams, the type-1 fuzzy control at maneuver state performs well while the PID performance is inefficient and the system output fluctuates completely.

19 Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, The results reveal that the fuzzy controller can control the system in the presence of noise. There is not a significant difference between transient and steady state characteristics in presence or absence of the noise. It has been shown in the figures that fuzzy control as an active controller can control the satellite in disturbance. They are caused by aerodynamic drag, solar radiation, solar wind torques, propulsion disturbing torque and etc. The mentioned controllers in designing fuzzy controllers are independent. The range of torque changes according to their maximum and minimum, problem assumptions and practical limits is acceptable and achievable. The performance of Roll, Pitch and Yaw controllers is acceptable in type 1 and 2. The response in type-2 has less settling time and a reaches to the desired value sooner in comparison with type-2. Although Roll controller output has some fluctuations, Pitch and Yaw controllers response improves. Therefore it can be concluded that type-2 fuzzy controller performance is better than in the case of type-1. REFERENCES Cheng C.H., Shu S.L., Application of Fuzzy Controllers for Spacecraft Attitude Control. IEEE Transactions on Aerospace and Electronic Systems, 45, 2, , Ge S., Cheng H., A Comparative Design of Satellite Attitude Control System with Reaction Wheel. First NASA/ESA Conference on Adaptive Hardware and Systems AHS 2006, , Kaplan C., Leo Satellites: Attitude Determination and Control Components; Some Linear Attitude Control Technique. M. Sc. Thesis, Middle East Technical University, Turkey, Larson W.J., Wertz J.R., Space Mission Analysis and Design. Third Edition, Microcosm Press, Hawthorne. CA, Luo W., Chu Y.C., Ling K.V., Inverse Optimal Adaptive Control for Attitude Tracking of Spacecraft. IEEE Transactions on Automatic Control, 50, 11, , Mendel J.M., Advances in Type-2 Fuzzy Sets and System. Information Sciences, 177, 1, , Nagi F., Zulkarnain A.T., Nagi J., Tuning Fuzzy Bang Bang Relay Controller for Satellite Attitude Control System. Aerospace Science and Technology, 26, 1, 76 86, Nudehi S.S., Farooq U., Alasty A., Issa J., Satellite Attitude Control Using Three Reaction Wheels. American Control Conference ACC 08, , Overby E.J., Attitude Control for the Norwegian Student Satellite ncube. M. Sc. Thesis, Norwegian University of Science and Technology, Sidi M.J., Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, Wang L.X., A Course in Fuzzy Systems and Control. Prentice-Hall, Wertz J.R., Spacecraft Attitude Determination and Control. Springer, 1978.

20 70 Ali Asaee, Saeed Balochian and Saeed Heshmati DETERMINAREA ATITUDINII ŞI CONTROLUL UNUI MICROSATELIT UTILIZÂND LOGICA FUZZY DE TIP 1 ŞI 2 (Rezumat) De-a lungul anilor, determinarea atitudinii satelińilor a fost investigată prin multe metode, iar pentru controlul acesteia au fost proiectate diverse regulatoare. În ceea ce priveşte controlul microsatelińilor, datorită dimensiunilor acestora apar restricńii suplimentare, de exemplu fiind necesar ca algoritmii de control să fie insenzitivi la zgomote. Acest lucru se datorează faptului că, de regulă, microsatelińii nu sunt dotańi cu senzori de atitudine cu precizie înaltă. În studiul de fańă pentru controlul pe trei axe sunt utilizate cu mare acurateńe regulatoare fuzzy de tipul 1 şi 2. Rezultatele obńinute prin simulare dovedesc eficacitatea metodei propuse.

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 16: Euler s Equations Attitude Dynamics In this Lecture we will cover: The Problem of Attitude Stabilization Actuators Newton

More information

REACTION WHEEL CONFIGURATIONS FOR HIGH AND MIDDLE INCLINATION ORBITS

REACTION WHEEL CONFIGURATIONS FOR HIGH AND MIDDLE INCLINATION ORBITS REACTION WHEEL CONFIGURATIONS FOR HIGH AND MIDDLE INCLINATION ORBITS Zuliana Ismail and Renuganth Varatharajoo Department of Aerospace Engineering, Universiti Putra Malaysia, Malaysia E-Mail: zuliana.ismail@gmail.com

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

Chapter 4 The Equations of Motion

Chapter 4 The Equations of Motion Chapter 4 The Equations of Motion Flight Mechanics and Control AEM 4303 Bérénice Mettler University of Minnesota Feb. 20-27, 2013 (v. 2/26/13) Bérénice Mettler (University of Minnesota) Chapter 4 The Equations

More information

SATELLITE ATTITUDE TRACKING BY QUATERNION-BASED BACKSTEPPING. Raymond Kristiansen,1 Per Johan Nicklasson,2 Jan Tommy Gravdahl,3

SATELLITE ATTITUDE TRACKING BY QUATERNION-BASED BACKSTEPPING. Raymond Kristiansen,1 Per Johan Nicklasson,2 Jan Tommy Gravdahl,3 SATELLITE ATTITUDE TRACKING BY QUATERNION-BASED BACKSTEPPING Raymond Kristiansen,1 Per Johan Nicklasson,2 Jan Tommy Gravdahl,3 Department of Space Technology Narvik University College, Norway Department

More information

A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities

A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities Sanny Omar Dr. David Beale Dr. JM Wersinger Introduction ADACS designed for CubeSats CubeSats

More information

CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL

CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL 104 CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL 5.1 INTRODUCTION Fuzzy control is one of the most active areas of research in the application of fuzzy set theory, especially in complex control tasks, which

More information

SATELLITE ATTITUDE CONTROL SYSTEM DESIGN WITH NONLINEAR DYNAMICS AND KINEMTICS OF QUATERNION USING REACTION WHEELS

SATELLITE ATTITUDE CONTROL SYSTEM DESIGN WITH NONLINEAR DYNAMICS AND KINEMTICS OF QUATERNION USING REACTION WHEELS SATELLITE ATTITUDE CONTROL SYSTEM DESIGN WITH NONLINEAR DYNAMICS AND KINEMTICS OF QUATERNION USING REACTION WHEELS Breno Braga Galvao Maria Cristina Mendes Faustino Luiz Carlos Gadelha de Souza breno.braga.galvao@gmail.com

More information

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. Rotational Motion Chapter 4 P. J. Grandinetti Chem. 4300 Sep. 1, 2017 P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. 1, 2017 1 / 76 Angular Momentum The angular momentum of a particle with respect

More information

Experiments in Control of Rotational Mechanics

Experiments in Control of Rotational Mechanics International Journal of Automation, Control and Intelligent Systems Vol. 2, No. 1, 2016, pp. 9-22 http://www.aiscience.org/journal/ijacis ISSN: 2381-7526 (Print); ISSN: 2381-7534 (Online) Experiments

More information

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body dynamics Rigid body simulation Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body simulation Unconstrained system no contact Constrained

More information

Chapter 8 Part 1. Attitude Dynamics: Disturbance Torques AERO-423

Chapter 8 Part 1. Attitude Dynamics: Disturbance Torques AERO-423 Chapter 8 Part 1 Attitude Dynamics: Disturbance Torques AEO-43 Types of Disturbance Torques Solar Pressure Dominant torque for geosynchronous satellites Gravity Gradient Can be disturbance or control torque

More information

Robot Control Basics CS 685

Robot Control Basics CS 685 Robot Control Basics CS 685 Control basics Use some concepts from control theory to understand and learn how to control robots Control Theory general field studies control and understanding of behavior

More information

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL Eample: design a cruise control system After gaining an intuitive understanding of the plant s dynamics and establishing the design objectives, the control engineer typically solves the cruise control

More information

Design of Sliding Mode Attitude Control for Communication Spacecraft

Design of Sliding Mode Attitude Control for Communication Spacecraft Design of Sliding Mode Attitude Control for Communication Spacecraft Erkan Abdulhamitbilal 1 and Elbrous M. Jafarov 1 ISTAVIA Engineering, Istanbul Aeronautics and Astronautics Engineering, Istanbul Technical

More information

Robust Adaptive Attitude Control of a Spacecraft

Robust Adaptive Attitude Control of a Spacecraft Robust Adaptive Attitude Control of a Spacecraft AER1503 Spacecraft Dynamics and Controls II April 24, 2015 Christopher Au Agenda Introduction Model Formulation Controller Designs Simulation Results 2

More information

Lecture Module 5: Introduction to Attitude Stabilization and Control

Lecture Module 5: Introduction to Attitude Stabilization and Control 1 Lecture Module 5: Introduction to Attitude Stabilization and Control Lectures 1-3 Stability is referred to as a system s behaviour to external/internal disturbances (small) in/from equilibrium states.

More information

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Manipulator Dynamics 2 Forward Dynamics Problem Given: Joint torques and links geometry, mass, inertia, friction Compute: Angular acceleration of the links (solve differential equations) Solution Dynamic

More information

3-D FINITE ELEMENT ANALYSIS OF A SINGLE-PHASE SINGLE-POLE AXIAL FLUX VARIABLE RELUCTANCE MOTOR

3-D FINITE ELEMENT ANALYSIS OF A SINGLE-PHASE SINGLE-POLE AXIAL FLUX VARIABLE RELUCTANCE MOTOR BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LIX (LXIII), Fasc. 1, 2013 Secţia ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ 3-D FINITE ELEMENT

More information

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS SSC17-P1-17 Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS Masayuki Katayama, Yuta Suzaki Mitsubishi Precision Company Limited 345 Kamikmachiya, Kamakura

More information

Design On-Line Tunable Gain Artificial Nonlinear Controller

Design On-Line Tunable Gain Artificial Nonlinear Controller Journal of Computer Engineering 1 (2009) 3-11 Design On-Line Tunable Gain Artificial Nonlinear Controller Farzin Piltan, Nasri Sulaiman, M. H. Marhaban and R. Ramli Department of Electrical and Electronic

More information

Fuzzy Control Systems Process of Fuzzy Control

Fuzzy Control Systems Process of Fuzzy Control Fuzzy Control Systems The most widespread use of fuzzy logic today is in fuzzy control applications. Across section of applications that have successfully used fuzzy control includes: Environmental Control

More information

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes

More information

Fuzzy Logic Control for Half Car Suspension System Using Matlab

Fuzzy Logic Control for Half Car Suspension System Using Matlab Fuzzy Logic Control for Half Car Suspension System Using Matlab Mirji Sairaj Gururaj 1, Arockia Selvakumar A 2 1,2 School of Mechanical and Building Sciences, VIT Chennai, Tamilnadu, India Abstract- To

More information

Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies

Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies AAS03-558 Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies C. Eugene Skelton II and Christopher D. Hall Department of Aerospace & Ocean Engineering Virginia Polytechnic Institute

More information

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller 659 3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller Nitesh Kumar Jaiswal *, Vijay Kumar ** *(Department of Electronics and Communication Engineering, Indian Institute of Technology,

More information

Attitude Control of a Bias Momentum Satellite Using Moment of Inertia

Attitude Control of a Bias Momentum Satellite Using Moment of Inertia I. INTRODUCTION Attitude Control of a Bias Momentum Satellite Using Moment of Inertia HYOCHOONG BANG Korea Advanced Institute of Science and Technology HYUNG DON CHOI Korea Aerospace Research Institute

More information

Spacecraft Attitude Dynamics for Undergraduates

Spacecraft Attitude Dynamics for Undergraduates Session 1123 Spacecraft Attitude Dynamics for Undergraduates Dr. Rachel Shinn Embry Riddle Aeronautical University, Prescott, AZ Abstract Teaching spacecraft attitude dynamics to undergraduate students

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

1/30. Rigid Body Rotations. Dave Frank

1/30. Rigid Body Rotations. Dave Frank . 1/3 Rigid Body Rotations Dave Frank A Point Particle and Fundamental Quantities z 2/3 m v ω r y x Angular Velocity v = dr dt = ω r Kinetic Energy K = 1 2 mv2 Momentum p = mv Rigid Bodies We treat a rigid

More information

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Module - 2 Lecture - 4 Introduction to Fuzzy Logic Control In this lecture today, we will be discussing fuzzy

More information

Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals

Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals WCE 7, July - 4, 7, London, U.K. Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals S. Purivigraipong, Y. Hashida, and M. Unwin Abstract his paper

More information

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger An Inverse Dynamics Attitude Control System with Autonomous Calibration Sanny Omar Dr. David Beale Dr. JM Wersinger Outline Attitude Determination and Control Systems (ADACS) Overview Coordinate Frames

More information

IAC-04-A.P.12 NONLINEAR ATTITUDE CONTROL OF THE MICRO-SATELLITE ESEO

IAC-04-A.P.12 NONLINEAR ATTITUDE CONTROL OF THE MICRO-SATELLITE ESEO IAC-04-A.P.12 NONLINEAR ATTITUDE CONTROL OF THE MICRO-SATELLITE ESEO Morten Pedersen Topland and Jan Tommy Gravdahl Department of Engineering Cybernetics Norwegian University of Science and Technology

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor Robot Dynamics Rotary Wing AS: Control of a Quadrotor 5-85- V Marco Hutter, Roland Siegwart and Thomas Stastny Robot Dynamics - Rotary Wing AS: Control of a Quadrotor 7..6 Contents Rotary Wing AS. Introduction

More information

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System SSC06-VII-5 Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System Young-Keun Chang, Seok-Jin Kang, Byung-Hoon Lee, Jung-on Choi, Mi-Yeon Yun and Byoung-Young Moon School of Aerospace and

More information

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller.

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller. Comparison Of Interval Type- Fuzzy Controller And Self Tuning Interval Type- Fuzzy Controller For A Magnetic Levitation System Shabeer Ali K P 1, Sanjay Sharma, Dr.Vijay Kumar 3 1 Student, E & CE Department,

More information

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Fuyuto Terui a, Nobutada Sako b, Keisuke Yoshihara c, Toru Yamamoto c, Shinichi Nakasuka b a National Aerospace Laboratory

More information

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T.

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T. FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T., Dwarhat E-mail: 1 2001.kiran@gmail.com,, 2 bksapkec@yahoo.com ABSTRACT The fuzzy

More information

Passive Magnetic Attitude Control for CubeSat Spacecraft

Passive Magnetic Attitude Control for CubeSat Spacecraft Passive Magnetic Attitude Control for CubeSat Spacecraft David Gerhardt Advisor: Dr. Scott Palo University of Colorado at Boulder Department of Aerospace Engineering Sciences August 11, 2010 Motivation

More information

WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS

WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 2, 2013 ISSN 1454-2358 WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS Raluca M. STEFANESCU 1, Claudiu L. PRIOROC 2, Adrian M. STOICA

More information

MODEL FOR FLEXIBLE PLATES SUPPORTED ON PILES

MODEL FOR FLEXIBLE PLATES SUPPORTED ON PILES BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică,,Gheorghe Asachi din Iaşi Tomul LV (LIX), Fasc. 1, 2009 Secţia CONSTRUCŢII. ARHITECTURĂ MODEL FOR FLEXIBLE PLATES SUPPORTED

More information

Dynamic Modeling of Fixed-Wing UAVs

Dynamic Modeling of Fixed-Wing UAVs Autonomous Systems Laboratory Dynamic Modeling of Fixed-Wing UAVs (Fixed-Wing Unmanned Aerial Vehicles) A. Noth, S. Bouabdallah and R. Siegwart Version.0 1/006 1 Introduction Dynamic modeling is an important

More information

QUADROTOR: FULL DYNAMIC MODELING, NONLINEAR SIMULATION AND CONTROL OF ATTITUDES

QUADROTOR: FULL DYNAMIC MODELING, NONLINEAR SIMULATION AND CONTROL OF ATTITUDES QUADROTOR: FULL DYNAMIC MODELING, NONLINEAR SIMULATION AND CONTROL OF ATTITUDES Somayeh Norouzi Ghazbi,a, Ali Akbar Akbari 2,a, Mohammad Reza Gharib 3,a Somaye_noroozi@yahoo.com, 2 Akbari@um.ac.ir, 3 mech_gharib@yahoo.com

More information

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington AA 528 Spacecraft Dynamics and Control Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington Spacecraft dynamics and control What is this class all about? what is in the name?

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Lulu Liu August, 7 1 Brief Introduction Photometric precision is a major concern in this space mission. A pointing

More information

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain World Applied Sciences Journal 14 (9): 1306-1312, 2011 ISSN 1818-4952 IDOSI Publications, 2011 Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain Samira Soltani

More information

Classical Mechanics. Luis Anchordoqui

Classical Mechanics. Luis Anchordoqui 1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body

More information

Dynamics. 1 Copyright c 2015 Roderic Grupen

Dynamics. 1 Copyright c 2015 Roderic Grupen Dynamics The branch of physics that treats the action of force on bodies in motion or at rest; kinetics, kinematics, and statics, collectively. Websters dictionary Outline Conservation of Momentum Inertia

More information

Quadrotor Modeling and Control

Quadrotor Modeling and Control 16-311 Introduction to Robotics Guest Lecture on Aerial Robotics Quadrotor Modeling and Control Nathan Michael February 05, 2014 Lecture Outline Modeling: Dynamic model from first principles Propeller

More information

Hysteresis Nutation Damper for Spin Satellite

Hysteresis Nutation Damper for Spin Satellite Hysteresis Nutation Damper for Spin Satellite Hamed Shahmohamadi Ousaloo * Send Orders for Reprints to reprints@benthamscience.net The Open Aerospace Engineering Journal, 2013, 6, 1-5 1 Open Access Space

More information

Pointing Control for Low Altitude Triple Cubesat Space Darts

Pointing Control for Low Altitude Triple Cubesat Space Darts Pointing Control for Low Altitude Triple Cubesat Space Darts August 12 th, 2009 U.S. Naval Research Laboratory Washington, D.C. Code 8231-Attitude Control System James Armstrong, Craig Casey, Glenn Creamer,

More information

IAA-CU A Simulator for Robust Attitude Control of Cubesat Deploying Satellites

IAA-CU A Simulator for Robust Attitude Control of Cubesat Deploying Satellites A Simulator for Robust Attitude Control of Cubesat Deploying Satellites Giovanni Mattei, George Georgiou, Angelo Pignatelli, Salvatore Monaco Abstract The paper deals with the development and testing of

More information

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Halil Ersin Söken and Chingiz Hajiyev Aeronautics and Astronautics Faculty Istanbul Technical University

More information

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT Chak Shing Jackie Chan College of Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT In order to monitor

More information

COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION

COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION Scott E. Lennox AOE 5984: Advanced Attitude Spacecraft Dynamics and Control December 12, 23 INTRODUCTION In the last few years the space industry has started

More information

A Model-Free Control System Based on the Sliding Mode Control Method with Applications to Multi-Input-Multi-Output Systems

A Model-Free Control System Based on the Sliding Mode Control Method with Applications to Multi-Input-Multi-Output Systems Proceedings of the 4 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'17) Toronto, Canada August 21 23, 2017 Paper No. 119 DOI: 10.11159/cdsr17.119 A Model-Free Control System

More information

Stabilization of Angular Velocity of Asymmetrical Rigid Body. Using Two Constant Torques

Stabilization of Angular Velocity of Asymmetrical Rigid Body. Using Two Constant Torques Stabilization of Angular Velocity of Asymmetrical Rigid Body Using Two Constant Torques Hirohisa Kojima Associate Professor Department of Aerospace Engineering Tokyo Metropolitan University 6-6, Asahigaoka,

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 22 Part B, Lecture 22 19 April, 2017 C O N T E N T S Attitude stabilization passive and active. Actuators for three axis or active stabilization.

More information

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS IAA-AAS-DyCoSS2-14-07-02 ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS Ozan Tekinalp, * Omer Atas INTRODUCTION Utilization of solar sails for the de-orbiting of satellites is

More information

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011 TTK4190 Guidance and Control Exam Suggested Solution Spring 011 Problem 1 A) The weight and buoyancy of the vehicle can be found as follows: W = mg = 15 9.81 = 16.3 N (1) B = 106 4 ( ) 0.6 3 3 π 9.81 =

More information

Satellite Attitude Control by Quaternion-Based Backstepping

Satellite Attitude Control by Quaternion-Based Backstepping 25 American Control Conference June 8-1, 25. Portland, OR, USA WeB11.4 Satellite Attitude Control by Quaternion-Based Backstepping Raymond Kristiansen* and Per J. Nicklasson** Department of Computer Science,

More information

Design Architecture of Attitude Determination and Control System of ICUBE

Design Architecture of Attitude Determination and Control System of ICUBE Design Architecture of Attitude Determination and Control System of ICUBE 9th Annual Spring CubeSat Developers' Workshop, USA Author : Co-Author: Affiliation: Naqvi Najam Abbas Dr. Li YanJun Space Academy,

More information

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator Abstract Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator N. Selvaganesan 1 Prabhu Jude Rajendran 2 S.Renganathan 3 1 Department of Instrumentation Engineering, Madras Institute of

More information

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow Lecture AC-1 Aircraft Dynamics Copy right 23 by Jon at h an H ow 1 Spring 23 16.61 AC 1 2 Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft

More information

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication

More information

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India)

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India) Indirect Vector Control of Induction motor using Fuzzy Logic Controller RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India) ABSTRACT: AC motors are widely used in industries for

More information

Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites 56th International Astronautical Congress 25 35th Student Conference (IAF W.) IAC-5-E2.3.6 Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites Rouzbeh Amini, Jesper

More information

Investigation of the Dynamics and Modeling of a Triangular Quadrotor Configuration

Investigation of the Dynamics and Modeling of a Triangular Quadrotor Configuration Investigation of the Dynamics and Modeling of a Triangular Quadrotor Configuration TONI AXELSSON Master s Thesis at Aerospace Engineering Supervisor: Arne Karlsson Examiner: Arne Karlsson ISSN 1651-7660

More information

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT FLÁIO SILESTRE DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT LECTURE NOTES LAGRANGIAN MECHANICS APPLIED TO RIGID-BODY DYNAMICS IMAGE CREDITS: BOEING FLÁIO SILESTRE Introduction Lagrangian Mechanics shall be

More information

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

General Physics I. Lecture 10: Rolling Motion and Angular Momentum. General Physics I Lecture 10: Rolling Motion and Angular Momentum Prof. WAN, Xin (万歆) 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Rolling motion of a rigid object: center-of-mass motion

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Optimal Control, Guidance and Estimation. Lecture 16. Overview of Flight Dynamics II. Prof. Radhakant Padhi. Prof. Radhakant Padhi

Optimal Control, Guidance and Estimation. Lecture 16. Overview of Flight Dynamics II. Prof. Radhakant Padhi. Prof. Radhakant Padhi Optimal Control, Guidance and Estimation Lecture 16 Overview of Flight Dynamics II Prof. Radhakant Padhi Dept. of erospace Engineering Indian Institute of Science - Bangalore Point Mass Dynamics Prof.

More information

Satellite Attitude Determination with Attitude Sensors and Gyros using Steady-state Kalman Filter

Satellite Attitude Determination with Attitude Sensors and Gyros using Steady-state Kalman Filter Satellite Attitude Determination with Attitude Sensors and Gyros using Steady-state Kalman Filter Vaibhav V. Unhelkar, Hari B. Hablani Student, email: v.unhelkar@iitb.ac.in. Professor, email: hbhablani@aero.iitb.ac.in

More information

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant DE2-EA 2.1: M4DE Dr Connor Myant 6. 3D Kinematics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents Three-Dimensional

More information

Lab #4 - Gyroscopic Motion of a Rigid Body

Lab #4 - Gyroscopic Motion of a Rigid Body Lab #4 - Gyroscopic Motion of a Rigid Body Last Updated: April 6, 2007 INTRODUCTION Gyroscope is a word used to describe a rigid body, usually with symmetry about an axis, that has a comparatively large

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

A Concept of Nanosatellite Small Fleet for Earth Observation

A Concept of Nanosatellite Small Fleet for Earth Observation A Concept of Nanosatellite Small Fleet for Earth Observation Prof. Janusz Narkiewicz jnark@meil.pw.edu.pl Sebastian Topczewski stopczewski@meil.pw.edu.pl Mateusz Sochacki msochacki@meil.pw.edu.pl 10-11

More information

Lecture 11 Overview of Flight Dynamics I. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 11 Overview of Flight Dynamics I. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 11 Overview of Flight Dynamics I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Point Mass Dynamics Dr. Radhakant Padhi Asst. Professor

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

THERMAL CONDUCTIVITY MEASUREMENT OF CONSTRUCTION MATERIALS USING THE THERMAL PROBE METHOD

THERMAL CONDUCTIVITY MEASUREMENT OF CONSTRUCTION MATERIALS USING THE THERMAL PROBE METHOD BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LVIII (LXII), Fasc. 2, 2012 Secţia CONSTRUCŢII. ARHITECTURĂ THERMAL CONDUCTIVITY MEASUREMENT

More information

HEAT TRANSFER STUDY IN A COAXIAL HEAT EXCHANGER USING NANOFLUIDS

HEAT TRANSFER STUDY IN A COAXIAL HEAT EXCHANGER USING NANOFLUIDS BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LVI (LX), Fasc. 4, 2010 Secţia CONSTRUCŢII. ĂRHITECTURĂ HEAT TRANSFER STUDY IN A COAXIAL HEAT

More information

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin Attitude Determination and Attitude Control Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

Optimal Fault-Tolerant Configurations of Thrusters

Optimal Fault-Tolerant Configurations of Thrusters Optimal Fault-Tolerant Configurations of Thrusters By Yasuhiro YOSHIMURA ) and Hirohisa KOJIMA, ) ) Aerospace Engineering, Tokyo Metropolitan University, Hino, Japan (Received June st, 7) Fault tolerance

More information

MANLEY-ROWE TYPE RELATIONS CONCERNING THE ACTIVE PSEUDOPOWERS

MANLEY-ROWE TYPE RELATIONS CONCERNING THE ACTIVE PSEUDOPOWERS BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LX (LXIV), Fasc. 1, 2014 Secţia ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ MANLEY-ROWE TYPE RELATIONS

More information

Satellite attitude control system simulator

Satellite attitude control system simulator Shock and Vibration 5 (28) 395 42 395 IOS Press Satellite attitude control system simulator G.T. Conti and L.C.G. Souza National Institute for Space Research, INPE, Av. dos Astronautas 758, 2227-, S ão

More information

ONE of the challenges in the design of attitude control

ONE of the challenges in the design of attitude control IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Adaptive Sliding Mode Fault Tolerant Attitude Tracking Control for Flexible Spacecraft Under Actuator Saturation Bing Xiao, Qinglei Hu, Member, IEEE, YouminZhang,

More information

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1 Chapter 1 Lecture 2 Introduction 2 Topics 1.4 Equilibrium of airplane 1.5 Number of equations of motion for airplane in flight 1.5.1 Degrees of freedom 1.5.2 Degrees of freedom for a rigid airplane 1.6

More information

Uncertain System Control: An Engineering Approach

Uncertain System Control: An Engineering Approach Uncertain System Control: An Engineering Approach Stanisław H. Żak School of Electrical and Computer Engineering ECE 680 Fall 207 Fuzzy Logic Control---Another Tool in Our Control Toolbox to Cope with

More information

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Sangeetha Bindiganavile Nagesh

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Sangeetha Bindiganavile Nagesh Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Delft Center for Systems and Control Adaptive fuzzy observer and robust controller for a 2-DOF robot arm For the degree of Master of

More information

ERRORS IN CONCRETE SHEAR WALL ELASTIC STRUCTURAL MODELING

ERRORS IN CONCRETE SHEAR WALL ELASTIC STRUCTURAL MODELING BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LVII (LXI), Fasc. 2, 2011 Secţia CONSTRUCŢII. ĂRHITECTURĂ ERRORS IN CONCRETE SHEAR WALL ELASTIC

More information

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence Models for Inexact Reasoning Fuzzy Logic Lesson 8 Fuzzy Controllers Master in Computational Logic Department of Artificial Intelligence Fuzzy Controllers Fuzzy Controllers are special expert systems KB

More information

Fuzzy Control of a Multivariable Nonlinear Process

Fuzzy Control of a Multivariable Nonlinear Process Fuzzy Control of a Multivariable Nonlinear Process A. Iriarte Lanas 1, G. L.A. Mota 1, R. Tanscheit 1, M.M. Vellasco 1, J.M.Barreto 2 1 DEE-PUC-Rio, CP 38.063, 22452-970 Rio de Janeiro - RJ, Brazil e-mail:

More information

INFLUENCES IN THERMAL CONDUCTIVITY EVALUATION USING THE THERMAL PROBE METHOD; SOME PRACTICAL ASPECTS

INFLUENCES IN THERMAL CONDUCTIVITY EVALUATION USING THE THERMAL PROBE METHOD; SOME PRACTICAL ASPECTS BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LVIII (LXII), Fasc. 3, 2012 Secţia CONSTRUCŢII. ARHITECTURĂ INFLUENCES IN THERMAL CONDUCTIVITY

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Linear geometric control theory was initiated in the beginning of the 1970 s, see for example, [1, 7]. A good summary of the subject is the book by Wonham [17]. The term geometric

More information

OPTIMAL SPACECRAF1 ROTATIONAL MANEUVERS

OPTIMAL SPACECRAF1 ROTATIONAL MANEUVERS STUDIES IN ASTRONAUTICS 3 OPTIMAL SPACECRAF1 ROTATIONAL MANEUVERS JOHNL.JUNKINS Texas A&M University, College Station, Texas, U.S.A. and JAMES D.TURNER Cambridge Research, Division of PRA, Inc., Cambridge,

More information