MEM 355 Performance Enhancement of Dynamical Systems


 Steven Maxwell
 2 years ago
 Views:
Transcription
1 MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25
2 Outline Closed Loop Transfer Functions The gang of four Sensitivity functions Traditional Performance Measures Time domain Frequency domain Robustness Nyquist Traditional gain/phase margins
3 Closed Loop Transfer Functons d r G c u G p y d 2 p c ( ) ( ) Y = G U + D U = G R Y D E = R Y 2
4 Transfer Functions Con t Output Y() s = I+ Gp() sgc() s Gp() sgc() srs () I+ Gp() sgc() s Gp() sd() s + I+ Gp() sgc() s Gp() sgc() sd2() s Error E() s = I + Gp() s Gc() s R() s I + Gp() s Gc() s Gp() s D() s + I+ Gp() sgc() s Gp() sgc() sd2( s) Control U() s = Gc() s I + Gp() s Gc() s R() s Gc() s I + Gp() s Gc() s Gp() s D() s Gc() s I + Gp() s Gc() s D2() s
5 Gang of Four Reference Disturbance Noise Output Error Control GG p c + GG p c Gc + GG p c + GG p Gp Gp GG p c + GG + GG + GG p c GG p c GG p c Gc + GG + GG + GG p c p p c c p p c c c
6 Sensitivity Functions [ ] [ ] [ ] E() s = I + L R() s I + L GD () s + I + L LD () s where L: = GK sensitivity function: [ ] S: = I + L 2 { [ L] L [ L] } complementary sensitivity function: For SISO systems Bode derived: dt T dt L = dl L dl T = = [+ L] L + = [ + L] = S L [ + L] 2 [ ] T : = I + L L L
7 Traditional Performance ~ Time Domain rise time, T r, usually defined as the time to get from % to 9% of its ultimate (i.e., final) value. settling time, T s, the time at which the trajectory first enters an εtolerance of its ultimate value and remains there (ε is often taken as 2% of the ultimate value). peak time, T p, the time at which the trajectory attains its peak value. peak overshoot, OS, the peak or supreme value of the trajectory ordinarily expressed as a percentage of the ultimate value of the trajectory. An overshoot of more than 3% is often considered undesirable. A system without overshoot is overdamped and may be too slow (as measured by rise time and settling time).
8 Traditional Performance ~ Time Domain Cont d y p.4 Im.2 α degree of stability, decay rate /α 2ε.8.6 ideal region for closed loop poles θ damping ratio θ = sin Re ρ t T r T p T s Time response parameters Ideal pole locations
9 Traditional Performance ~ Frequency Domain db deg MAGNITUDE rad êsec PHASE rad êsec Complementary sensitivity Desired Altitude  2 s +.5s+.5 K s disturbance db deg MAGNITUDE rad êsec ( 2s+ )( s+ )(.5s+ ) PHASE rad êsec Sensitivity V22 Osprey altitude control K=28
10 Sensitivity Functions, Cont d For unity feed back systems: S is the error response to command transfer function T is the output response to command transfer function ( ) Suppose G s is strictly proper m< n, then lim S( jω ) = lim = ω + G j ω lim S ( jω ) ω ω ( jω ) ω ω ( ω ) typeg = lim = + G j c << typeg = ( ω ) ( ω ) G( jω ) ( ω ) ( ω ) G j lim T( jω ) = lim = ω + ω limt G j typeg = lim = + G j c typeg =
11 Traditional Performance ~ Frequency Domain Bandwidth Definitions Sensitivity Function (first crosses / 2=.77~3db from below): { v S j v } ω = max : ( ω) < 2 ω [, ) BS v Complementary Sensitivity Function (highest frequency where crosses ω BT 2 from above) = min{ v : T( jω) < 2 ω ( v, ) } v Crossover frequency { v L j v } ω = max : ( ω) ω [, ) c v T
12 Example: Osprey Bandwidth Complementary sensitivity Open loop Sensitivity MAGNITUDE db rad êsec
13 Transfer Functions as Maps
14 Traditional Performance ~ Frequency Domain Sensitivity peaks are related to gain and phase margin. Sensitivity peaks are related to overshoot and damping ratio. M M S T = = max S( jω ) ω max T( jω ) ω Im L plane S > S < L= + ρ ( ) jθ S = ρe = + L e jθ S  = a a L( jω) Re constant S proscribes circle S = + L
15 A Fundamental Tradeoff [ ] [ ] Note that + L + + L L= S+ T = Making S small improves tracking & disturbance rejection but makes system susceptible to noise S T : ( ) Es () = SsRs () () SsGsD () () s+ TsD () () s Typical design specifications S T ( jω ) < < ω [, ω] ( jω) << ω [ ω, ] And, there are other limitations. 2 2 ω > ω 2
16 Bode Waterbed Formula systems with relative degree 2 or greater: (Waterbed effect) ln S( jω) dω = π p ln T( jω) dω = π 2 ω ORHP poles ORHP zeros i q i ln S( jω) vs. ω for Osprey 2
17 Implication of Waterbed Formula ln S ( jω ) pops up here ω push down here (e.g., by increasing gain)
18 V22 with PID s s +.5 H.5 s + L s H s + L H2 s + L Desired Altitude  2 s +.5s+.5 K s disturbance ( 2s+ )( s+ )(.5s+ )
19 Example: Osprey Sensitivity function plots for K=28, 5, MAGNITUDE db rad êsec
20 Example: Osprey 2 K= Increased gain yields higher bandwidth (and reduced settling time) but higher sensitivity peak (lower damping ratio and more overshoot) K=
21 Cauchy Theorem Theorem (Cauchy): Let C be a simple closed curve in the splane. F s is a rational function, having neither poles nor zeros on C. If C is the ( ) image of C under the map F s, then Z = P N where N the number of counterclockwise encirclements of the origin by C as s traverses C once in the clockwise direction. ( ) ( ) Z the number of zeros of F s enclosed by C, counting multiplicities. P the number of poles of F s enclosed by C, counting multiplicities. ( )
22 Nyquist Take F(s)=+L(s) (return difference, F=S  ) Choose a C that encloses the entire RHP Map into Lplane instead of Fplane (shift by ) splane splane L( s) Lplane R R Typical Nyquist contours Image of Nyquist contour
23 Nyquist Theorem Theorem (Nyquist): If the plot of L(s) (i.e., the image of the Nyquist contour in the L plane) encircles the point +j in the counterclockwise direction as many times as there are unstable open loop poles (poles of L(s) within the Nyquist contour) then the feedback system has no poles in the RHP. Z = P N closed loop poles in RHP = open loop poles in RHP  cc encirclements of 
24 Example I splane R II L( s) Lplane ( ) L s = 2 2 ( s+ p)( s + 2ζωs+ ω ) jθ ( ρ ) ( ) 2 2 ( s+ p)( s + 2ζωs+ ω ) jθ 2 j2θ jθ 2 ( ρe + p )( ρ e + 2ζωρe + ω ) * III I: s = jω L jω =, < ω < jθ π π II: s = ρe, ρ, = 2 2 L e = III: s = jω, III I ρ
25 Example 2 ( ) L s = 2 2 ( + 2ζωs+ ω ) s s X X X I IV III 2 2 ( + j2 + ) ( + + ) * ( + + ) splane R I: s= jω L( jω) =, < ω < jω ω ζω ω ω jθ π π II: s = ρe, ρ, θ = 2 2 jθ L( ρ e ) = jθ j θ jθ ρ ρe ρ e 2ζω ρe ω III: s= jω, III I jθ π π IV : s = εe, ε, θ = 2 2 jθ L( ε e ) = jθ j θ jθ εe ε e 2ζω εe ω εω II ε 2 e L( s) jθ Lplane
26 Example 3 Hs + L Hs 2 +. s + L MAGNITUDE db rad êsec 4. PHASE deg rad êsec .5 The principle part of the Nyquist plot uses the same data as the bode plot
27 Example 4 Hs + L Hs L s Hs s + 2L Hs s + 4L.5 db MAGNITUDE rad êsec 3  PHASE deg rad êsec
28 Example 5 ( ) G s = ( ) ( s+ ) s s >> G=/(s*(s^2+2*.*s+)); >> nyquist(g) >> G=/((s+.)*(s^2+2*.*s+)); >> nyquist(g)
29 Gain & Phase Margin γ m Gain, db γ m φ m Phase, deg φ m Nyquist L( jω ) Assumption: the nominal system is stable. Bode
30 Example 6 ( ) G s = ( s +.5) ( s+ )( s+ )( s 2 +.s+ ) 5 OpenLoop Bode Editor (C) 4 Nyquist Diagram 3 Magnitude (db) G.M.: 2.5 db Freq: 2.42 rad/sec Stable loop Imaginary Axis 2  Phase (deg) P.M.: 27.3 deg Freq:.8 rad/sec Frequency (rad/sec) Real Axis
31 V22 with PID s s +.5 H.5 s + L s H s + L H2 s + L Desired Altitude  2 s +.5s+.5 K s disturbance ( 2s+ )( s+ )(.5s+ )
32 V22 with PID db MAGNITUDE rad êsec db MAGNITUDE rad êsec db MAGNITUDE rad êsec db MAGNITUDE rad êsec Complementary sensitivity sensitivity
33 V22 with PID 28 Hs s +.5 L H.5 s + L s H s + L H2 s + L
34 V22 with PID >> s=tf('s'); >> G=28*((s^2+.5*s+.5)/s) /((2*s+)*(*s+)*(.5*s+)); >> margin(g) Notice that gain margin is negative because system loses stability when gain drops.
35 V22 PID+Lead s s +.5 H.5 s + L s Hs + L H2 s + L
36 V22 PID+Lead Complementary sensitivity MAGNITUDE Notice that sensitivity peak is reduced from 2 db to db Sensitivity MAGNITUDE db rad êsec db rad êsec 6 MAGNITUDE MAGNITUDE db 8 db rad êsec Disturbance to output K= rad êsec Command to control
37 V22 PID+Lead.5 5 Hs s +.5 L H.5 s + L s Hs + L H2 s + L
38 V22 PID+Lead Gain margin is infinite because the system is never unstable for any K>.
39 Summary Need to consider 24 transfer functions to fully evaluate performance Bandwidth is inversely related to settling time Sensitivity function peak is related to overshoot and inversely to damping ratio Gain and phase margins can be determined from Nyquist or Bode plots Sensitivity peak is inversely related to stability margin Design tools: Root locus helps place poles Bode and/or Nyquist helps establish robustness (margins) & performance (sensitivity peaks)
Intro to Frequency Domain Design
Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer
More informationRobust Control 3 The Closed Loop
Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
More informationIntroduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationLet the plant and controller be described as:
Summary of Fundamental Limitations in Feedback Design (LTI SISO Systems) From Chapter 6 of A FIRST GRADUATE COURSE IN FEEDBACK CONTROL By J. S. Freudenberg (Winter 2008) Prepared by: Hammad Munawar (Institute
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationThe Nyquist criterion relates the stability of a closed system to the openloop frequency response and open loop pole location.
Introduction to the Nyquist criterion The Nyquist criterion relates the stability of a closed system to the openloop frequency response and open loop pole location. Mapping. If we take a complex number
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
More information(Continued on next page)
(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 22: The Nyquist Criterion Overview In this Lecture, you will learn: Complex Analysis The Argument Principle The Contour
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationRobust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization
Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control
More informationFrequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More informationControl Systems. Frequency Method Nyquist Analysis.
Frequency Method Nyquist Analysis chibum@seoultech.ac.kr Outline Polar plots Nyquist plots Factors of polar plots PolarNyquist Plots Polar plot: he locus of the magnitude of ω vs. the phase of ω on polar
More informationMAE 143B  Homework 9
MAE 43B  Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4
More informationTopic # Feedback Control
Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability
More informationAdditional ClosedLoop Frequency Response Material (Second edition, Chapter 14)
Appendix J Additional ClosedLoop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. ClosedLoop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationDigital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
More informationLinear Control Systems Lecture #3  Frequency Domain Analysis. Guillaume Drion Academic year
Linear Control Systems Lecture #3  Frequency Domain Analysis Guillaume Drion Academic year 20182019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closedloop system
More informationCourse Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim
Amme 3 : System Dynamics & Control Nyquist Stability Dr. Dunant Halim Course Outline Week Date Content Assignment Notes 1 5 Mar Introduction 2 12 Mar Frequency Domain Modelling 3 19 Mar System Response
More informationToday (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
More informationDESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationFrequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011
More informationTopic # Feedback Control Systems
Topic #20 16.31 Feedback Control Systems Closedloop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control
More informationStability of CL System
Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed
More informationDiscrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22  Lecture 4 Step response and pole locations 4  Review Definition of transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
More informationK(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s
321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify
More informationActive Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationCDS 101/110: Lecture 10.3 Final Exam Review
CDS 11/11: Lecture 1.3 Final Exam Review December 2, 216 Schedule: (1) Posted on the web Monday, Dec. 5 by noon. (2) Due Friday, Dec. 9, at 5: pm. (3) Determines 3% of your grade Instructions on Front
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More information1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
More informationReturn Difference Function and ClosedLoop Roots SingleInput/SingleOutput Control Systems
Spectral Properties of Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018! Stability margins of singleinput/singleoutput (SISO) systems! Characterizations
More informationEngraving Machine Example
Engraving Machine Example MCE44  Fall 8 Dr. Richter November 24, 28 Basic Design The Xaxis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional
More informationCDS 101/110a: Lecture 101 Robust Performance
CDS 11/11a: Lecture 11 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationNyquist Stability Criteria
Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc  Funded by MHRD This Lecture Contains Introduction to
More informationDigital Control: Summary # 7
Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationH(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )
.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a
More informationFrequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
More information] [ 200. ] 3 [ 10 4 s. [ ] s + 10 [ P = s [ 10 8 ] 3. s s (s 1)(s 2) series compensator ] 2. s command prefilter [ 0.
EEE480 Exam 2, Spring 204 A.A. Rodriguez Rules: Calculators permitted, One 8.5 sheet, closed notes/books, open minds GWC 352, 965372 Problem (Analysis of a Feedback System) Consider the feedback system
More informationSTABILITY ANALYSIS TECHNIQUES
ECE4540/5540: Digital Control Systems 4 1 STABILITY ANALYSIS TECHNIQUES 41: Bilinear transformation Three main aspects to controlsystem design: 1 Stability, 2 Steadystate response, 3 Transient response
More informationTradeoffs and Limits of Performance
Chapter 9 Tradeoffs and Limits of Performance 9. Introduction Fundamental limits of feedback systems will be investigated in this chapter. We begin in Section 9.2 by discussing the basic feedback loop
More informationLABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593
LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA CONTROL SYSTEM I LAB. MANUAL EE 593 EXPERIMENT
More informationDue Wednesday, February 6th EE/MFS 599 HW #5
Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unityfeedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability
More informationControl Systems 2. Lecture 4: Sensitivity function limits. Roy Smith
Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017314 4.1 Inputoutput controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationLINEAR CONTROL SYSTEMS. Ali Karimpour Associate Professor Ferdowsi University of Mashhad
LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Controller design in the frequency domain Topics to be covered include: Lag controller design 2 Dr. Ali Karimpour
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Nonminimum Phase System) To increase the rise time of the system, we
More informationThe Frequencyresponse Design Method
Chapter 6 The Frequencyresponse Design Method Problems and Solutions for Section 6.. (a) Show that α 0 in Eq. (6.2) is given by α 0 = G(s) U 0ω = U 0 G( jω) s jω s= jω 2j and α 0 = G(s) U 0ω = U 0 G(jω)
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Nonminimum Phase System) To decrease the rise time of the system,
More informationTopic # Feedback Control
Topic #5 6.3 Feedback Control StateSpace Systems Fullstate Feedback Control How do we change the poles of the statespace system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear
More informationChapter 15  Solved Problems
Chapter 5  Solved Problems Solved Problem 5.. Contributed by  Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Consider a plant having a nominal model given by G o (s) = s + 2 The aim of the
More informationChapter 6  Solved Problems
Chapter 6  Solved Problems Solved Problem 6.. Contributed by  James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the ZN tuning strategy for the nominal
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency ResponseDesign Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
More informationTopic # Feedback Control Systems
Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19
More informationRobust Control 9 Design Summary & Examples
Robust Control 9 Design Summary & Examples Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/6/003 Outline he H Problem Solution via γiteration Robust stability via
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationRobust Control. 2nd class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room
Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) 2nd class Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room 2. Nominal Performance 2.1 Weighted Sensitivity [SP05, Sec. 2.8,
More informationx(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!
1 TimeDelay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationData Based Design of 3Term Controllers. Data Based Design of 3 Term Controllers p. 1/10
Data Based Design of 3Term Controllers Data Based Design of 3 Term Controllers p. 1/10 Data Based Design of 3 Term Controllers p. 2/10 History Classical Control  single controller (PID, lead/lag) is designed
More informationStability analysis of feedback systems
Chapter 1 Stability analysis of feedback systems 1.1 Introduction A control system must be asymptotically stable. A method for determination of the stability property of a control system will be described
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationTable of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e at, an exponential function s + a sin wt, a sine fun
More informationRoot Locus Design. MEM 355 Performance Enhancement of Dynamical Systems
Root Locus Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline The root locus design method is an iterative,
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationAnalysis of DiscreteTime Systems
TU Berlin DiscreteTime Control Systems 1 Analysis of DiscreteTime Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin DiscreteTime
More informationChapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationSTABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable
ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Boundedinput boundedoutput (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated
More informationDesign and Tuning of Fractionalorder PID Controllers for Timedelayed Processes
Design and Tuning of Fractionalorder PID Controllers for Timedelayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk
More information