Strand H Unit 3: Electromagnetic induction. Text Answers. Exercise H.3.1 Answers. a force of F = N. Since F = Bev,

Size: px
Start display at page:

Download "Strand H Unit 3: Electromagnetic induction. Text Answers. Exercise H.3.1 Answers. a force of F = N. Since F = Bev,"

Transcription

1 Exercise H.3.1 Answers 1. The magnetic field B = 0.6T and the electron of charge C experiences a force of F = N. Since F = Bev, vv = FF BBBB = NN CC 0.6TT = 30000mmss ms/s = 30km/s= km/h 2. Q = +2µC = C B = 0.8T v = 10m/s FF = BBBBBB = 0.8TT CC 10mmss 1 = NN Using Fleming s Left hand Rule, the first finger into the page and the second finger in the direction of the charge velocity (since it s a positive charge) the thumb shows the force to be vertically upwards. 3. A. Cathode and anode providing the accelerating voltage B. Electron gun (the source of electrons) C. The external magnetic field D. The vacuum tube E. The screen (or fluorescent coating) 4. L = 20cm = 0.2m B = 2T t = 3s d = 20cm The change in magnetic flux ΦΦ= B A = B L d = 0.2T 0.2m 0.2m = Tm 2. From Faraday s Law, the emf (and therefore the voltage across the rod) is given by: VV = εε = ΔΦ Δtt = TTmm 2 = = 1.3mmmm 6ss From Fleming s Left hand rule, with the first finger into the page and the second finger in the opposite direction to the rod velocity (the direction of current) the thumb shows the force and therefore the acceleration of the electrons t to be

2 vertically downward. Thus end A becomes positive whilst end B becomes negative. L = 10cm = 0.1m B = 1.3T vrod = 0.6m/s t = 6s ΦΦ=? The magnetic flux ΦΦ= B A where A is the area swept out by the moving rod. since speed = distance / time dd = vvvv = 0.6mmss 1 6ss = 3.6mm The area swept out by the rod is therefore found by Then the magnetic flux is given by AA = LL dd = 0.1mm 3.6mm = 0.36mm 2 Φ = BBBB = 1.3TT 0.36mm 2 = 0.47TTmm 2 = 0.47WWWW where Wb is the Webber, the derived unit of magnetic flux. Since the magnetic flux was initially zero, this is also the change in magnetic flux. From Faraday s Law The circuit resistance is 2Ω. Thus εε = ΔΦ Δtt = 0.47WWWW = 78mmmm 6ss II = VV RR = VV 2ΩΩ = 0.04AA = 40mmmm

3 Exercise H Your answer should include at least 5 from the following; As the coil rotates under the influence of an external rotational force The rotating wire constitutes a movement of charge in the stationary magnetic field The rotating electrons in the wire coil generate an induced magnetic field This induced magnetic field combines vectorially with the external field The electrons experience a force perpendicular to their direction of motion and the external magnetic field The force causes acceleration of the electrons in the direction of the force, creating an induced current in the wire The direction of the electrons under rotation relative to the field switches every 180 of rotation The force experienced and hence direction of induced current therefore switches direction, creating an alternating current in the wire 2. At 90 as shown, with the coil rotating anticlockwise, length AB is coming out of the page. Therefore with the first finger in the direction of the field and the second finger out of the page the thumb shows the force on the electrons to be vertically upwards. The induced current is therefore vertically downward from A to B. 180 later the rotating electrons are going into the page. Since the direction of the current (the rotating electrons in the wire) have reversed relative to the field, so too does the force on the electrons. The induced current is therefore vertically upward, from B to A. 3. A w B z C x D y rpm = 20/60s = 1/3 of a revolution per second. The time period is thus 3s. Since frequency is 1/T, the frequency of rotation and hence induced voltage is 0.33Hz.

4 Challenge Question ε (V) Hz 50Hz t (s) Exercise H Vp = 120V Vs = 9V Ns = 60 Np =? From the transformer equation VV pp = NN pp. Rearranging to make Np the subject we VV ss NN ss obtain; NN pp = VV PPNN ss VV ss = 120VV 60 9VV = 800 tttttttttt 2. If the bulb operates normally, from P = IV the current through the bulb and therefore the current on the secondary coil is given by; II = PP VV SS = 60WW 230VV = 0.26AA Since we assume the transformer is 100% efficient, we can now use the transformer efficiency equation with the efficiency set to 1. therefore II SS VV SS II PP VV PP = 1 II PP = II SSVV SS VV PP = 0.26AA 230VV 12VV = 4.98AA

5 3. A transformer reduces energy loss by using coils of low resistance wire and by using a laminated iron core. This reduces secondary currents forming in transformer core that could dissipate energy through electron electron and electron ion core collisions (a heating effect called Joule heating) 4. Since the number of turns on the secondary coil is less that that on the primary, the voltage induced on the secondary will also be less. This is a step down transformer. Vp = 200V Vs =? Ns = 20 Np = 150 From the transformer equation VV SS = VV PP NN SS 200VV 20 = = 26.6VV NN PP 150 Challenge Question Vp = 240V Vs = 12V Ns =? Np = 1000 P = 40W Ip = 0.2A (a) The number of turns on the secondary coil is found using the transformer equation; NN ss = NN ppvv ss VV = = 50 tttttttttt VV pp 240VV (b) The current in the secondary coil is the same as the current through the heater. From P = IV; II = PP VV SS = 40WW 12VV = 3. 3 AA (c) From the transformer efficiency equation TTTTTTTTTTTTTTTTTTTTTT eeeeeeeeeeeeeeee = II SSVV SS VV = = 0.83 = 83% II PP VV PP 0.2AA 240VV

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1. 1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. 2 magnetic 1 flux linkage / 0 10 2 Wb-turns 1 2 5 10 15 t / 10 3 s Fig. 3.1 The generator has a flat coil

More information

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor Topics Chapter 22 Electromagnetic Induction EMF Induced in a Moving Conductor Magnetic Flux EMF Induced in a Moving Conductor Demo: Solenoid and Magnet v 1 EMF Induced in a Moving Conductor q Work done

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

More information

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : 1 Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : Φ = BAcosθ MAGNETIC FLUX (Φ) As we have already stated, a magnetic field is

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

Induced Emf. Book pg

Induced Emf. Book pg Induced Emf Book pg 428-432 Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: History of Induction 1819 Oersted:

More information

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.

a) head-on view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case. Electromagnetism Magnetic Force on a Wire Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field

More information

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

More information

Electromagnetism IB 12

Electromagnetism IB 12 Electromagnetism Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field (N to S) What is the

More information

Model answers for the 2012 Electricity Revision booklet:

Model answers for the 2012 Electricity Revision booklet: Model answers for the 0 Electricity Revision booklet: SAMPLE ASSESSMENT SCHEDULE Physics 973 (.6): Demonstrate understanding of electricity and electromagnetism Assessment Criteria Achievement Achievement

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) Electromagnetic induction (Chapter 23): For a straight wire, the induced current or e.m.f. depends on: The magnitude of the magnetic

More information

1 (a) Define magnetic flux [1]

1 (a) Define magnetic flux [1] 1 (a) Define magnetic flux..... [1] (b) Fig. 4.1 shows a generator coil of 5 turns and cross-sectional area 2.5 1 3 m 2 placed in a magnetic field of magnetic flux density.35 T. The plane of the coil is

More information

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in

More information

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)

More information

Application Of Faraday s Law

Application Of Faraday s Law Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions

More information

Analog Circuits Part 1 Circuit Theory

Analog Circuits Part 1 Circuit Theory Introductory Medical Device Prototyping Analog Circuits Part 1 Circuit Theory, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Circuit Theory

More information

ElectroMagnetic Induction

ElectroMagnetic Induction ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first

More information

Electromagnetism 03/12/2010. Electromagnetism Canada s Triumph Accelerator. Putting it All Together. Hydrogen Minus. Initial Acceleration

Electromagnetism 03/12/2010. Electromagnetism Canada s Triumph Accelerator. Putting it All Together. Hydrogen Minus. Initial Acceleration Electromagnetism Canada s Triumph Accelerator Putting it All Together Hydrogen Minus Electromagnetism Initial Acceleration Electrostatic Circular Motion Magnetic Steering iltering Magnetic lux Magnetic

More information

Electromagnetic Induction

Electromagnetic Induction 362 Mechanical Engineering Technician UNIT 7 Electromagnetic Induction Structure 7.1 Introduction 7.2 Faraday s laws of Electromagnetic Induction 7.3. Lenz s law 7.4. Fleming s right and rule 7.5. Self

More information

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it - Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We

More information

Unit 2. Current, Voltage and Resistance

Unit 2. Current, Voltage and Resistance Strand G. Electricity Unit 2. Current, Voltage and Resistance Contents Page Current 2 Potential Difference, Electromotive Force and Power 5 Resistance and Ohm s Law 9 G.2.1. Current In a metallic conductor

More information

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Learning objectives: What are cathode rays and how were they discovered? Why does the gas in a discharge tube emit light of

More information

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

0.2 F 0.4 F 0.8 F 4.0 F

0.2 F 0.4 F 0.8 F 4.0 F 1 When a β particle moves at right angles through a uniform magnetic field it experiences a force F. n α particle moves at right angles through a magnetic field of twice the magnetic flux density with

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

Electromagnetism Notes 1 Magnetic Fields

Electromagnetism Notes 1 Magnetic Fields Electromagnetism Notes 1 Magnetic Fields Magnets can or other magnets. They are able to exert forces on each other without touching because they are surrounded by. Magnetic Flux refers to Areas with many

More information

PHYS 2326 University Physics II Class number

PHYS 2326 University Physics II Class number PHYS 2326 University Physics II Class number HOMEWORK- SET #1 CHAPTERS: 27,28,29 (DUE JULY 22, 2013) Ch. 27.======================================================= 1. A rod of 2.0-m length and a square

More information

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric

More information

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external E-field» E-field generated by Σq i Magnetostatics» motion of q and i in external -field» -field generated by I Electrodynamics»

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law PHYSICS 1444-001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary

More information

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? 33. How many 100-W lightbulbs can you use in a 120-V

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

TRANSFORMERS B O O K P G

TRANSFORMERS B O O K P G TRANSFORMERS B O O K P G. 4 4 4-449 REVIEW The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R=

More information

AQA Physics A-level Section 7: Fields and Their Consequences

AQA Physics A-level Section 7: Fields and Their Consequences AQA Physics A-level Section 7: Fields and Their Consequences Key Points Gravitational fields A force field is a region in which a body experiences a non-contact force. Gravity is a universal force acting

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Lecture Notes ELEC A6

Lecture Notes ELEC A6 Lecture Notes ELEC A6 Dr. Ramadan El-Shatshat Magnetic circuit 9/27/2006 Elec-A6 - Electromagnetic Energy Conversion 1 Magnetic Field Concepts Magnetic Fields: Magnetic fields are the fundamental mechanism

More information

Book Page cgrahamphysics.com Transformers

Book Page cgrahamphysics.com Transformers Book Page 444-449 Transformers Review The RMS equivalent current is defined as the dc that will provide the same power in the resistor as the ac does on average P average = I 2 RMS R = 1 2 I 0 2 R= V RMS

More information

Physics 106, Section 1

Physics 106, Section 1 Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays

More information

PHY 1214 General Physics II

PHY 1214 General Physics II PHY 1214 General Physics II Lecture 20 Magnetic Flux and Faraday s Law July 6-7, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6)

More information

Chapter 23: Magnetic Flux and Faraday s Law of Induction

Chapter 23: Magnetic Flux and Faraday s Law of Induction Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the

More information

Revision : Thermodynamics

Revision : Thermodynamics Revision : Thermodynamics Formula sheet Formula sheet Formula sheet Thermodynamics key facts (1/9) Heat is an energy [measured in JJ] which flows from high to low temperature When two bodies are in thermal

More information

Problem Solving: Faraday s Law & Inductance. Faraday s Law

Problem Solving: Faraday s Law & Inductance. Faraday s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving: Faraday s Law & Inductance Section Table Names Faraday s Law In Chapter 10 of the 8.02 Course Notes, we have seen that

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question. ame: Class: Date: ID: A AP Physics Spring 2012 Q6 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (2 points) A potential difference of 115 V across

More information

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1 ( Answers at the end of all questions ) Page ) The self inductance of the motor of an electric fan is 0 H. In order to impart maximum power at 50 Hz, it should be connected to a capacitance of 8 µ F (

More information

Electromagnetic Induction

Electromagnetic Induction lectromagnetic Induction Induced MF We already know that moving charge (=current) causes magnetic field It also works the other way around: changing magnetic field (e.g. moving permanent magnet) causes

More information

Coulomb s Law and Coulomb s Constant

Coulomb s Law and Coulomb s Constant Pre-Lab Quiz / PHYS 224 Coulomb s Law and Coulomb s Constant Your Name: Lab Section: 1. What will you investigate in this lab? 2. Consider a capacitor created when two identical conducting plates are placed

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

PHYSICAL SCIENCES: PAPER I

PHYSICAL SCIENCES: PAPER I NATIONAL SENIOR CERTIFICATE EXAMINATION SUPPLEMENTARY EXAMINATION MARCH 2016 PHYSICAL SCIENCES: PAPER I Time: 3 hours 200 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists

More information

Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

More information

General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II. Electromagnetic Induction and Electromagnetic Waves General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera ELECTROMAGNETISM Q # 1. Describe the properties of magnetic field due to current in a long straight conductor. Ans. When the heavy current is passed through a straight conductor: i. A magnetic field is

More information

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field. 1 (a) Fig. 2.1 shows a horizontal current-carrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles

More information

CHAPTER 5: ELECTROMAGNETIC INDUCTION

CHAPTER 5: ELECTROMAGNETIC INDUCTION CHAPTER 5: ELECTROMAGNETIC INDUCTION PSPM II 2005/2006 NO. 5 5. An AC generator consists a coil of 30 turns with cross sectional area 0.05 m 2 and resistance 100 Ω. The coil rotates in a magnetic field

More information

Answers to examination-style questions. Answers Marks Examiner s tips. any 3

Answers to examination-style questions. Answers Marks Examiner s tips. any 3 (a) Ammeter deflects in one direction The magnetic flux through the coil and then in the opposite direction. increases and in one direction, and then decreases, as the -pole passes through. This process

More information

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

More information

Question 6.1: Predict the direction of induced current in the situations described by the following Figs. 6.18(a) to (f ). (a) (b) (c) (d) (e) (f) The direction of the induced current in a closed loop

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information

GCE Physics A PHYA4 Section A Specimen Question Paper

GCE Physics A PHYA4 Section A Specimen Question Paper hij Teacher Resource ank GE Physics PHY4 Section Specimen Question Paper opyright 2009 Q and its licensors. ll rights reserved. The ssessment and Qualifications lliance (Q) is a company limited by guarantee

More information

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them. AP Physics - Problem Drill 17: Electromagnetism Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. A house has a wall that has an area of 28 m

More information

MAGNETISM. Magnet. When a piece of material is brought close to or stroked by a magnet, the material itself becomes magnetic.

MAGNETISM. Magnet. When a piece of material is brought close to or stroked by a magnet, the material itself becomes magnetic. 1 MAGNETISM Magnet A magnet is any material that is able to attract iron or steel. Materials that are attracted to magnets are called ferromagnetic. (e.g. iron, steel, cobalt) When a piece of material

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiple-choice questions. The first 10 questions are the makeup Quiz. The remaining questions are

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 16 - INDUCTANCE

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 16 - INDUCTANCE ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 16 - INDUCTANCE On completion of this tutorial you should be able to do the following. Explain inductance and inductors. Explain

More information

Downloaded from

Downloaded from Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3 - MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:

More information

224 g (Total 1 mark) A straight line in a direction opposite to that of the field.

224 g (Total 1 mark) A straight line in a direction opposite to that of the field. Q1. The diagram shows a rigidly-clamped straight horizontal current-carrying wire held mid-way between the poles of a magnet on a top pan balance. The wire is perpendicular to the magnetic field direction.

More information

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION 1 P a g e Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called

More information

Electromagnetic Induction and Faraday s Law

Electromagnetic Induction and Faraday s Law Electromagnetic Induction and Faraday s Law Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: He found no evidence

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 27, 17 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 Question teady electric current can give steady magnetic field Because of symmetry between electricity and magnetism we can ask: teady magnetic

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION ELECTRO MAGNETIC INDUCTION 1) A Circular coil is placed near a current carrying conductor. The induced current is anti clock wise when the coil is, 1. Stationary 2. Moved away from the conductor 3. Moved

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

Induction_P2 [184 marks]

Induction_P2 [184 marks] Induction_P2 [184 marks] 1a. d = «8.85 10 12 0.025 2 =» 1.3 10 3 «m» 4.3 10 12 1b. 6.9 10 11 «C» negative charge/sign 1c. charge increases because capacitance increases AND pd remains the same. 1d. ALTERNATIVE

More information

Q1. In a stretched string the frequency of the wave DOES NOT depends on:

Q1. In a stretched string the frequency of the wave DOES NOT depends on: Coordinator: Al-Shukri Wednesday, June 08, 011 Page: 1 Q1. In a stretched string the frequency of the wave DOES NOT depends on: A) Amplitude of the wave B) Wavelength of the wave C) Velocity of the wave

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current

More information

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT. (Taken from the DoE Physical Sciences Preparatory Examination Paper )

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT. (Taken from the DoE Physical Sciences Preparatory Examination Paper ) TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT SECTION A: TYPICAL EXAM QUESTIONS QUESTION 1: 13 minutes (Taken from the DoE Physical Sciences Preparatory Examination Paper 1 2008)

More information

Exam 2 Fall 2015

Exam 2 Fall 2015 1 95.144 Exam 2 Fall 2015 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.

More information

Paper 1 Mark scheme. Question number. Acceptable answers Additional guidance Mark 1 D 1 2 A 1 3 D 1 4 D 1 5 B 1 6 C 1 7 D 1 8 D 1 9 C 1 10 A 1

Paper 1 Mark scheme. Question number. Acceptable answers Additional guidance Mark 1 D 1 2 A 1 3 D 1 4 D 1 5 B 1 6 C 1 7 D 1 8 D 1 9 C 1 10 A 1 !"#$%&'()*"+,"-(."/"-(0(1*/#',"*(3)(4'(!56%4,%(!" Paper 1 Mark scheme 1 D 1 A 1 3 D 1 4 D 1 5 B 1 6 C 1 7 D 1 8 D 1 9 C 1 10 A 1 (Total for Multiple Choice s = 10 marks) !# 11 An explanation that makes

More information

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,

More information

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I SECTION 5: CAPACITANCE & INDUCTANCE ENGR 201 Electrical Fundamentals I 2 Fluid Capacitor Fluid Capacitor 3 Consider the following device: Two rigid hemispherical shells Separated by an impermeable elastic

More information

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi AC Machines Operating Principles: Rotating Magnetic Field The key to the functioning of AC machines is the rotating magnetic

More information

Chapter 4: Magnetic Field

Chapter 4: Magnetic Field Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,

More information

The e/m Ratio of the Electron

The e/m Ratio of the Electron OBJECTIVE The e/m Ratio of the Electron To study the behavior of a charged particle in the presence of a potential difference. To study the behavior of a charged particle moving in a magnetic field. To

More information

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation, Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM)

PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) name Write your name also in the back of the last page. blazer id [a] PH202-NG Test 2 (July. 7, 2009, 3:00PM-5:05PM) You may not open the textbook nor notebook. A letter size information may be used. A

More information

Chapter 30. Induction and Inductance

Chapter 30. Induction and Inductance Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears

More information

End correction = 0.2cm Actual length of object X = = 1.3cm. Constant gradient (straight line) = uniform acceleration. = 98 cm/s 100 cm/s

End correction = 0.2cm Actual length of object X = = 1.3cm. Constant gradient (straight line) = uniform acceleration. = 98 cm/s 100 cm/s # Ans Workings/Remarks C End correction = 0.2cm Actual length of object X =. + 0.2 =.3cm 2 D Force, Acceleration, Velocity and Displacement are vectors. Work, Time and Mass are scalars. 3 D Gradient of

More information

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Physics 115. Induction Induced currents. General Physics II. Session 30

Physics 115. Induction Induced currents. General Physics II. Session 30 Physics 115 General Physics II Session 30 Induction Induced currents R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 1 Lecture Schedule Today 5/23/14 2 Physics

More information

Introduction to Electrical Theory and DC Circuits

Introduction to Electrical Theory and DC Circuits Introduction to Electrical Theory and DC Circuits For Engineers of All Disciplines by James Doane, PhD, PE Contents 1.0 Course Overview... 4 2.0 Fundamental Concepts... 4 2.1 Electric Charges... 4 2.1.1

More information

Which of the following is the SI unit of gravitational field strength?

Which of the following is the SI unit of gravitational field strength? T5-2 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.

More information

r where the electric constant

r where the electric constant 1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information