(Non)-Uniform Bounds for Rational Preperiodic Points in Arithmetic Dynamics

Size: px
Start display at page:

Download "(Non)-Uniform Bounds for Rational Preperiodic Points in Arithmetic Dynamics"

Transcription

1 (Non)-Uniform Bounds for Rational Preperiodic Points in Arithmetic Dynamics Robert L. Benedetto Amherst College Special Session on The Interface Between Number Theory and Dynamical Systems AMS Spring Sectional Meeting UIUC Friday, March 27, 2009

2 Dynamics over Number Fields K = global field, N 1. φ : P N (K) P N (K) morphism over K, degree d 2. (N = 1: φ K(z) is a rational function.) Preper(φ, K) := {preperiodic points of φ in P 1 (K)}. Example. φ(z) = z , on P1 (Q) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 φ(z) = z φ(z) = z ±

4 Theorem (Northcott, 1950): Let K be a global field. Let φ : P N (K) P N (K) be a morphism, defined over K, of degree d 2. Then #Preper(φ, K) <. Dynamical Uniform Boundedness Conjecture (Morton & Silverman, 1994): For any integers d 2, D 1, and N 1, there is a constant C = C(d, D, N) such that for any number field K with [K : Q] = D, and for any morphism φ : P N (K) P N (K) defined over K and of degree d, #Preper(φ, K) C(d, D, N). Conjecture (DUBC Lite): There is a constant C > 0 so that for any quadratic polynomial φ Q[z], #Preper(φ, Q) C. Refined DUBC Lite Conjecture (Poonen, 1998): The DUBC Lite Constant is 9.

5 Definition. Let K be a global field, v M K non-archimedean, and φ K(z) a rational function. We say φ has good reduction at v if φ may be written in homogeneous coordinates as [f, g], i.e., ( ) x f(x, y) φ = y g(x, y) for some f, g O v [x, y] homogeneous of the same degree such that: The reductions f and g modulo v have no common zeros besides (0, 0). In that case, φ maps residue classes into residue classes. Idea: φ still makes sense everywhere modulo v.

6 Example. Any polynomial with v-adic integer coefficients and with a d v = 1 has good reduction: φ(z) = a d z d + a d 1 z d a 0 = a dx d + a d 1 x d 1 y + + a 0 y d y d. Example. φ(z) = z Q[z] has bad reduction at v = 2, 3,. Modulo 2 or 3: φ(z) = 144x2 133y 2 144y 2 y2 0. Example. ψ(z) = 3z2 8z 4z + 11 Q(z) has bad reduction at v = 3, 5, 11, 13,. [Resultant of 3z 2 8z and 4z + 11 is ] E.g. modulo 5: ψ(z) = 3x2 8xy 4xy + 11y 3x2 3xy 3x(x y) = 2 xy + y2 y(x y).

7 Theorem. (Pezda, Morton & Silverman, Zieve, 1990s). Let φ K(z) such that no iterate of φ is the identity, and with good reduction at v. Let x P 1 (K) be a K-rational periodic point of φ. Then the period n of x is at most O(Np 2 v). [Np v is the norm of the prime ideal associated to v.] Idea of Proof: Write q = #k v = p f. So Np v = qp e. WLOG x = 0. D(0, 1) is periodic of period m #P 1 (k v ) = q + 1. Let λ = (φ m ) (0). Good reduction implies λ v 1. If <, then n = m. Otherwise, let r be the order of λ k v. Note r #k v = q 1. Then n = mrp E for some integer E 0. Pezda/Zieve: E e. [In fact, much less.] Note: There is no reference to the degree d = deg φ!!! The proof works entirely in the local field K v. More work gives #Preper(φ, Q) < [ d Np2 ].

8 Definition. Let v M K, and let φ K[z] be a polynomial of degree d 2. Let C v be the completion of an algebraic closure of K v. The filled Julia set of φ at v is K φ,v := {x C v : { φ n (x) v } n 0 is bounded} Note: (1) All preperiodic points (besides ) lie in K φ,v. (2) If φ is good at v, then K φ,v = D(0, 1).

9 Theorem. (Call & Goldstine, 1997.) Let c Q and let φ(z) = z 2 + c. Let s be the number of bad primes (i.e., one plus the number of distinct primes dividing the denominator of c). Then #Preper(φ, Q) s+2 = O(2 s ) except for c = 2, with #Preper(φ, Q) = 6. Idea of Proof: 1. (p-adic dynamics step): (a.) For good primes p, we know K φ,p = D(0, 1) is disk of radius 1. (b.) For bad primes p, prove that K φ,p sits inside a union of two disks of radius 1. (Slightly different for p = 2,.) 2. (global step): In each choice of one unit disk at each prime (or interval length 1 at v = ), there is only one rational number.

10 Theorem. (RB, 2004.) Let K be a global field, and let φ(z) K[z] be a polynomial of degree d 2. Let s be the number of bad primes (i.e, not potentially good) of φ. Then ( ) d 2 #Preper(φ, K) O log d s log s. More properties of K φ,v : (1) If φ is monic, then the smallest disk U 0 := D(a, r) containing K φ,v has radius r 1. (2) If v is non-archimedean, r = 1 potentially good. (3) Define U n := φ n (U 0 ). Then U 0 U 1 U 2 and K φ,v = n 0U n. (4) If v is non-archimedean, then U n is a disjoint union of closed disks.

11 Lemma 1. Let φ C v [z] be a polynomial of degree d 2. Assume φ is monic, and let r φ,v be the radius of the smallest disk U 0 C v containing K φ,v. Given N 2, let x 1,..., x N K φ,v. Then where i j B v (N) = x i x j v B v (N) r (d 1)N log d N φ,v, { N N if v is archimedean, 1 if v is non-archimedean. Note: (1) If φ not monic, you also get a correction factor of a d N(N 1)/(d 1) on the right. (2) The N N can probably be substantially reduced (but not eliminated). (3) Otherwise, these bounds are sharp: φ(z) = z d + c.

12 Proof. Let U 0 = D(a, r φ,v ) be the smallest disk containing K φ,v. For any integer j 0, write j = c 0 + c 1 d + c 2 d c M d M in base d. (0 c i d 1.) Let M f j (z) = [φ i (z) a] c i, i=0 so that f j is a monic polynomial of degree j with for x K φ,v. f j (x) v r c 0+c 1 +c 2 + +c M φ,v Meanwhile, i j(x i x j ) = ±(det V ) 2, where V = 1 x 1 x x N x 2 x x N x N x 2 N... xn 1 N

13 Column operations (f j monic) gives det V = det A, where 1 f 1 (x 1 ) f 2 (x 1 )... f N 1 (x 1 ) A = 1 f 1 (x 2 ) f 2 (x 2 )... f N 1 (x 2 ) f 1 (x N ) f 2 (x N )... f N 1 (x N ) Hadamard: det A v N 1 j=0 (j th column) (v arch: L 2 -norm; v non-arch: L -norm.) But by properties of f j : (j th column) b v (N)r c 0+ +c M φ,v { 1 v non-archimedean, where b v (N) = N v archimedean. Hence i j x i x j v = det A 2 v B v (N) N 1 j=0 r 2(c 0+ +c M ) φ,v.

14 That is, i j x i x j v B v (N) r E(N,d) φ,v, where N 1 E(N,d) = 2 [c 0 (j) + c 1 (j) + + c M (j)] j=0 = twice the sum of all base-d coefficients of all integers from 0 to N 1. Finally, it is elementary to show that E(N, d) (d 1)N log d N.

15 Lemma 2. Let K,v, φ, d, and r φ,v be as in Lemma 1. Assume that { 4d if v is archimedean, r φ,v > 1 if v is non-archimedean. Then there are disjoint sets V 1, V 2 C v and an integer 1 m d 1 such that K φ,v = V 1 V 2, φ : V 1 K φ,v is m-to-1, φ : V 2 K φ,v is (d m)-to-1, and For any y 1 V 1 and y 2 V 2, y 1 y 2 v r φ,v { 2/d if v is archimedean, 1 if v is non-archimedean. Idea: If the diameter of K φ,v is big, then it splits into (at least) two pieces which are very far apart.

16 Lemma 3. Under the hypotheses of Lemma 2, for any x 1,..., x N V 1, where and i j B v(n) = x i x j v B v(n)r (d 1)N[log d N P m (N)] φ,v, P m (N) = d m m(d 1) N (1 log d m) { N N (d 1) P m(n) if v is archimedean, 1 if v is non-archimedean. Similar bound for V 2, with m d m. Throw in the same correction factor a d N(N 1)/(d 1) v if φ is not monic.

17 Summary of the three Lemmas: Lemma 1. For x 1,..., x N K φ,v, x i x j v rv N log N, essentially. i j That is: On average, x i x j v is only a little bigger than 1. Lemma 2. If r v is big enough, then K φ,v splits into two small pieces, V 1 and V 2, that are far apart. Lemma 3. For x 1,..., x N V 1 (or in V 2 ), x i x j v r a mn 2 v, essentially. i j That is: On average, x i x j v r a m v, which is small.

18 Theorem: Sketch of Proof. [For simplicity, assume φ is monic.] For each v M K, let R v = r n v φ,v. [Actually, adjust R v slightly at archimedean v.] Let w M K be the place for which R w is largest. Split K φ,w into V 1 and V 2. If V 1 contains N distinct rational preperiodic points x 1,..., x N V 1 C w, then by the product formula, 1 = i j x i x j nv v v M K v bad i j x i x j n v v [ [ R P m(n) w v bad R s log d N P m (N) w R log d N v ] (d 1)N v arch ] (d 1)N (B v or B v) v arch (B v or B v)

19 Since R w > 1, we only need to choose N large enough so that s log d N d m m(d 1) N + (1 log d m) < 0 to get a contradiction. Letting N be slightly bigger than m(d 1) N m = d m s log d s does the trick. Do the same for V 2. So if the total number of rational preperiodic points is at least N m + N d m, we get a contradiction. The worst case is m = 1, which gives a total number of points on the order of at most [1 + (d 1) 2 ]s log d s = (d 2 2d + 2)s log d s.

20 Let K be a number field. Heights The standard height on P N (K) is h([x 0,..., x N ]) := 1 [K v : Q v ] log max{ x 0 v,..., x N v }. [K : Q] v M K (Analogous definition for function fields.) For K = Q and for x i Z with gcd(x 0,..., x N ) = 1, we can write h([x 0,..., x N ]) = log max{ x 0,..., x N }. Key properties: If φ : P N P N is any morphism of degree d, then h(φ(x)) d h(x) is a bounded function of x. (Non-degeneracy) For global fields K and any real number B, the set of K-points of height at most B is finite.

21 Canonical Heights Given a morphism φ : P N P N defined over K of degree d 2, the canonical height for φ on P N (K) is We have: The limit converges. ĥφ h is bounded. ĥφ(φ(x)) = d ĥφ(x). ĥφ(x) 0. 1 ĥ φ (x) = lim n d nh (φn (x)). For N = 1, φ a polynomial, and x : ĥ φ (x) = 0 x K φ,v for all v M K. If x is preperiodic, then ĥ(x) = 0. For global fields, if ĥ(x) = 0, then x is preperiodic.

22 Points of Small Canonical Height a.k.a. Almost Preperiodic Points Example. φ(z) = z ĥ φ (7/) = 2 5 log 3 = , vs. h(φ) = h(181/144) = log 181 = Ratio is ĥφ(7/)/h(φ) = Example. φ(z) = z ĥ φ (153/140) = 2 10 log log 7 = , vs. h(φ) = h(36989/19600) = log = Ratio is ĥφ(153/140)/h(φ) =

23 Another Point of Small Canonical Height Example. φ(z) = 1 24 z z ĥ φ ( 7) = , vs. h(φ) = log(97) = Ratio is ĥφ( 7)/h(φ) = Conjecture. (Silverman) Let K be a number field and d 2. There is a constant C = C(K,d) such that if φ K(z) with deg φ = d, then for any non-preperiodic P P 1 (K), ĥ φ (P) Ch(φ).

REVIEW: THE ARITHMETIC OF DYNAMICAL SYSTEMS, BY JOSEPH H. SILVERMAN

REVIEW: THE ARITHMETIC OF DYNAMICAL SYSTEMS, BY JOSEPH H. SILVERMAN BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0273-0979(XX)0000-0 REVIEW: THE ARITHMETIC OF DYNAMICAL SYSTEMS, BY JOSEPH H. SILVERMAN ROBERT L. BENEDETTO

More information

A Number Theorist s Perspective on Dynamical Systems

A Number Theorist s Perspective on Dynamical Systems A Number Theorist s Perspective on Dynamical Systems Joseph H. Silverman Brown University Frontier Lectures Texas A&M, Monday, April 4 7, 2005 Rational Functions and Dynamical Systems

More information

A CRITERION FOR POTENTIALLY GOOD REDUCTION IN NON-ARCHIMEDEAN DYNAMICS

A CRITERION FOR POTENTIALLY GOOD REDUCTION IN NON-ARCHIMEDEAN DYNAMICS A CRITERION FOR POTENTIALLY GOOD REDUCTION IN NON-ARCHIMEDEAN DYNAMICS ROBERT L. BENEDETTO Abstract. Let K be a non-archimedean field, and let φ K(z) be a polynomial or rational function of degree at least

More information

SMALL DYNAMICAL HEIGHTS FOR QUADRATIC POLYNOMIALS AND RATIONAL FUNCTIONS

SMALL DYNAMICAL HEIGHTS FOR QUADRATIC POLYNOMIALS AND RATIONAL FUNCTIONS SMALL DYNAMICAL HEIGHTS FOR QUADRATIC POLYNOMIALS AND RATIONAL FUNCTIONS ROBERT L. BENEDETTO, RUQIAN CHEN, TREVOR HYDE, YORDANKA KOVACHEVA, AND COLIN WHITE Abstract. Let φ Q(z) be a polynomial or rational

More information

Geometry and Arithmetic of Dominant Rational Self-Maps of Projective Space Joseph H. Silverman

Geometry and Arithmetic of Dominant Rational Self-Maps of Projective Space Joseph H. Silverman Geometry and Arithmetic of Dominant Rational Self-Maps of Projective Space Joseph H. Silverman Brown University Conference on automorphisms and endomorphisms of algebraic varieties and compact complex

More information

PREPERIODIC POINTS OF POLYNOMIALS OVER GLOBAL FIELDS

PREPERIODIC POINTS OF POLYNOMIALS OVER GLOBAL FIELDS PREPERIODIC POITS OF POLYOMIALS OVER GLOBAL FIELDS ROBERT L. BEEDETTO Abstract. Gien a global field K and a polynomial φ defined oer K of degree at least two, Morton and Silerman conjectured in 1994 that

More information

Lecture Notes on Arithmetic Dynamics Arizona Winter School March 13 17, 2010

Lecture Notes on Arithmetic Dynamics Arizona Winter School March 13 17, 2010 Lecture Notes on Arithmetic Dynamics Arizona Winter School March 13 17, 2010 JOSEPH H. SILVERMAN jhs@math.brown.edu Contents About These Notes/Note to Students 1 1. Introduction 2 2. Background Material:

More information

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q John Cremona 1 and Samir Siksek 2 1 School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7

More information

NON-ARCHIMEDEAN DYNAMICS IN DIMENSION ONE: LECTURE NOTES

NON-ARCHIMEDEAN DYNAMICS IN DIMENSION ONE: LECTURE NOTES NON-ARCHIMEDEAN DYNAMICS IN DIMENSION ONE: LECTURE NOTES ROBERT L. BENEDETTO These notes for my short course at the 2010 Arizona Winter School are a bit long, but for two (hopefully good) reasons. The

More information

3.3 The Uniform Boundedness Conjecture

3.3 The Uniform Boundedness Conjecture 3.3. The Uniform Boundedness Conjecture 95 3.3 The Uniform Boundedness Conjecture Northcott s Theorem 3.12 says that a morphism φ : P N P N has only finitely many K-rational preperiodic points. It is even

More information

ATTRACTING CYCLES IN p-adic DYNAMICS AND HEIGHT BOUNDS FOR POST-CRITICALLY FINITE MAPS. 1. Introduction

ATTRACTING CYCLES IN p-adic DYNAMICS AND HEIGHT BOUNDS FOR POST-CRITICALLY FINITE MAPS. 1. Introduction ATTRACTING CYCLES IN p-adic DYNAMICS AND HEIGHT BOUNDS FOR POST-CRITICALLY FINITE MAPS ROBERT BENEDETTO, PATRICK INGRAM, RAFE JONES, AND ALON LEVY Abstract. A rational function of degree at least two with

More information

Weak Néron Models for Lattès Maps

Weak Néron Models for Lattès Maps Weak Néron Models for Lattès Maps Robert L. Benedetto and Hsia Liang-Chung Amherst College and Taiwan Normal University Conference on Diophantine Problems and Arithmetic Dynamics June 24 28, 2013 Notation

More information

ELLIOT WELLS. n d n h(φ n (P));

ELLIOT WELLS. n d n h(φ n (P)); COMPUTING THE CANONICAL HEIGHT OF A POINT IN PROJECTIVE SPACE arxiv:1602.04920v1 [math.nt] 16 Feb 2016 ELLIOT WELLS Abstract. We give an algorithm which requires no integer factorization for computing

More information

Elliptic Curves over p-adic Fields

Elliptic Curves over p-adic Fields Elliptic Curves over p-adic Fields Robert L. Benedetto Amherst College University of Connecticut Saturday, May 17, 2014 Quick review of p-adic numbers The p-adic absolute value p on Q has 0 p = 0 and r

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i

Final Exam C Name i D) 2. Solve the equation by factoring. 4) x2 = x + 72 A) {1, 72} B) {-8, 9} C) {-8, -9} D) {8, 9} 9 ± i Final Exam C Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 7 ) x + + 3 x - = 6 (x + )(x - ) ) A) No restrictions; {} B) x -, ; C) x -; {} D) x -, ; {2} Add

More information

18. Cyclotomic polynomials II

18. Cyclotomic polynomials II 18. Cyclotomic polynomials II 18.1 Cyclotomic polynomials over Z 18.2 Worked examples Now that we have Gauss lemma in hand we can look at cyclotomic polynomials again, not as polynomials with coefficients

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013 18.78 Introduction to Arithmetic Geometry Fall 013 Lecture #4 1/03/013 4.1 Isogenies of elliptic curves Definition 4.1. Let E 1 /k and E /k be elliptic curves with distinguished rational points O 1 and

More information

Height Functions. Michael Tepper February 14, 2006

Height Functions. Michael Tepper February 14, 2006 Height Functions Michael Tepper February 14, 2006 Definition 1. Let Y P n be a quasi-projective variety. A function f : Y k is regular at a point P Y if there is an open neighborhood U with P U Y, and

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending 2. The canonical divisor In this section we will introduce one of the most important invariants in the birational classification of varieties. Definition 2.1. Let X be a normal quasi-projective variety

More information

Defining Valuation Rings

Defining Valuation Rings East Carolina University, Greenville, North Carolina, USA June 8, 2018 Outline 1 What? Valuations and Valuation Rings Definability Questions in Number Theory 2 Why? Some Questions and Answers Becoming

More information

Homework problems from Chapters IV-VI: answers and solutions

Homework problems from Chapters IV-VI: answers and solutions Homework problems from Chapters IV-VI: answers and solutions IV.21.1. In this problem we have to describe the field F of quotients of the domain D. Note that by definition, F is the set of equivalence

More information

A WEAK VERSION OF ROLLE S THEOREM

A WEAK VERSION OF ROLLE S THEOREM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 11, November 1997, Pages 3147 3153 S 0002-9939(97)03910-5 A WEAK VERSION OF ROLLE S THEOREM THOMAS C. CRAVEN (Communicated by Wolmer

More information

Even sharper upper bounds on the number of points on curves

Even sharper upper bounds on the number of points on curves Even sharper upper bounds on the number of points on curves Everett W. Howe Center for Communications Research, La Jolla Symposium on Algebraic Geometry and its Applications Tahiti, May 2007 Revised slides

More information

L-Polynomials of Curves over Finite Fields

L-Polynomials of Curves over Finite Fields School of Mathematical Sciences University College Dublin Ireland July 2015 12th Finite Fields and their Applications Conference Introduction This talk is about when the L-polynomial of one curve divides

More information

Remember, you may not use a calculator when you take the assessment test.

Remember, you may not use a calculator when you take the assessment test. Elementary Algebra problems you can use for practice. Remember, you may not use a calculator when you take the assessment test. Use these problems to help you get up to speed. Perform the indicated operation.

More information

Reduction, Dynamics, and Julia Sets of Rational Functions

Reduction, Dynamics, and Julia Sets of Rational Functions Journal of Number Theory 86, 175195 (2001) doi:10.1006jnth.2000.2577, available online at http:www.idealibrary.com on Reduction, Dynamics, and Julia Sets of Rational Functions Robert L. Benedetto Department

More information

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z.

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z. ALGEBRAIC NUMBER THEORY LECTURE 7 NOTES Material covered: Local fields, Hensel s lemma. Remark. The non-archimedean topology: Recall that if K is a field with a valuation, then it also is a metric space

More information

Variations on a Theme: Fields of Definition, Fields of Moduli, Automorphisms, and Twists

Variations on a Theme: Fields of Definition, Fields of Moduli, Automorphisms, and Twists Variations on a Theme: Fields of Definition, Fields of Moduli, Automorphisms, and Twists Michelle Manes (mmanes@math.hawaii.edu) ICERM Workshop Moduli Spaces Associated to Dynamical Systems 17 April, 2012

More information

Determining the Galois group of a rational polynomial

Determining the Galois group of a rational polynomial JAH 1 Determining the Galois group of a rational polynomial Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523 hulpke@math.colostate.edu http://www.math.colostate.edu/

More information

p-adic Properites of Elliptic Divisibility Sequences Joseph H. Silverman

p-adic Properites of Elliptic Divisibility Sequences Joseph H. Silverman p-adic Properites of Elliptic Divisibility Sequences Joseph H. Silverman Brown University ICMS Workshop on Number Theory and Computability Edinburgh, Scotland Wednesday, June 27, 2007 0 Elliptic Divisibility

More information

Non-archimedean connected Julia sets with branching

Non-archimedean connected Julia sets with branching Non-archimedean connected Julia sets with branching Rob Benedetto, Amherst College AMS Special Session on Arithmetic Dynamics JMM, Seattle Wednesday, January 6, 2016 The Berkovich Projective Line 1 0 Rational

More information

ELLIPTIC CURVES SEMINAR: SIEGEL S THEOREM

ELLIPTIC CURVES SEMINAR: SIEGEL S THEOREM ELLIPTIC CURVES SEMINAR: SIEGEL S THEOREM EVAN WARNER 1. Siegel s Theorem over Q 1.1. Statement of theorems. Siegel s theorem, in its simplest form, is the fact that a nonsingular elliptic curve contains

More information

arxiv: v1 [math.nt] 23 Jan 2019

arxiv: v1 [math.nt] 23 Jan 2019 arxiv:90.0766v [math.nt] 23 Jan 209 A dynamical construction of small totally p-adic algebraic numbers Clayton Petsche and Emerald Stacy Abstract. We give a dynamical construction of an infinite sequence

More information

3.4. ZEROS OF POLYNOMIAL FUNCTIONS

3.4. ZEROS OF POLYNOMIAL FUNCTIONS 3.4. ZEROS OF POLYNOMIAL FUNCTIONS What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions. Find rational zeros of polynomial functions. Find

More information

SOLUTION TO MATH 797N, PROBLEM SET #1.

SOLUTION TO MATH 797N, PROBLEM SET #1. SOLUTION TO MATH 797N, PROBLEM SET #1. SIMAN WONG Comments: As Silverman points on p. 461,... it is hoped that this book will lead the student on into the realm of active mathematics, and the benefits

More information

Dynamics of Quadratic Polynomials over Quadratic Fields. John Robert Doyle. (Under the direction of Robert Rumely) Abstract

Dynamics of Quadratic Polynomials over Quadratic Fields. John Robert Doyle. (Under the direction of Robert Rumely) Abstract Dynamics of Quadratic Polynomials over Quadratic Fields by John Robert Doyle (Under the direction of Robert Rumely) Abstract In 1998, Poonen gave a conjecturally complete classification of the possible

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

Arithmetic Dynamics of Diagonally Split Polynomial Maps. Khoa Dang Nguyen

Arithmetic Dynamics of Diagonally Split Polynomial Maps. Khoa Dang Nguyen Arithmetic Dynamics of Diagonally Split Polynomial Maps by Khoa Dang Nguyen A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in

More information

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that Problem 1A. Suppose that f is a continuous real function on [, 1]. Prove that lim α α + x α 1 f(x)dx = f(). Solution: This is obvious for f a constant, so by subtracting f() from both sides we can assume

More information

Integral points of a modular curve of level 11. by René Schoof and Nikos Tzanakis

Integral points of a modular curve of level 11. by René Schoof and Nikos Tzanakis June 23, 2011 Integral points of a modular curve of level 11 by René Schoof and Nikos Tzanakis Abstract. Using lower bounds for linear forms in elliptic logarithms we determine the integral points of the

More information

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009 UNIFORM BOUNDS ON PRE-IMAGES UNDER QUADRATIC DYNAMICAL SYSTEMS

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009 UNIFORM BOUNDS ON PRE-IMAGES UNDER QUADRATIC DYNAMICAL SYSTEMS M ath. Res. Lett. 16 (2009), no. 1, 87 101 c International Press 2009 UNIFORM BOUNDS ON PRE-IMAGES UNDER QUADRATIC DYNAMICAL SYSTEMS Xander Faber, Benjamin Hutz, Patrick Ingram, Rafe Jones, Michelle Manes,

More information

Polynomials. Chapter 4

Polynomials. Chapter 4 Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

More information

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2 Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2 April 11, 2016 Chapter 10 Section 1: Addition and Subtraction of Polynomials A monomial is

More information

On the Number of Rational Iterated Pre-Images of -1 under Quadratic Dynamical Systems

On the Number of Rational Iterated Pre-Images of -1 under Quadratic Dynamical Systems AMERICA JOURAL OF UDERGRADUATE RESEARCH VOL. 9, O. 1 (2010) On the umber of Rational Iterated Pre-Images of -1 under Quadratic Dynamical Systems Trevor Hyde Department of Mathematics Amherst College Amherst,

More information

A FINITENESS THEOREM FOR CANONICAL HEIGHTS ATTACHED TO RATIONAL MAPS OVER FUNCTION FIELDS

A FINITENESS THEOREM FOR CANONICAL HEIGHTS ATTACHED TO RATIONAL MAPS OVER FUNCTION FIELDS A FINITENESS THEOREM FOR CANONICAL HEIGHTS ATTACHED TO RATIONAL MAPS OVER FUNCTION FIELDS MATTHEW BAKER Abstract. Let K be a function field, let ϕ K(T ) be a rational map of degree d 2 defined over K,

More information

Unit 4 Polynomial/Rational Functions Zeros of Polynomial Functions (Unit 4.3)

Unit 4 Polynomial/Rational Functions Zeros of Polynomial Functions (Unit 4.3) Unit 4 Polynomial/Rational Functions Zeros of Polynomial Functions (Unit 4.3) William (Bill) Finch Mathematics Department Denton High School Lesson Goals When you have completed this lesson you will: Find

More information

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20

Lecture 3. Frits Beukers. Arithmetic of values of E- and G-function. Lecture 3 E- and G-functions 1 / 20 Lecture 3 Frits Beukers Arithmetic of values of E- and G-function Lecture 3 E- and G-functions 1 / 20 G-functions, definition Definition An analytic function f (z) given by a powerseries a k z k k=0 with

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (September 17, 010) Quadratic reciprocity (after Weil) Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields (characteristic not ) the quadratic norm residue

More information

(January 14, 2009) q n 1 q d 1. D = q n = q + d

(January 14, 2009) q n 1 q d 1. D = q n = q + d (January 14, 2009) [10.1] Prove that a finite division ring D (a not-necessarily commutative ring with 1 in which any non-zero element has a multiplicative inverse) is commutative. (This is due to Wedderburn.)

More information

RATIONALITY OF DYNAMICAL CANONICAL HEIGHT

RATIONALITY OF DYNAMICAL CANONICAL HEIGHT RATIONALITY OF DYNAMICAL CANONICAL HEIGHT LAURA DE MARCO AND DRAGOS GHIOCA Abstract. We present a dynamical proof of the well-known fact that the Néron-Tate canonical height (and its local counterpart)

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (December 19, 010 Quadratic reciprocity (after Weil Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields k (characteristic not the quadratic norm residue symbol

More information

Counting points on elliptic curves: Hasse s theorem and recent developments

Counting points on elliptic curves: Hasse s theorem and recent developments Counting points on elliptic curves: Hasse s theorem and recent developments Igor Tolkov June 3, 009 Abstract We introduce the the elliptic curve and the problem of counting the number of points on the

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #2 09/10/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #2 09/10/2013 18.78 Introduction to Arithmetic Geometry Fall 013 Lecture # 09/10/013.1 Plane conics A conic is a plane projective curve of degree. Such a curve has the form C/k : ax + by + cz + dxy + exz + fyz with

More information

MAT 210 Test #1 Solutions, Form A

MAT 210 Test #1 Solutions, Form A 1. Where are the following functions continuous? a. ln(x 2 1) MAT 210 Test #1 Solutions, Form A Solution: The ln function is continuous when what you are taking the log of is positive. Hence, we need x

More information

ZEROS OF SPARSE POLYNOMIALS OVER LOCAL FIELDS OF CHARACTERISTIC p

ZEROS OF SPARSE POLYNOMIALS OVER LOCAL FIELDS OF CHARACTERISTIC p ZEROS OF SPARSE POLYNOMIALS OVER LOCAL FIELDS OF CHARACTERISTIC p BJORN POONEN 1. Statement of results Let K be a field of characteristic p > 0 equipped with a valuation v : K G taking values in an ordered

More information

Simplifying Rational Expressions and Functions

Simplifying Rational Expressions and Functions Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written

More information

Hurwitz Number Fields David P. Roberts University of Minnesota, Morris. 1. Context coming from mass formulas

Hurwitz Number Fields David P. Roberts University of Minnesota, Morris. 1. Context coming from mass formulas Hurwitz Number Fields David P. Roberts University of Minnesota, Morris. Context coming from mass formulas. Sketch of definitions and key properties. A full Hurwitz number field with Galois group A 5 and

More information

LECTURE 5, FRIDAY

LECTURE 5, FRIDAY LECTURE 5, FRIDAY 20.02.04 FRANZ LEMMERMEYER Before we start with the arithmetic of elliptic curves, let us talk a little bit about multiplicities, tangents, and singular points. 1. Tangents How do we

More information

Places of Number Fields and Function Fields MATH 681, Spring 2018

Places of Number Fields and Function Fields MATH 681, Spring 2018 Places of Number Fields and Function Fields MATH 681, Spring 2018 From now on we will denote the field Z/pZ for a prime p more compactly by F p. More generally, for q a power of a prime p, F q will denote

More information

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p EVAN TURNER Abstract. This paper will focus on the p-adic numbers and their properties. First, we will examine the p-adic norm and look at some of

More information

PELL S EQUATION, II KEITH CONRAD

PELL S EQUATION, II KEITH CONRAD PELL S EQUATION, II KEITH CONRAD 1. Introduction In Part I we met Pell s equation x dy = 1 for nonsquare positive integers d. We stated Lagrange s theorem that every Pell equation has a nontrivial solution

More information

P-adic Functions - Part 1

P-adic Functions - Part 1 P-adic Functions - Part 1 Nicolae Ciocan 22.11.2011 1 Locally constant functions Motivation: Another big difference between p-adic analysis and real analysis is the existence of nontrivial locally constant

More information

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION 1. Polynomial rings (review) Definition 1. A polynomial f(x) with coefficients in a ring R is n f(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n i=0

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

CYCLES OF QUADRATIC POLYNOMIALS AND RATIONAL POINTS ON A GENUS 2 CURVE

CYCLES OF QUADRATIC POLYNOMIALS AND RATIONAL POINTS ON A GENUS 2 CURVE CYCLES OF QUADRATIC POLYNOMIALS AND RATIONAL POINTS ON A GENUS 2 CURVE E. V. FLYNN, BJORN POONEN, AND EDWARD F. SCHAEFER Abstract. It has been conjectured that for N sufficiently large, there are no quadratic

More information

Chapter 4. Remember: F will always stand for a field.

Chapter 4. Remember: F will always stand for a field. Chapter 4 Remember: F will always stand for a field. 4.1 10. Take f(x) = x F [x]. Could there be a polynomial g(x) F [x] such that f(x)g(x) = 1 F? Could f(x) be a unit? 19. Compare with Problem #21(c).

More information

(IV.C) UNITS IN QUADRATIC NUMBER RINGS

(IV.C) UNITS IN QUADRATIC NUMBER RINGS (IV.C) UNITS IN QUADRATIC NUMBER RINGS Let d Z be non-square, K = Q( d). (That is, d = e f with f squarefree, and K = Q( f ).) For α = a + b d K, N K (α) = α α = a b d Q. If d, take S := Z[ [ ] d] or Z

More information

Expansions of quadratic maps in prime fields

Expansions of quadratic maps in prime fields Expansions of quadratic maps in prime fields Mei-Chu Chang Department of Mathematics University of California, Riverside mcc@math.ucr.edu Abstract Let f(x) = ax 2 +bx+c Z[x] be a quadratic polynomial with

More information

ABC Conjecture Implies Infinitely Many non-x-fibonacci-wieferich Primes A Linear Case of Dynamical Systems

ABC Conjecture Implies Infinitely Many non-x-fibonacci-wieferich Primes A Linear Case of Dynamical Systems ABC Conjecture Implies Infinitely Many non-x-fibonacci-wieferich Primes A Linear Case of Dynamical Systems Jun-Wen Wayne Peng Department of Mathematics, University of Rochester 3/21/2016 1/40 Motivation

More information

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14 Final Exam A Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 1 1) x + 3 + 5 x - 3 = 30 (x + 3)(x - 3) 1) A) x -3, 3; B) x -3, 3; {4} C) No restrictions; {3} D)

More information

A Very Elementary Proof of a Conjecture of B. and M. Shapiro for Cubic Rational Functions

A Very Elementary Proof of a Conjecture of B. and M. Shapiro for Cubic Rational Functions A Very Elementary Proof of a Conjecture of B. and M. Shapiro for Cubic Rational Functions Xander Faber and Bianca Thompson* Smith College January 2016 K = field with characteristic 0 K = algebraic closure

More information

Wandering Domains in Spherically Complete Fields

Wandering Domains in Spherically Complete Fields Wandering Domains in Spherically Complete Fields Eugenio Trucco Universidad Austral de Chile p-adic and Complex Dynamics, ICERM 20120214 Complex Polynomial Dynamics To understand the dynamics of a polynomial

More information

arxiv: v1 [math.ds] 27 Jan 2015

arxiv: v1 [math.ds] 27 Jan 2015 PREPERIODIC PORTRAITS FOR UNICRITICAL POLYNOMIALS JOHN R. DOYLE arxiv:1501.06821v1 [math.ds] 27 Jan 2015 Abstract. Let K be an algebraically closed field of characteristic zero, and for c K and an integer

More information

MA 254 notes: Diophantine Geometry

MA 254 notes: Diophantine Geometry MA 254 notes: Diophantine Geometry (Distilled from [Hindry-Silverman]) Dan Abramovich Brown University January 29, 2016 Abramovich MA 254 notes: Diophantine Geometry 1 / 14 Height on P n (k) Let P = (x

More information

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments Chapter 9 Local Fields The definition of global field varies in the literature, but all definitions include our primary source of examples, number fields. The other fields that are of interest in algebraic

More information

Winter Camp 2009 Number Theory Tips and Tricks

Winter Camp 2009 Number Theory Tips and Tricks Winter Camp 2009 Number Theory Tips and Tricks David Arthur darthur@gmail.com 1 Introduction This handout is about some of the key techniques for solving number theory problems, especially Diophantine

More information

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS KEITH CONRAD A (monic) polynomial in Z[T ], 1. Introduction f(t ) = T n + c n 1 T n 1 + + c 1 T + c 0, is Eisenstein at a prime p when each coefficient

More information

Spring Nikos Apostolakis

Spring Nikos Apostolakis Spring 07 Nikos Apostolakis Review of fractions Rational expressions are fractions with numerator and denominator polynomials. We need to remember how we work with fractions (a.k.a. rational numbers) before

More information

Chapter 1: Precalculus Review

Chapter 1: Precalculus Review : Precalculus Review Math 115 17 January 2018 Overview 1 Important Notation 2 Exponents 3 Polynomials 4 Rational Functions 5 Cartesian Coordinates 6 Lines Notation Intervals: Interval Notation (a, b) (a,

More information

Primitive Divisors in Generalized Iterations of Chebyshev Polynomials

Primitive Divisors in Generalized Iterations of Chebyshev Polynomials University of Colorado, Boulder CU Scholar Mathematics Graduate Theses & Dissertations Mathematics Spring 1-1-2013 Primitive Divisors in Generalized Iterations of Chebyshev Polynomials Nathan Paul Wakefield

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

On Siegel s lemma outside of a union of varieties. Lenny Fukshansky Claremont McKenna College & IHES

On Siegel s lemma outside of a union of varieties. Lenny Fukshansky Claremont McKenna College & IHES On Siegel s lemma outside of a union of varieties Lenny Fukshansky Claremont McKenna College & IHES Universität Magdeburg November 9, 2010 1 Thue and Siegel Let Ax = 0 (1) be an M N linear system of rank

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

On certain biquadratic equations

On certain biquadratic equations Arch. Math. 101 (013), 13 18 c 013 The Author(s). This article is published with open access at Springerlink.com 0003-889X/13/03013-6 published online September 11, 013 DOI 10.1007/s00013-013-0551-y Archiv

More information

RECENT RESULTS ON LINEAR RECURRENCE SEQUENCES

RECENT RESULTS ON LINEAR RECURRENCE SEQUENCES RECENT RESULTS ON LINEAR RECURRENCE SEQUENCES Jan-Hendrik Evertse (Leiden) General Mathematics Colloquium, Delft May 19, 2005 1 INTRODUCTION A linear recurrence sequence U = {u n } n=0 (in C) is a sequence

More information

Algorithm for Concordant Forms

Algorithm for Concordant Forms Algorithm for Concordant Forms Hagen Knaf, Erich Selder, Karlheinz Spindler 1 Introduction It is well known that the determination of the Mordell-Weil group of an elliptic curve is a difficult problem.

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

An Introduction to Supersingular Elliptic Curves and Supersingular Primes

An Introduction to Supersingular Elliptic Curves and Supersingular Primes An Introduction to Supersingular Elliptic Curves and Supersingular Primes Anh Huynh Abstract In this article, we introduce supersingular elliptic curves over a finite field and relevant concepts, such

More information

Small zeros of hermitian forms over quaternion algebras. Lenny Fukshansky Claremont McKenna College & IHES (joint work with W. K.

Small zeros of hermitian forms over quaternion algebras. Lenny Fukshansky Claremont McKenna College & IHES (joint work with W. K. Small zeros of hermitian forms over quaternion algebras Lenny Fukshansky Claremont McKenna College & IHES (joint work with W. K. Chan) Institut de Mathématiques de Jussieu October 21, 2010 1 Cassels Theorem

More information

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3... Algebra Exam Fall 2006 Alexander J. Wertheim Last Updated: October 26, 2017 Contents 1 Groups 2 1.1 Problem 1..................................... 2 1.2 Problem 2..................................... 2

More information

1 Adeles over Q. 1.1 Absolute values

1 Adeles over Q. 1.1 Absolute values 1 Adeles over Q 1.1 Absolute values Definition 1.1.1 (Absolute value) An absolute value on a field F is a nonnegative real valued function on F which satisfies the conditions: (i) x = 0 if and only if

More information

CYCLOTOMIC POLYNOMIALS

CYCLOTOMIC POLYNOMIALS CYCLOTOMIC POLYNOMIALS 1. The Derivative and Repeated Factors The usual definition of derivative in calculus involves the nonalgebraic notion of limit that requires a field such as R or C (or others) where

More information

Real Analysis Prelim Questions Day 1 August 27, 2013

Real Analysis Prelim Questions Day 1 August 27, 2013 Real Analysis Prelim Questions Day 1 August 27, 2013 are 5 questions. TIME LIMIT: 3 hours Instructions: Measure and measurable refer to Lebesgue measure µ n on R n, and M(R n ) is the collection of measurable

More information

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille Math 429/581 (Advanced) Group Theory Summary of Definitions, Examples, and Theorems by Stefan Gille 1 2 0. Group Operations 0.1. Definition. Let G be a group and X a set. A (left) operation of G on X is

More information

Partial Derivatives October 2013

Partial Derivatives October 2013 Partial Derivatives 14.3 02 October 2013 Derivative in one variable. Recall for a function of one variable, f (a) = lim h 0 f (a + h) f (a) h slope f (a + h) f (a) h a a + h Partial derivatives. For a

More information

ON MONIC BINARY QUADRATIC FORMS

ON MONIC BINARY QUADRATIC FORMS ON MONIC BINARY QUADRATIC FORMS JEROME T. DIMABAYAO*, VADIM PONOMARENKO**, AND ORLAND JAMES Q. TIGAS*** Abstract. We consider the quadratic form x +mxy +ny, where m n is a prime number. Under the assumption

More information

Module 2: Reflecting on One s Problems

Module 2: Reflecting on One s Problems MATH55 Module : Reflecting on One s Problems Main Math concepts: Translations, Reflections, Graphs of Equations, Symmetry Auxiliary ideas: Working with quadratics, Mobius maps, Calculus, Inverses I. Transformations

More information