Derivative at a point

Size: px
Start display at page:

Download "Derivative at a point"

Transcription

1 Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Derivative at a point Wat you need to know already: Te concept of liit and basic etods for coputing liits. Wat you can learn ere: How to use liits to define te concept of slope of a function at a point, also known as te derivative. Given any two points a, f a and b, f b on te grap of a function y f, we can always copute te slope of te line joining te by using te sdard slope forula: rise f b f a run b a Suc a line cuts troug te grap at tese two points, so tat, borrowing fro Latin, it is called te ant (cutting) line to te function at tose points. Also, tis slope can be interpreted as te average rate of cange of te function between a and b, since it gives us te ratio between te total cange in y and te total cange in over tat interval. So far, so good. Ecept tat in any teoretical and, ore iportly, applied probles te question of interest is not about an average slope or rate of cange, but about te a b inseous slope or rate of cange, tat is, te slope at a single point. But in tat case te slope forula is useless, since it gives te indeterinate for 0/0. Luckily, we now know ow to andle suc a for: by using liits! a, f a b, f b To ake te setting easier wile working wit liits, we reinterpret te ant line of te previous picture as te line joining a fied point to anoter one nearby. To be consistent wit te coonly used notation, I will now denote by c te coordinate of te point of interest, by an arbitrary sall nuber and by c+ te coordinate of a variable point near te one of interest, as sown in tis grap. c, f c Wit tis notation, we can state and ake sense of te following very iport definition. c c c, f c Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page

2 Definition Te slope of te ant line joining a point on te grap of y f ( ) to a nearby point c, f c is given by: rise run f c f c c, f c Tis slope can be interpreted as te average rate of cange of y f ( ) between c and c. Eaple: y at (,) Knot on your finger In te definition of te slope of a ant line, te quantity is a function of te sall quantity 0, not of te coordinate c, wic we consider as a const. Tat real issue I just entioned is te proble of deterining te slope of te function at te point c, f c, witout aving to rely on an additional artificial point nearby. Tat is because te slope at te point, if we could copute it, tells us ow fast te function is canging at tat point, independently of our coice of te nearby point. If we apply te forula to tis case, we obtain te slope: f f Eaple: y at 0.5, We do te sae wit te given inforation: f f Tecnical fact Te slope of a function at a point can be interpreted as te inseous rate of cange of te function at tat point. Te first, natural attept at coputing te slope at a point would be to copute Well, we can try, since tere is no guarantee tat it will eist. But wen it does, te liit is indeed te answer we are looking for. In fact, it is te starting point for Can t we siplify tese epressions, or copute te for soe values of? te wole field of ateatics called calculus. And it is all based on tat We certainly can, especially since we are assuing 0, but for now tat is fundaental tool we call liits. not needed and our real interest is in anoter issue tat will coe up soon. So, old on to tat tougt for wen it will becoe relevant. Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 0. But tis cannot be done, since in tat case te denoinator is 0. However, so is te nuerator tere and we are dealing wit a 0/0 for! So, we can copute te liit!

3 Definition Te slope of a function y f ( ) at a point c, f ( c) is given by te liit: f ( c ) f ( c) li li 0 0 Te line wit tis slope troug te point c, f ( c ) is called te gent line to te function at c, f ( c ) and its equation is: y c f c would need to look uc closer to te point of gency and our eyes ay never be satisfied! Tat is wy we base te definition on an algebraic property tat can be cecked eactly and witout relying on visual acuity. Eaple: y at (,) Te slope of tis point of te function is just te liit of te ant slope as 0, tat is: li li 0 0 By factoring and cancelling, we obtain: li li li Te equation of te gent line is terefore given by te point-slope forula: y 0 y0 Te picture we saw before for te ant line ay now becoe soeting like tis: c, f c c But tis line does not look gent in te way I a used to; in fact it sees to cut troug te curve soewere near our point! Yes, and tat is fine, since we epect te property of being gent to old at te point, not in a wole interval around it. We ll coe back repeatedly to tis issue and, opefully it will becoe clearer. To be visually sure tat tis line is gent we Eaple: y at 0.5, Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page As before, we copute te liit of te ant slope, tis tie by cobining fractions and ten factoring and cancelling: 0.5 li li li li li li We can conclude tat te equation of te gent line is: y 48

4 Since te concepts of a gent line and its slope are very iport, several tecnical words and epressions ave becoe associated wit te and we now need to becoe acquainted wit te. Knot on your finger Te slope of a function at a point is te sae as te slope of its gent line at tat point. Terefore we sall use te epressions slope of a function and slope of te gent line intercangeably. Definition Wen te liit tat defines te slope of a function y f ( ) c, f ( c ) eists, it is called te at a point derivative of y f ( ) at c. We sall see ore related jargon in te net tion. For now, notice tat te last tree boes can be suarized in one fact tat is te ost iport ting tat you need to reeber, for life, fro tis calculus course: Knot on your finger Derivative = Slope = Rate of cange We ll see ore of tis in te net tion. In particular we ll see tat te derivative of te position function is te velocity and te derivative of te velocity function is te acceleration. Before I sow you anoter eaple, ere is a suary of te steps we ave taken so far. Strategy for coputing te derivative of a function at a point In order to copute te derivative of a function y f ( ) c, f ( c ) : at a point. Copute f ( c ) first.. Insert suc epression in te forula for te ant slope: f c f c. Use an appropriate etod to evaluate te liit needed to obtain te gent slope, te derivative: f ( c ) f ( c) li 0 Eaple: f at 4, To copute te derivative (slope) of tis function at tis point we observe f 4 4, so tat: tat Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 4

5 f ( c ) f ( c) 4 Te required slope is terefore: f ( c ) f ( c) 4 li li 0 0 Tis can be coputed by rationalizing: li li Terefore, te slope is li and te gent line is y y 4 4 y 4, 4 : 4 You are referring to te so-called rules of differentiation. We sall eplore and use te soon and etensively. But first you need to be failiar wit te definition derivative and ow to use it, so as to fully undersd tis concept. Tis will greatly elp you aster later tecniques and ideas tat are based on it. But tat defining forula is coplicated! Only until you becoe used to it. In te eantie, to elp you eorize it, keep in ind tat it is te liit of a slope, tat is, te liit of rise over run! And to coplete tis tion, ere is an alternative defining forula tat soe teacers and students prefer and tat can be useful in soe situations. Tecnical fact Te following forulae provide equivalent and alternative definitions of te derivative of a function at a point c, f c : c f f c li c c f c f li c c Proof Tis looks like te etod of first principles! It is eactly wat in ig scool is often called te etod of first principles, since it is te etod based on te defining forula Wy can t we use tose quicker coputational etods we also saw in ig scool ten? Tey seeed uc sipler and ore practical. By perforing te substitution c, te sdard becoes te alternative: f ( c ) f ( c) f ( ) f ( c) c li li 0 c c Multiplying nuerator and denoinator by - provides te ond version. Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 5

6 Eaple: f at 4, If we use te alternative definition, we get, also by rationalizing: c f ( ) f (4) 4 li li li li li One advantage of tis alternative definition is tat it epresses te forula ore clearly as te liit of a slope: te nuerator is te rise and te denoinator is te run. Also, it involves te original independent variable,, witout requiring te additional quantity tat, at least at te beginning, ay be a bit of a ystery. However, one advantage of te original definition is tat it is coputationally easier to work out in ost of te situations we sall encounter. Tis is because in tat forula te denoinator consists of only. So, use wicever one you see fit and find ore cofortable, but better still, becoe proficient in using bot. Suary Te derivative of a function at a point is te slope of te gent line tere. To copute te derivative at a point, first copute te slope of a ant line joining te given point to a generic nearby point, ten take te liit as te nearby point approaces te given one. Te derivative can be interpreted also as te rate of cange of te dependent variable wit respect to te independent variable: DERIVATIVE=SLOPE=RATE OF CHANGE Coon errors to avoid Use proper algebra to copute bot te slope of te ant line and its liit as it becoes te gent line. Poor use of algebra will lead you to dead ends or errors. Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 6

7 Learning questions for Section D - Review questions:. Eplain wy a liit is needed to copute te slope of a function.. Describe te eaning of all parts of te definition of te derivative of a function at a point.. Eplain ow te sdard and alternative definitions of derivative at a point are related. Meory questions:. Wat is te general forula tat defines te derivative of a function y f at c?. In te forula for te derivative of a function, wat does te quantity represent?. Wat is te geoetrical eaning of te nuerator of te forula for te derivative of a function at a point? 4. Wat is te geoetrical eaning of te denoinator of te forula for te derivative of a function at a point? 5. If a function represents a relationsip between two practical quantities, wat does its derivative represent in practice? 6. Wat is te alternative definition of te derivative of f tat does not use? Coputation questions: For eac of te functions and points given in questions -8, copute: a) Te forula for te slope of te ant line b) Te derivative at te point c) Te equation of te gent line at te point.. y 5 at (, ) f ( ) at.. y at (,.5) 4. f at, 5. y 5 at (6, ) Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 7

8 6. y 7 at y at (4, 9) f 9. f 9 at 4 at. 0. f 5 at. Te liit presented in eac of questions -4 provides te derivative of a function tere. y f at c. Deterine te function f, te value c and te value of te derivative. li 0 /.. li 0 k. z li z z 4. e e li 5. Te function cos if 0 f 0 if 0 is continuous at =0, as you ay ave cecked in an earlier tion. Use te definition of derivative to copute its derivative at =0, tus sowing tat te derivative also eists tere. 6. A function f f li 0 f as a derivative of at. Use tis fact to copute. 7. Estiate te derivative of te function nuerical etod. f ( ) at by using te 8. Estiate te derivative of te function f at nuerical etod., by using te Teory questions:. Wat is te ain connection between liits and derivatives?. Te forula for te definition of derivative includes a fraction: wat is its geoetrical eaning? Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 8

9 . Wic procedure allows us to go fro te slope of te ant line to tat of te gent line? f c f c 4. Wat can we conclude if we find out tat li 0 for 0/0? is not of te 5. How is te line gent to te grap of f( ) at tose -values for wic its derivative is 0? 6. If a continuous function as a vertical gent line at =, wat can we say about its derivative tere? 7. If te derivative of a function eists at a certain point, wat kind of indeterinate for will be generated by te liit tat defines it tere? 8. Wic derivative property is used to define te nuber e? Proof questions:. Prove tat if te derivative of f at c eists, ten f is continuous at c.. Copute te derivative of any siple function at any point you dee suitable. Teplated questions:. Copute any of te slopes required in te Coputation questions by using te alternative definition. Wat questions do you ave for your instructor? Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 9

10 Differential Calculus Capter : Definition of derivative Section : Derivative at a point Page 0

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles Capter 5: Dierentiation In tis capter, we will study: 51 e derivative or te gradient o a curve Deinition and inding te gradient ro irst principles 5 Forulas or derivatives 5 e equation o te tangent line

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

lecture 35: Linear Multistep Mehods: Truncation Error

lecture 35: Linear Multistep Mehods: Truncation Error 88 lecture 5: Linear Multistep Meods: Truncation Error 5.5 Linear ultistep etods One-step etods construct an approxiate solution x k+ x(t k+ ) using only one previous approxiation, x k. Tis approac enoys

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

1 Proving the Fundamental Theorem of Statistical Learning

1 Proving the Fundamental Theorem of Statistical Learning THEORETICAL MACHINE LEARNING COS 5 LECTURE #7 APRIL 5, 6 LECTURER: ELAD HAZAN NAME: FERMI MA ANDDANIEL SUO oving te Fundaental Teore of Statistical Learning In tis section, we prove te following: Teore.

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

MAT Calculus for Engineers I EXAM #1

MAT Calculus for Engineers I EXAM #1 MAT 65 - Calculus for Engineers I EXAM # Instructor: Liu, Hao Honor Statement By signing below you conrm tat you ave neiter given nor received any unautorized assistance on tis eam. Tis includes any use

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

10 Derivatives ( )

10 Derivatives ( ) Instructor: Micael Medvinsky 0 Derivatives (.6-.8) Te tangent line to te curve yf() at te point (a,f(a)) is te line l m + b troug tis point wit slope Alternatively one can epress te slope as f f a m lim

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Chapter. Differentiation: Basic Concepts. 1. The Derivative: Slope and Rates. 2. Techniques of Differentiation. 3. The Product and Quotient Rules

Chapter. Differentiation: Basic Concepts. 1. The Derivative: Slope and Rates. 2. Techniques of Differentiation. 3. The Product and Quotient Rules Differentiation: Basic Concepts Capter 1. Te Derivative: Slope and Rates 2. Tecniques of Differentiation 3. Te Product and Quotient Rules 4. Marginal Analsis: Approimation b Increments 5. Te Cain Rule

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

LAB #3: ELECTROSTATIC FIELD COMPUTATION

LAB #3: ELECTROSTATIC FIELD COMPUTATION ECE 306 Revised: 1-6-00 LAB #3: ELECTROSTATIC FIELD COMPUTATION Purpose During tis lab you will investigate te ways in wic te electrostatic field can be teoretically predicted. Bot analytic and nuerical

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon?

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon? 8.5 Solving Exponential Equations GOAL Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT te Mat All radioactive substances decrease in mass over time. Jamie works in

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

UNIT #6 EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS

UNIT #6 EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS Answer Key Name: Date: UNIT # EXPONENTS, EXPONENTS, AND MORE EXPONENTS REVIEW QUESTIONS Part I Questions. Te epression 0 can be simpliied to () () 0 0. Wic o te ollowing is equivalent to () () 8 8? 8.

More information

c hc h c h. Chapter Since E n L 2 in Eq. 39-4, we see that if L is doubled, then E 1 becomes (2.6 ev)(2) 2 = 0.65 ev.

c hc h c h. Chapter Since E n L 2 in Eq. 39-4, we see that if L is doubled, then E 1 becomes (2.6 ev)(2) 2 = 0.65 ev. Capter 39 Since n L in q 39-4, we see tat if L is doubled, ten becoes (6 ev)() = 065 ev We first note tat since = 666 0 34 J s and c = 998 0 8 /s, 34 8 c6 66 0 J sc 998 0 / s c 40eV n 9 9 60 0 J / ev 0

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

2.3 More Differentiation Patterns

2.3 More Differentiation Patterns 144 te derivative 2.3 More Differentiation Patterns Polynomials are very useful, but tey are not te only functions we need. Tis section uses te ideas of te two previous sections to develop tecniques for

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators:

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators: Name: Section: Names of collaborators: Main Points:. Definition of derivative as limit of difference quotients. Interpretation of derivative as slope of grap. Interpretation of derivative as instantaneous

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

MATH 1020 TEST 2 VERSION A FALL 2014 ANSWER KEY. Printed Name: Section #: Instructor:

MATH 1020 TEST 2 VERSION A FALL 2014 ANSWER KEY. Printed Name: Section #: Instructor: ANSWER KEY Printed Name: Section #: Instructor: Please do not ask questions during tis eam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Derivatives of trigonometric functions

Derivatives of trigonometric functions Derivatives of trigonometric functions 2 October 207 Introuction Toay we will ten iscuss te erivates of te si stanar trigonometric functions. Of tese, te most important are sine an cosine; te erivatives

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition an Cain Rules James K. Peterson Department of Biological Sciences an Department of Matematical Sciences Clemson University November 2, 2018 Outline Function Composition an Continuity

More information

MAT 1339-S14 Class 2

MAT 1339-S14 Class 2 MAT 1339-S14 Class 2 July 07, 2014 Contents 1 Rate of Cange 1 1.5 Introduction to Derivatives....................... 1 2 Derivatives 5 2.1 Derivative of Polynomial function.................... 5 2.2 Te

More information

1. AB Calculus Introduction

1. AB Calculus Introduction 1. AB Calculus Introduction Before we get into wat calculus is, ere are several eamples of wat you could do BC (before calculus) and wat you will be able to do at te end of tis course. Eample 1: On April

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information