Lecture On Probability Distributions

Size: px
Start display at page:

Download "Lecture On Probability Distributions"

Transcription

1 Lecture On Probability Distributions 1 Random Variables & Probability Distributions Earlier we defined a random variable as a way of associating each outcome in a sample space with a real number. In our dice rolling experiment, each of the 36 possible outcomes must to be associated with one of the numbers through 1. We call x the sum of two faces on the dice a random variable since it associates each outcome with a real number from to 1. < How many different sums, can possibly turn up on the roll of two dice? >,3,4,5,6,7,8,9,10,11,1 or eleven different numbers. Now, for awhile we will limit ourselves to random variables which can take on a finite number of values i.e., we will limit ourselves to discrete random variables... later we will include a discussion of continuous random variables when we talk about the normal distributions Probability Mass Functions: Now that we know that a random variable is a real-numbered representation of the outcomes of an experiment, the question is how we associate our measures of probability with different values of our random variables, Definition: A probability MASS function is a function which assigns a probability P( x) to each real number (x) with in the range of a discrete random variable x. Examples: For each roll of two dice (fair) the probability that they will sum to a given number is given by the table. {next slide} This ProbDistLec_rev 013.lwp Page 1 of 58

2 correspondence between a value of a random variable and a measure of probability for that value represents a probability function connecting the value of probability. Sum of Dice Total Probability is: Probability 1/36 /36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 /36 1/36 1 < What is P(5) =? 4/36. P(9)? = 4/36. What is the sum of the probabilities for all R.V.'s > (1) Now, whenever we can we like to express probability functions by means of compact formulas we'll see momentarily, how we can write the probability functions for some very important probability distributions. {next slide} ProbDistLec_rev 013.lwp Page of 58

3 percentage Probability Distribution for Sum of Two Dice Sum of Dice 1.. CUMULATIVE PROBABILITY FUNCTION: A cumulative probability function describes the cumulative probability that a random variable takes on values less than a given value. Take the dice throwing example just presented < What is the range of values of the RV Xs? > -1 <What is the PR(Xs <5)? = P(x=) + P(x=3) + P(x=4) + P(x=5) = 1/36 + /36 + 3/36 + 4/36 = 10/36 F(5) i5 P(x i) {next slide} ProbDistLec_rev 013.lwp Page 3 of 58

4 Cumulative Probability Distribution for Sum of Two Dice 100 percentage Sum of Dice 1.3. Properties of a Probability Function To summarize, the probability function of a random variable has two basic properties: {next slide} Properties of a probability function: 0 P x~ x 1 The probability of any value of a random variable is in the range (0,1) inclusive P x ~ 10. all x The probabilities of all values of a random variable in the sample space sum to Features of probability functions < Now, when we roll two (fair) dice, what is the most likely sum of the two? > If you look at the probability distribution, you would guess 7 right? {next slide} ProbDistLec_rev 013.lwp Page 4 of 58

5 percentage Probability Distribution for Sum of Two Dice Sum of Dice most likely (or "expected") value Well, your intuition is actually quite good, the outcome most expected is the one with the highest probability of occurring. This works for a symmetric distribution, but not necessarily for all distributions. Just as we defined the mean of an empirical distribution of data as roughly the center of the distribution, we can define the mean of a random variable roughly as the center of mass of the probability distribution of the random variable. Mathematically, we weight each possible outcome by its probability and sum those products. That sum is the expected value of the random variable: {next slide} ProbDistLec_rev 013.lwp Page 5 of 58

6 Features of Probability Functions: Measure of Central Location: E x~ x P x all x The expected value of a random variable is the weighted sum of all its possible values, with the weights being the probability of each value. So, let's see how the formula for expected value works in the dice tossing case: {next slide} Sum of Dice Probability Products 1/36 x /36 3 x /36 4 x /36 5 x /36 6 x /36 7 x /36 8 x /36 9 x /36 10 x /36 11 x /36 1 x Total Probability is: 1 Expected Value = all x P x~ i xi 7. 0 Secondly we have the expression for the variance of a probability distribution: {next slide} ProbDistLec_rev 013.lwp Page 6 of 58

7 Measure of the Spread of the Distribution: ~ ~ V x E x x P x all x The variance of a random variable is the expected value of the weighted sum of the squared deviations from the mean of the probability distribution, with the weights being the probability of each value Proof of Tchebysheff's Theorem A while back we talked about Tchebysheff's Theorem and about how, for any distribution, it allowed us to develop conservative estimates of the probability of obtaining a value within k standard deviations of the mean. Now that we know a little more about probability distributions, we can actually prove that theorem. Here's the theorem: {next slide} Tschebysheff's Theorem: Given any probability distribution with mean the probability of obtaining a value within k standard deviations of the mean is at least 1-1/k. i.e., Pr ~ 1 x k 1. k Note that Tschebysheff's theorem also implies that the probability that we get a value more than k standard deviations away from the mean is 1/k. Proof: {next slide} We know from our definition of a probability density function that: ~ ~ V x E x x P x all x ProbDistLec_rev 013.lwp Page 7 of 58

8 . We can split our probability distribution into 3 parts corresponding to the areas (a) outside the k region and (b) inside the k region region 1 region region 3 {next slide} mean k k 3. Then we can decompose the variance as follows: x Px x P x x P x region 1 region region 3 4. Since all three of these terms are greater than zero, we can drop the second term, leaving us with: x P x x P x region 1 region 3 5. Now, since the absolute value of the deviation of x from the mean, is at least k for all terms, we can write: region 1 region 3 k P x k P x ProbDistLec_rev 013.lwp Page 8 of 58

9 or, dividing through by k 1 k P x region 1 region 3 P x probability that x k probability that x k Therefore, the probability that a random variable is greater than k standard deviations away from the mean of its probability distribution is less than or equal to 1/k. End of Proof of Tschebysheff's theorem More Rules of Expectations Here are some more rules of expectations associated with probability functions: {next slide} {next slide} More Rules of Expectations E k k where k is a constant V k 0 the variance of a constant is zero (duh!) E kx ~ k E x ~ V kx ~ k V x ~ E x y E x E y ~ ~ ~ ~ E x y E x E y if x & y are independent. ~ ~ ~ ~ V x y V x V y if x & y are independent. always positive ProbDistLec_rev 013.lwp Page 9 of 58

10 The Expectation of a linear transformation of a random variable. The linear transformation is: ~ y = a + b ~ x This implies that the expectation of the linear transformation of x is: E ~ y E a b E ~ x a be ~ x A particularly useful linear transformation: Take any random variable x with mean and standard deviation. Form the new random variable: ~ z ~ x or, rearranging, we have, ~ 1 z ~ x. Now, let's find the expectation and variance of our new random variable z: E ~ 1 z E x ~ The expectation of our new random variable z is zero! ProbDistLec_rev 013.lwp Page 10 of 58

11 The variance of our transformed random variable is: V ~ 1 z V x~ 1 V x~ V 1 V x~ (Expectations Rule) (Expectations Rule) So, our new random variable has a variance of 1. Notice that this standardized random variable, z, has a mean = 0 and a variance/standard deviation = 1 irrespective of the type of distribution from which the random variable comes. These properties of the standardized random variable, z, will prove to be extremely useful when we begin to work with the normal distribution. Indeed, much of what we will be doing for the rest of the course involves taking a random variable x and transforming it into a new random variable y that has known properties (such as = 1 and expected value = 0) Summary Now, we re at the point in the course where we start collecting a lot of information directly from probability theory which will later be enormously useful when we approach statistical inference. But first, let s see where we ve been: 1. We started off with the notion of uncertainty of attempting to find out things about an unknown population on the basis of samples from that population. ProbDistLec_rev 013.lwp Page 11 of 58

12 . We defined a measure of our uncertainty and called it probability and we said that our probability measure ought to have certain properties. 3. Then we went on to deduce other features of our probability measure which follow directly from our Postulates. Now, it's time to start looking directly at specific probability distributions that have known and useful properties that we can use in statistical inference to reduce our uncertainty about characteristics of unknown populations. Binomial Distribution Repeated identical trials are called Bernoulli Trials if three conditions are satisfied: 1. each trial has two possible outcomes, denoted generically, s, for success and f, for failure.. the trials are independent; and 3. the probability of a success remains the same from trial to trial, called the success probability and denoted p. The binomial distribution is the probability distribution for the number of successes in a sequence of Bernoulli trials. Example: Mortality: Mortality tables enable actuaries to obtain the probability that a person at any particular age will live a specified number of years. Such probabilities, in turn, permit the determination of life-insurance premiums, retirement pensions, annuity payments, and related items of importance to insurance companies and others. According to tables provided by the U.S. National Center for Health Statistics in Vital Statistics of the United States, there is about an 80% chance ProbDistLec_rev 013.lwp Page 1 of 58

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

The random variable 1

The random variable 1 The random variable 1 Contents 1. Definition 2. Distribution and density function 3. Specific random variables 4. Functions of one random variable 5. Mean and variance 2 The random variable A random variable

More information

Chapter (4) Discrete Probability Distributions Examples

Chapter (4) Discrete Probability Distributions Examples Chapter (4) Discrete Probability Distributions Examples Example () Two balanced dice are rolled. Let X be the sum of the two dice. Obtain the probability distribution of X. Solution When the two balanced

More information

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation EE 178 Probabilistic Systems Analysis Spring 2018 Lecture 6 Random Variables: Probability Mass Function and Expectation Probability Mass Function When we introduce the basic probability model in Note 1,

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 26, 2018 CS 361: Probability & Statistics Random variables The discrete uniform distribution If every value of a discrete random variable has the same probability, then its distribution is called

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

1 INFO Sep 05

1 INFO Sep 05 Events A 1,...A n are said to be mutually independent if for all subsets S {1,..., n}, p( i S A i ) = p(a i ). (For example, flip a coin N times, then the events {A i = i th flip is heads} are mutually

More information

Basic Probability space, sample space concepts and order of a Stochastic Process

Basic Probability space, sample space concepts and order of a Stochastic Process The Lecture Contains: Basic Introduction Basic Probability space, sample space concepts and order of a Stochastic Process Examples Definition of Stochastic Process Marginal Distributions Moments Gaussian

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

Chapter 3. Chapter 3 sections

Chapter 3. Chapter 3 sections sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional Distributions 3.7 Multivariate Distributions

More information

MAT X (Spring 2012) Random Variables - Part I

MAT X (Spring 2012) Random Variables - Part I MAT 2379 3X (Spring 2012) Random Variables - Part I While writing my book [Stochastic Processes] I had an argument with Feller. He asserted that everyone said random variable and I asserted that everyone

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES VARIABLE Studying the behavior of random variables, and more importantly functions of random variables is essential for both the

More information

Probability Distributions

Probability Distributions Probability Distributions Series of events Previously we have been discussing the probabilities associated with a single event: Observing a 1 on a single roll of a die Observing a K with a single card

More information

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) 3 Probability Distributions (Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3) Probability Distribution Functions Probability distribution function (pdf): Function for mapping random variables to real numbers. Discrete

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

M378K In-Class Assignment #1

M378K In-Class Assignment #1 The following problems are a review of M6K. M7K In-Class Assignment # Problem.. Complete the definition of mutual exclusivity of events below: Events A, B Ω are said to be mutually exclusive if A B =.

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 10

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 10 EECS 70 Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 10 Introduction to Basic Discrete Probability In the last note we considered the probabilistic experiment where we flipped

More information

Chapter 3: Probability 3.1: Basic Concepts of Probability

Chapter 3: Probability 3.1: Basic Concepts of Probability Chapter 3: Probability 3.1: Basic Concepts of Probability Objectives Identify the sample space of a probability experiment and a simple event Use the Fundamental Counting Principle Distinguish classical

More information

Session 2: Probability distributionsand density functions p. 1

Session 2: Probability distributionsand density functions p. 1 Session 2: Probability distributions and density functions Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 2: Probability distributionsand density functions p. 1 Recap

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

Mixture distributions in Exams MLC/3L and C/4

Mixture distributions in Exams MLC/3L and C/4 Making sense of... Mixture distributions in Exams MLC/3L and C/4 James W. Daniel Jim Daniel s Actuarial Seminars www.actuarialseminars.com February 1, 2012 c Copyright 2012 by James W. Daniel; reproduction

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015 Probability Refresher Kai Arras, University of Freiburg Winter term 2014/2015 Probability Refresher Introduction to Probability Random variables Joint distribution Marginalization Conditional probability

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

Notes for Math 324, Part 19

Notes for Math 324, Part 19 48 Notes for Math 324, Part 9 Chapter 9 Multivariate distributions, covariance Often, we need to consider several random variables at the same time. We have a sample space S and r.v. s X, Y,..., which

More information

Probability Dr. Manjula Gunarathna 1

Probability Dr. Manjula Gunarathna 1 Probability Dr. Manjula Gunarathna Probability Dr. Manjula Gunarathna 1 Introduction Probability theory was originated from gambling theory Probability Dr. Manjula Gunarathna 2 History of Probability Galileo

More information

Probability Basics. Part 3: Types of Probability. INFO-1301, Quantitative Reasoning 1 University of Colorado Boulder

Probability Basics. Part 3: Types of Probability. INFO-1301, Quantitative Reasoning 1 University of Colorado Boulder Probability Basics Part 3: Types of Probability INFO-1301, Quantitative Reasoning 1 University of Colorado Boulder September 30, 2016 Prof. Michael Paul Prof. William Aspray Example A large government

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

CME 106: Review Probability theory

CME 106: Review Probability theory : Probability theory Sven Schmit April 3, 2015 1 Overview In the first half of the course, we covered topics from probability theory. The difference between statistics and probability theory is the following:

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState

Random variables, Expectation, Mean and Variance. Slides are adapted from STAT414 course at PennState Random variables, Expectation, Mean and Variance Slides are adapted from STAT414 course at PennState https://onlinecourses.science.psu.edu/stat414/ Random variable Definition. Given a random experiment

More information

CS1512 Foundations of Computing Science 2. Lecture 4

CS1512 Foundations of Computing Science 2. Lecture 4 CS1512 Foundations of Computing Science 2 Lecture 4 Bayes Law; Gaussian Distributions 1 J R W Hunter, 2006; C J van Deemter 2007 (Revd. Thomas) Bayes Theorem P( E 1 and E 2 ) = P( E 1 )* P( E 2 E 1 ) Order

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

Expectation of geometric distribution

Expectation of geometric distribution Expectation of geometric distribution What is the probability that X is finite? Can now compute E(X): Σ k=1f X (k) = Σ k=1(1 p) k 1 p = pσ j=0(1 p) j = p 1 1 (1 p) = 1 E(X) = Σ k=1k (1 p) k 1 p = p [ Σ

More information

Lecture 13: Covariance. Lisa Yan July 25, 2018

Lecture 13: Covariance. Lisa Yan July 25, 2018 Lecture 13: Covariance Lisa Yan July 25, 2018 Announcements Hooray midterm Grades (hopefully) by Monday Problem Set #3 Should be graded by Monday as well (instead of Friday) Quick note about Piazza 2 Goals

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 2: Random Experiments Prof. Vince Calhoun Reading This class: Section 2.1-2.2 Next class: Section 2.3-2.4 Homework: Assignment 1: From the

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate: Joel Anderson ST 37-002 Lecture Summary for 2/5/20 Homework 0 First, the definition of a probability mass function p(x) and a cumulative distribution function F(x) is reviewed: Graphically, the drawings

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology Kharagpur Lecture No. #13 Probability Distribution of Continuous RVs (Contd

More information

STAT 430/510 Probability Lecture 7: Random Variable and Expectation

STAT 430/510 Probability Lecture 7: Random Variable and Expectation STAT 430/510 Probability Lecture 7: Random Variable and Expectation Pengyuan (Penelope) Wang June 2, 2011 Review Properties of Probability Conditional Probability The Law of Total Probability Bayes Formula

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions EGR 260 R. Van Til Industrial & Systems Engineering Dept. Copyright 2013. Robert P. Van Til. All rights reserved. 1 What s It All About? The behavior of many random processes

More information

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15 MA 250 Probability and Statistics Nazar Khan PUCIT Lecture 15 RANDOM VARIABLES Random Variables Random variables come in 2 types 1. Discrete set of outputs is real valued, countable set 2. Continuous set

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Probability Theory: Counting in Terms of Proportions Lecture 10 (September 27, 2007) Some Puzzles Teams A and B are equally good In any one game, each

More information

Expectations and Variance

Expectations and Variance 4. Model parameters and their estimates 4.1 Expected Value and Conditional Expected Value 4. The Variance 4.3 Population vs Sample Quantities 4.4 Mean and Variance of a Linear Combination 4.5 The Covariance

More information

Binomial Distribution. Collin Phillips

Binomial Distribution. Collin Phillips Mathematics Learning Centre Binomial Distribution Collin Phillips c 00 University of Sydney Thanks To Darren Graham and Cathy Kennedy for turning my scribble into a book and to Jackie Nicholas and Sue

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Basic Probability. Introduction

Basic Probability. Introduction Basic Probability Introduction The world is an uncertain place. Making predictions about something as seemingly mundane as tomorrow s weather, for example, is actually quite a difficult task. Even with

More information

Notes 12 Autumn 2005

Notes 12 Autumn 2005 MAS 08 Probability I Notes Autumn 005 Conditional random variables Remember that the conditional probability of event A given event B is P(A B) P(A B)/P(B). Suppose that X is a discrete random variable.

More information

Notes for Math 324, Part 17

Notes for Math 324, Part 17 126 Notes for Math 324, Part 17 Chapter 17 Common discrete distributions 17.1 Binomial Consider an experiment consisting by a series of trials. The only possible outcomes of the trials are success and

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

6.042/18.062J Mathematics for Computer Science November 28, 2006 Tom Leighton and Ronitt Rubinfeld. Random Variables

6.042/18.062J Mathematics for Computer Science November 28, 2006 Tom Leighton and Ronitt Rubinfeld. Random Variables 6.042/18.062J Mathematics for Computer Science November 28, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Variables We ve used probablity to model a variety of experiments, games, and tests.

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

Statistics Part I Introduction. Joe Nahas University of Notre Dame

Statistics Part I Introduction. Joe Nahas University of Notre Dame Statistics Part I Introduction Joe Nahas University of Notre Dame A Very Simple Example: A Pair of Die A pair of six sided die Values for each die: 1, 2, 3, 4, 5, 6. Values for the pair: 2, 3, 4, 5, 6,

More information

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Expectation of geometric distribution. Variance and Standard Deviation. Variance: Examples

Expectation of geometric distribution. Variance and Standard Deviation. Variance: Examples Expectation of geometric distribution Variance and Standard Deviation What is the probability that X is finite? Can now compute E(X): Σ k=f X (k) = Σ k=( p) k p = pσ j=0( p) j = p ( p) = E(X) = Σ k=k (

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 CS 70 Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 Today we shall discuss a measure of how close a random variable tends to be to its expectation. But first we need to see how to compute

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33 BIO5312 Biostatistics Lecture 03: Discrete and Continuous Probability Distributions Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 9/13/2016 1/33 Introduction In this lecture,

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

Lecture 1: Basics of Probability

Lecture 1: Basics of Probability Lecture 1: Basics of Probability (Luise-Vitetta, Chapter 8) Why probability in data science? Data acquisition is noisy Sampling/quantization external factors: If you record your voice saying machine learning

More information

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) =

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) = 1. If X has density f(x) = { cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. 2. Let X have density f(x) = { xe x, 0 < x < 0, otherwise. (a) Find P (X > 2). (b) Find

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions.

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions. Lecture 11 Text: A Course in Probability by Weiss 5.3 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 11.1 Agenda 1 2 11.2 Bernoulli trials Many problems in

More information

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University

Lecture 14. Text: A Course in Probability by Weiss 5.6. STAT 225 Introduction to Probability Models February 23, Whitney Huang Purdue University Lecture 14 Text: A Course in Probability by Weiss 5.6 STAT 225 Introduction to Probability Models February 23, 2014 Whitney Huang Purdue University 14.1 Agenda 14.2 Review So far, we have covered Bernoulli

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2 Probability Density Functions and the Normal Distribution Quantitative Understanding in Biology, 1.2 1. Discrete Probability Distributions 1.1. The Binomial Distribution Question: You ve decided to flip

More information

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections

ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections ECO220Y Continuous Probability Distributions: Uniform and Triangle Readings: Chapter 9, sections 9.8-9.9 Fall 2011 Lecture 8 Part 1 (Fall 2011) Probability Distributions Lecture 8 Part 1 1 / 19 Probability

More information

3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability

3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability 3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability 3.1 Week 1 Review Creativity is more than just being different. Anybody can plan weird; that s easy. What s hard is to be

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 10: Expectation and Variance Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Expectations and moments

Expectations and moments slidenumbers,noslidenumbers debugmode,normalmode slidenumbers debugmode Expectations and moments Helle Bunzel Expectations and moments Helle Bunzel Expectations of Random Variables Denition The expected

More information

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution 1 ACM 116: Lecture 2 Agenda Independence Bayes rule Discrete random variables Bernoulli distribution Binomial distribution Continuous Random variables The Normal distribution Expected value of a random

More information

STAT 479: Short Term Actuarial Models

STAT 479: Short Term Actuarial Models STAT 479: Short Term Actuarial Models Jianxi Su, FSA, ACIA Purdue University, Department of Statistics Week 1. Some important things about this course you may want to know... The course covers a large

More information

TOPIC 12: RANDOM VARIABLES AND THEIR DISTRIBUTIONS

TOPIC 12: RANDOM VARIABLES AND THEIR DISTRIBUTIONS TOPIC : RANDOM VARIABLES AND THEIR DISTRIBUTIONS In the last section we compared the length of the longest run in the data for various players to our expectations for the longest run in data generated

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Chapter 8: An Introduction to Probability and Statistics

Chapter 8: An Introduction to Probability and Statistics Course S3, 200 07 Chapter 8: An Introduction to Probability and Statistics This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th edition) Chapter 24 (not including

More information

Lecture 4: Probability and Discrete Random Variables

Lecture 4: Probability and Discrete Random Variables Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 4: Probability and Discrete Random Variables Wednesday, January 21, 2009 Lecturer: Atri Rudra Scribe: Anonymous 1

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type

Chapter 2: Discrete Distributions. 2.1 Random Variables of the Discrete Type Chapter 2: Discrete Distributions 2.1 Random Variables of the Discrete Type 2.2 Mathematical Expectation 2.3 Special Mathematical Expectations 2.4 Binomial Distribution 2.5 Negative Binomial Distribution

More information

II. The Binomial Distribution

II. The Binomial Distribution 88 CHAPTER 4 PROBABILITY DISTRIBUTIONS 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKDSE Mathematics M1 II. The Binomial Distribution 1. Bernoulli distribution A Bernoulli eperiment results in any one of two possible

More information