Optimisation convexe: performance, complexité et applications.

Size: px
Start display at page:

Download "Optimisation convexe: performance, complexité et applications."

Transcription

1 Optimisation convexe: performance, complexité et applications. Introduction, convexité, dualité. A. d Aspremont. M2 OJME: Optimisation convexe. 1/128

2 Today Convex optimization: introduction Course organization and other gory details... Convex optimization: basic concepts A. d Aspremont. M2 OJME: Optimisation convexe. 2/128

3 Convex Optimization A. d Aspremont. M2 OJME: Optimisation convexe. 3/128

4 Convex optimization minimize f 0 (x) subject to f 1 (x) 0,..., f m (x) 0 x R n is optimization variable; f i : R n R are convex: f i (λx + (1 λ)y) λf i (x) + (1 λ)f i (y) for all x, y, 0 λ 1 This template includes LS, LP, QP, and many others. Good news: convex problems (LP, QP, etc) are fundamentally tractable. Bad news: this is an exception, most nonconvex are completely intractable. A. d Aspremont. M2 OJME: Optimisation convexe. 4/128

5 Convex optimization A brief history... The field is about 50 years old. Starts with the work of Von Neumann, Kuhn and Tucker, etc. Explodes in the 60 s with the advent of relatively cheap and efficient computers... Key to all this: fast linear algebra Some of the theory developed before computers even existed... A. d Aspremont. M2 OJME: Optimisation convexe. 5/128

6 Convex optimization: history Historical view: nonlinear problems are hard, linear ones are easy. In reality: Convexity = low complexity... In fact the great watershed in optimization isn t between linearity and nonlinearity, but convexity and nonconvexity. T. Rockafellar. True: Nemirovskii and Yudin [1979]. Very true: Karmarkar [1984]. Seriously true: convex programming, Nesterov and Nemirovskii [1994]. A. d Aspremont. M2 OJME: Optimisation convexe. 6/128

7 Convexity, complexity All convex minimization problems with: a first order oracle (returning f(x) and a subgradient) can be solved in polynomial time in size and number of precision digits. Proved using the ellipsoid method by Nemirovskii and Yudin [1979]. Very slow convergence in practice. A. d Aspremont. M2 OJME: Optimisation convexe. 7/128

8 Linear Programming Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very efficient in most cases. Khachiyan [1979] then used the ellipsoid method to show the polynomial complexity of LP. Karmarkar [1984] describes the first efficient polynomial time algorithm for LP, using interior point methods. A. d Aspremont. M2 OJME: Optimisation convexe. 8/128

9 From LP to structured convex programs Nesterov and Nemirovskii [1994] show that the interior point methods (IPM) used for LPs can be applied to a larger class of structured convex problems. The self-concordance analysis that they introduce extends the polynomial time complexity proof for LPs. Most operations that preserve convexity also preserve self-concordance. A. d Aspremont. M2 OJME: Optimisation convexe. 9/128

10 Large-scale convex programs Interior point methods. IPM essentially solved once and for all a broad range of medium-scale convex programs. For large-scale problems, computing a single Newton step is often too expensive First order methods. Dependence on precision is polynomial O(1/ɛ α ), not logarithmic O(log(1/ɛ)). This is OK in many applications (stats, etc). Run a much larger number of cheaper iterations. No Hessian means significantly lower memory and CPU costs per iteration. No unified analysis (self-concordance for IPM): large library of disparate methods. Algorithmic choices strictly constrained by problem structure. Objective: classify these techniques, study their performance & complexity. A. d Aspremont. M2 OJME: Optimisation convexe. 10/128

11 Symmetric cone programs An important particular case: linear programming on symmetric cones minimize subject to c T x Ax b K These include the LP, second-order (Lorentz) and semidefinite cone: LP: {x R n : x 0} Second order: {(x, y) R n R : x y} Semidefinite: {X S n : X 0} Broad class of problems can be represented in this way. Good news: Fast, reliable, open-source solvers available (SDPT3, CVX, etc). This course will describe some exotic applications of these programs. A. d Aspremont. M2 OJME: Optimisation convexe. 11/128

12 A few miracles Beyond convexity... Hidden convexity. Convex programs solving nonconvex problems (S-lemma). Approximation results. Approximating combinatorial problems by convex programs. Approximate S-lemma. Approximation ratio for MaxCut, etc. Recovery results on l 1 penalties. Finding sparse solutions to optimization problems using convex penalties. Sparse signal reconstruction. Matrix completion (collaborative filtering, NETFLIX, etc.). A. d Aspremont. M2 OJME: Optimisation convexe. 12/128

13 Course Organization A. d Aspremont. M2 OJME: Optimisation convexe. 13/128

14 Course outline Fundamental definitions A brief primer on convexity and duality theory Algorithmic complexity Interior point methods, self-concordance. First order algorithms: complexity and classification. Modern applications Statistics Geometrical problems, graphs. Some miracles : approximation, asymptotic and hidden convexity results Measure concentration results. S-lemma, MaxCut, low rank SDP solutions, nonconvex QCQP, etc. High dimensional geometry l 1 recovery, matrix completion, convex deconvolution, etc. A. d Aspremont. M2 OJME: Optimisation convexe. 14/128

15 Info Course website with lecture notes, homework, etc. A final project. A. d Aspremont. M2 OJME: Optimisation convexe. 15/128

16 Short blurb Contact info on Dual PhDs: Ecole Polytechnique & Stanford University Interests: Optimization, machine learning, statistics & finance. Recruiting PhD students... Full fellowship. A. d Aspremont. M2 OJME: Optimisation convexe. 16/128

17 References All lecture notes will be posted online, none of the books below are required. Nesterov [2003], Introductory Lectures on Convex Optimization, Springer. Convex Optimization by Lieven Vandenberghe and Stephen Boyd, available online at: See also Ben-Tal and Nemirovski [2001], Lectures On Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications, SIAM. Nesterov and Nemirovskii [1994], Interior Point Polynomial Algorithms in Convex Programming, SIAM. A. d Aspremont. M2 OJME: Optimisation convexe. 17/128

18 Convex Sets A. d Aspremont. M2 OJME: Optimisation convexe. 18/128

19 Convex Sets affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual cones and generalized inequalities A. d Aspremont. M2 OJME: Optimisation convexe. 19/128

20 Convex set line segment between x 1 and x 2 : all points with 0 θ 1 x = θx 1 + (1 θ)x 2 convex set: contains line segment between any two points in the set x 1, x 2 C, 0 θ 1 = θx 1 + (1 θ)x 2 C examples (one convex, two nonconvex sets) A. d Aspremont. M2 OJME: Optimisation convexe. 20/128

21 Convex combination and convex hull convex combination of x 1,..., x k : any point x of the form with θ θ k = 1, θ i 0 x = θ 1 x 1 + θ 2 x θ k x k convex hull CoS: set of all convex combinations of points in S A. d Aspremont. M2 OJME: Optimisation convexe. 21/128

22 Hyperplanes and halfspaces hyperplane: set of the form {x a T x = b} (a 0) a x 0 x a T x = b halfspace: set of the form {x a T x b} (a 0) a x 0 a T x b a T x b a is the normal vector hyperplanes are affine and convex; halfspaces are convex A. d Aspremont. M2 OJME: Optimisation convexe. 22/128

23 Euclidean balls and ellipsoids (Euclidean) ball with center x c and radius r: B(x c, r) = {x x x c 2 r} = {x c + ru u 2 1} Ellipsoid: set of the form {x (x x c ) T P 1 (x x c ) 1} with P S n ++ (i.e., P symmetric positive definite) x c other representation: {x c + Au u 2 1}, with A square and nonsingular. Representation impacts problem formulation & complexity. Idem for polytopes, with polynomial number of vertices, exponential number of facets, and vice-versa. A. d Aspremont. M2 OJME: Optimisation convexe. 23/128

24 Norm balls and norm cones norm: a function that satisfies x 0; x = 0 if and only if x = 0 tx = t x for t R x + y x + y notation: is general (unspecified) norm; symb is particular norm norm ball with center x c and radius r: {x x x c r} 1 norm cone: {(x, t) x t} t 0.5 Euclidean norm cone is called secondorder cone x x norm balls and cones are convex A. d Aspremont. M2 OJME: Optimisation convexe. 24/128

25 Polyhedra solution set of finitely many linear inequalities and equalities Ax b, Cx = d (A R m n, C R p n, is componentwise inequality) a 1 a2 a 5 P a 3 a 4 polyhedron is intersection of finite number of halfspaces and hyperplanes A. d Aspremont. M2 OJME: Optimisation convexe. 25/128

26 Positive semidefinite cone notation: S n is set of symmetric n n matrices S n + = {X S n X 0}: positive semidefinite n n matrices X S n + z T Xz 0 for all z S n + is a convex cone S n ++ = {X S n X 0}: positive definite n n matrices 1 example: [ x y y z ] S 2 + z y 1 0 x A. d Aspremont. M2 OJME: Optimisation convexe. 26/128

27 Operations that preserve convexity practical methods for establishing convexity of a set C 1. apply definition x 1, x 2 C, 0 θ 1 = θx 1 + (1 θ)x 2 C 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls,... ) by operations that preserve convexity intersection affine functions perspective function linear-fractional functions A. d Aspremont. M2 OJME: Optimisation convexe. 27/128

28 Intersection the intersection of (any number of) convex sets is convex example: S = {x R m p(t) 1 for t π/3} where p(t) = x 1 cos t + x 2 cos 2t + + x m cos mt for m = 2: 2 p(t) x2 1 0 S 1 0 π/3 2π/3 π t x 1 A. d Aspremont. M2 OJME: Optimisation convexe. 28/128

29 Affine function suppose f : R n R m is affine (f(x) = Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) = {f(x) x S} convex the inverse image f 1 (C) of a convex set under f is convex C R m convex = f 1 (C) = {x R n f(x) C} convex examples scaling, translation, projection solution set of linear matrix inequality {x x 1 A x m A m B} (with A i, B S p ) hyperbolic cone {x x T P x (c T x) 2, c T x 0} (with P S n +) A. d Aspremont. M2 OJME: Optimisation convexe. 29/128

30 Perspective and linear-fractional function perspective function P : R n+1 R n : P (x, t) = x/t, dom P = {(x, t) t > 0} images and inverse images of convex sets under perspective are convex linear-fractional function f : R n R m : f(x) = Ax + b c T x + d, dom f = {x ct x + d > 0} images and inverse images of convex sets under linear-fractional functions are convex A. d Aspremont. M2 OJME: Optimisation convexe. 30/128

31 Generalized inequalities a convex cone K R n is a proper cone if K is closed (contains its boundary) K is solid (has nonempty interior) K is pointed (contains no line) examples nonnegative orthant K = R n + = {x R n x i 0, i = 1,..., n} positive semidefinite cone K = S n + nonnegative polynomials on [0, 1]: K = {x R n x 1 + x 2 t + x 3 t x n t n 1 0 for t [0, 1]} A. d Aspremont. M2 OJME: Optimisation convexe. 31/128

32 generalized inequality defined by a proper cone K: x K y y x K, x K y y x int K examples componentwise inequality (K = R n +) x R n + y x i y i, i = 1,..., n matrix inequality (K = S n +) X S n + Y Y X positive semidefinite these two types are so common that we drop the subscript in K properties: many properties of K are similar to on R, e.g., x K y, u K v = x + u K y + v A. d Aspremont. M2 OJME: Optimisation convexe. 32/128

33 Separating hyperplane theorem if C and D are disjoint convex sets, then there exists a 0, b such that a T x b for x C, a T x b for x D a T x b a T x b D C a the hyperplane {x a T x = b} separates C and D Classical result. Proof relies on minimizing distance between set, and using the argmin to explicitly produce separating hyperplane. A. d Aspremont. M2 OJME: Optimisation convexe. 33/128

34 Supporting hyperplane theorem supporting hyperplane to set C at boundary point x 0 : {x a T x = a T x 0 } where a 0 and a T x a T x 0 for all x C a C x 0 supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C A. d Aspremont. M2 OJME: Optimisation convexe. 34/128

35 Dual cones and generalized inequalities dual cone of a cone K: examples K = {y y T x 0 for all x K} K = R n +: K = R n + K = S n +: K = S n + K = {(x, t) x 2 t}: K = {(x, t) x 2 t} K = {(x, t) x 1 t}: K = {(x, t) x t} first three examples are self-dual cones dual cones of proper cones are proper, hence define generalized inequalities: y K 0 y T x 0 for all x K 0 A. d Aspremont. M2 OJME: Optimisation convexe. 35/128

36 Convex Functions A. d Aspremont. M2 OJME: Optimisation convexe. 36/128

37 Outline basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions convexity with respect to generalized inequalities A. d Aspremont. M2 OJME: Optimisation convexe. 37/128

38 Definition f : R n R is convex if dom f is a convex set and for all x, y dom f, 0 θ 1 f(θx + (1 θ)y) θf(x) + (1 θ)f(y) (x,f(x)) (y,f(y)) f is concave if f is convex f is strictly convex if dom f is convex and for x, y dom f, x y, 0 < θ < 1 f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) A. d Aspremont. M2 OJME: Optimisation convexe. 38/128

39 Examples on R convex: affine: ax + b on R, for any a, b R exponential: e ax, for any a R powers: x α on R ++, for α 1 or α 0 powers of absolute value: x p on R, for p 1 negative entropy: x log x on R ++ concave: affine: ax + b on R, for any a, b R powers: x α on R ++, for 0 α 1 logarithm: log x on R ++ A. d Aspremont. M2 OJME: Optimisation convexe. 39/128

40 Examples on R n and R m n affine functions are convex and concave; all norms are convex examples on R n affine function f(x) = a T x + b norms: x p = ( n i=1 x i p ) 1/p for p 1; x = max k x k examples on R m n (m n matrices) affine function f(x) = Tr(A T X) + b = m i=1 n A ij X ij + b j=1 spectral (maximum singular value) norm f(x) = X 2 = σ max (X) = (λ max (X T X)) 1/2 A. d Aspremont. M2 OJME: Optimisation convexe. 40/128

41 Restriction of a convex function to a line f : R n R is convex if and only if the function g : R R, g(t) = f(x + tv), dom g = {t x + tv dom f} is convex (in t) for any x dom f, v R n can check convexity of f by checking convexity of functions of one variable example. f : S n R with f(x) = log det X, dom X = S n ++ g(t) = log det(x + tv ) = log det X + log det(i + tx 1/2 V X 1/2 ) = n log det X + log(1 + tλ i ) where λ i are the eigenvalues of X 1/2 V X 1/2 g is concave in t (for any choice of X 0, V ); hence f is concave i=1 A. d Aspremont. M2 OJME: Optimisation convexe. 41/128

42 Extended-value extension extended-value extension f of f is f(x) = f(x), x dom f, f(x) =, x dom f often simplifies notation; for example, the condition 0 θ 1 = f(θx + (1 θ)y) θ f(x) + (1 θ) f(y) (as an inequality in R { }), means the same as the two conditions dom f is convex for x, y dom f, 0 θ 1 = f(θx + (1 θ)y) θf(x) + (1 θ)f(y) A. d Aspremont. M2 OJME: Optimisation convexe. 42/128

43 First-order condition f is differentiable if dom f is open and the gradient exists at each x dom f f(x) = ( f(x) x 1, f(x),..., f(x) ) x 2 x n 1st-order condition: differentiable f with convex domain is convex iff f(y) f(x) + f(x) T (y x) for all x, y dom f f(y) f(x) + f(x) T (y x) (x,f(x)) first-order approximation of f is global underestimator A. d Aspremont. M2 OJME: Optimisation convexe. 43/128

44 Second-order conditions f is twice differentiable if dom f is open and the Hessian 2 f(x) S n, exists at each x dom f 2 f(x) ij = 2 f(x) x i x j, i, j = 1,..., n, 2nd-order conditions: for twice differentiable f with convex domain f is convex if and only if 2 f(x) 0 for all x dom f if 2 f(x) 0 for all x dom f, then f is strictly convex A. d Aspremont. M2 OJME: Optimisation convexe. 44/128

45 Examples quadratic function: f(x) = (1/2)x T P x + q T x + r (with P S n ) f(x) = P x + q, 2 f(x) = P convex if P 0 least-squares objective: f(x) = Ax b 2 2 f(x) = 2A T (Ax b), 2 f(x) = 2A T A convex (for any A) quadratic-over-linear: f(x, y) = x 2 /y 2 2 f(x, y) = 2 y 3 [ y x ] [ y x ] T 0 f(x,y) convex for y > 0 y 0 2 x A. d Aspremont. M2 OJME: Optimisation convexe. 45/128

46 log-sum-exp: f(x) = log n k=1 exp x k is convex 2 f(x) = 1 1 T z diag(z) 1 (1 T z) 2zzT (z k = exp x k ) to show 2 f(x) 0, we must verify that v T 2 f(x)v 0 for all v: v T 2 f(x)v = ( k z kv 2 k )( k z k) ( k v kz k ) 2 ( k z k) 2 0 since ( k v kz k ) 2 ( k z kv 2 k )( k z k) (from Cauchy-Schwarz inequality) geometric mean: f(x) = ( n k=1 x k) 1/n on R n ++ is concave (similar proof as for log-sum-exp) A. d Aspremont. M2 OJME: Optimisation convexe. 46/128

47 Epigraph and sublevel set α-sublevel set of f : R n R: C α = {x dom f f(x) α} sublevel sets of convex functions are convex (converse is false) epigraph of f : R n R: epi f = {(x, t) R n+1 x dom f, f(x) t} epif f f is convex if and only if epi f is a convex set A. d Aspremont. M2 OJME: Optimisation convexe. 47/128

48 Jensen s inequality basic inequality: if f is convex, then for 0 θ 1, f(θx + (1 θ)y) θf(x) + (1 θ)f(y) extension: if f is convex, then for any random variable z f(e z) E f(z) basic inequality is special case with discrete distribution Prob(z = x) = θ, Prob(z = y) = 1 θ A. d Aspremont. M2 OJME: Optimisation convexe. 48/128

49 Operations that preserve convexity practical methods for establishing convexity of a function 1. verify definition (often simplified by restricting to a line) 2. for twice differentiable functions, show 2 f(x) 0 3. show that f is obtained from simple convex functions by operations that preserve convexity nonnegative weighted sum composition with affine function pointwise maximum and supremum composition minimization perspective A. d Aspremont. M2 OJME: Optimisation convexe. 49/128

50 Positive weighted sum & composition with affine function nonnegative multiple: αf is convex if f is convex, α 0 sum: f 1 + f 2 convex if f 1, f 2 convex (extends to infinite sums, integrals) composition with affine function: f(ax + b) is convex if f is convex examples log barrier for linear inequalities f(x) = m log(b i a T i x), dom f = {x a T i x < b i, i = 1,..., m} i=1 (any) norm of affine function: f(x) = Ax + b A. d Aspremont. M2 OJME: Optimisation convexe. 50/128

51 Pointwise maximum if f 1,..., f m are convex, then f(x) = max{f 1 (x),..., f m (x)} is convex examples piecewise-linear function: f(x) = max i=1,...,m (a T i x + b i) is convex sum of r largest components of x R n : f(x) = x [1] + x [2] + + x [r] is convex (x [i] is ith largest component of x) proof: f(x) = max{x i1 + x i2 + + x ir 1 i 1 < i 2 < < i r n} A. d Aspremont. M2 OJME: Optimisation convexe. 51/128

52 Pointwise supremum if f(x, y) is convex in x for each y A, then is convex examples g(x) = sup f(x, y) y A support function of a set C: S C (x) = sup y C y T x is convex distance to farthest point in a set C: f(x) = sup x y y C maximum eigenvalue of symmetric matrix: for X S n, λ max (X) = sup y T Xy y 2 =1 A. d Aspremont. M2 OJME: Optimisation convexe. 52/128

53 Composition with scalar functions composition of g : R n R and h : R R: f(x) = h(g(x)) f is convex if g convex, h convex, h nondecreasing g concave, h convex, h nonincreasing proof (for n = 1, differentiable g, h) f (x) = h (g(x))g (x) 2 + h (g(x))g (x) note: monotonicity must hold for extended-value extension h examples exp g(x) is convex if g is convex 1/g(x) is convex if g is concave and positive A. d Aspremont. M2 OJME: Optimisation convexe. 53/128

54 Vector composition composition of g : R n R k and h : R k R: f(x) = h(g(x)) = h(g 1 (x), g 2 (x),..., g k (x)) f is convex if g i convex, h convex, h nondecreasing in each argument g i concave, h convex, h nonincreasing in each argument proof (for n = 1, differentiable g, h) f (x) = g (x) T 2 h(g(x))g (x) + h(g(x)) T g (x) examples m i=1 log g i(x) is concave if g i are concave and positive log m i=1 exp g i(x) is convex if g i are convex A. d Aspremont. M2 OJME: Optimisation convexe. 54/128

55 Minimization if f(x, y) is convex in (x, y) and C is a convex set, then is convex examples g(x) = inf f(x, y) y C f(x, y) = x T Ax + 2x T By + y T Cy with [ A B B T C ] 0, C 0 minimizing over y gives g(x) = inf y f(x, y) = x T (A BC 1 B T )x g is convex, hence Schur complement A BC 1 B T 0 distance to a set: dist(x, S) = inf y S x y is convex if S is convex A. d Aspremont. M2 OJME: Optimisation convexe. 55/128

56 The conjugate function the conjugate of a function f is f (y) = sup (y T x f(x)) x dom f f(x) xy x (0, f (y)) f is convex (even if f is not) Used in regularization, duality results,... A. d Aspremont. M2 OJME: Optimisation convexe. 56/128

57 examples negative logarithm f(x) = log x f (y) = sup(xy + log x) = x>0 { 1 log( y) y < 0 otherwise strictly convex quadratic f(x) = (1/2)x T Qx with Q S n ++ f (y) = sup(y x (1/2)x T Qx) x = 1 2 yt Q 1 y A. d Aspremont. M2 OJME: Optimisation convexe. 57/128

58 Quasiconvex functions f : R n R is quasiconvex if dom f is convex and the sublevel sets are convex for all α S α = {x dom f f(x) α} β α a b c f is quasiconcave if f is quasiconvex f is quasilinear if it is quasiconvex and quasiconcave A. d Aspremont. M2 OJME: Optimisation convexe. 58/128

59 Examples x is quasiconvex on R ceil(x) = inf{z Z z x} is quasilinear log x is quasilinear on R ++ f(x 1, x 2 ) = x 1 x 2 is quasiconcave on R 2 ++ linear-fractional function f(x) = at x + b c T x + d, dom f = {x ct x + d > 0} is quasilinear distance ratio is quasiconvex f(x) = x a 2 x b 2, dom f = {x x a 2 x b 2 } A. d Aspremont. M2 OJME: Optimisation convexe. 59/128

60 Properties modified Jensen inequality: for quasiconvex f 0 θ 1 = f(θx + (1 θ)y) max{f(x), f(y)} first-order condition: differentiable f with cvx domain is quasiconvex iff f(y) f(x) = f(x) T (y x) 0 x f(x) sums of quasiconvex functions are not necessarily quasiconvex A. d Aspremont. M2 OJME: Optimisation convexe. 60/128

61 Log-concave and log-convex functions a positive function f is log-concave if log f is concave: f(θx + (1 θ)y) f(x) θ f(y) 1 θ for 0 θ 1 f is log-convex if log f is convex powers: x a on R ++ is log-convex for a 0, log-concave for a 0 many common probability densities are log-concave, e.g., normal: f(x) = 1 (2π)n det Σ e 1 2 (x x)t Σ 1 (x x) cumulative Gaussian distribution function Φ is log-concave Φ(x) = 1 2π x e u2 /2 du A. d Aspremont. M2 OJME: Optimisation convexe. 61/128

62 Properties of log-concave functions twice differentiable f with convex domain is log-concave if and only if f(x) 2 f(x) f(x) f(x) T for all x dom f product of log-concave functions is log-concave sum of log-concave functions is not always log-concave integration: if f : R n R m R is log-concave, then g(x) = f(x, y) dy is log-concave (not easy to show) A. d Aspremont. M2 OJME: Optimisation convexe. 62/128

63 consequences of integration property convolution f g of log-concave functions f, g is log-concave (f g)(x) = f(x y)g(y)dy if C R n convex and y is a random variable with log-concave pdf then f(x) = Prob(x + y C) is log-concave proof: write f(x) as integral of product of log-concave functions f(x) = g(x + y)p(y) dy, g(u) = { 1 u C 0 u C, p is pdf of y A. d Aspremont. M2 OJME: Optimisation convexe. 63/128

64 Convex Optimization Problems A. d Aspremont. M2 OJME: Optimisation convexe. 64/128

65 Outline optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization geometric programming generalized inequality constraints semidefinite programming vector optimization A. d Aspremont. M2 OJME: Optimisation convexe. 65/128

66 Optimization problem in standard form minimize f 0 (x) subject to f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p x R n is the optimization variable f 0 : R n R is the objective or cost function f i : R n R, i = 1,..., m, are the inequality constraint functions h i : R n R are the equality constraint functions optimal value: p = inf{f 0 (x) f i (x) 0, i = 1,..., m, h i (x) = 0, i = 1,..., p} p = if problem is infeasible (no x satisfies the constraints) p = if problem is unbounded below A. d Aspremont. M2 OJME: Optimisation convexe. 66/128

67 Optimal and locally optimal points x is feasible if x dom f 0 and it satisfies the constraints a feasible x is optimal if f 0 (x) = p ; X opt is the set of optimal points x is locally optimal if there is an R > 0 such that x is optimal for minimize (over z) f 0 (z) subject to f i (z) 0, i = 1,..., m, h i (z) = 0, i = 1,..., p z x 2 R examples (with n = 1, m = p = 0) f 0 (x) = 1/x, dom f 0 = R ++ : p = 0, no optimal point f 0 (x) = log x, dom f 0 = R ++ : p = f 0 (x) = x log x, dom f 0 = R ++ : p = 1/e, x = 1/e is optimal f 0 (x) = x 3 3x, p =, local optimum at x = 1 A. d Aspremont. M2 OJME: Optimisation convexe. 67/128

68 Implicit constraints the standard form optimization problem has an implicit constraint x D = m i=0 dom f i p i=1 dom h i, we call D the domain of the problem the constraints f i (x) 0, h i (x) = 0 are the explicit constraints a problem is unconstrained if it has no explicit constraints (m = p = 0) example: minimize f 0 (x) = k i=1 log(b i a T i x) is an unconstrained problem with implicit constraints a T i x < b i A. d Aspremont. M2 OJME: Optimisation convexe. 68/128

69 Feasibility problem find x subject to f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p can be considered a special case of the general problem with f 0 (x) = 0: minimize 0 subject to f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p p = 0 if constraints are feasible; any feasible x is optimal p = if constraints are infeasible A. d Aspremont. M2 OJME: Optimisation convexe. 69/128

70 Convex optimization problem standard form convex optimization problem minimize f 0 (x) subject to f i (x) 0, i = 1,..., m a T i x = b i, i = 1,..., p f 0, f 1,..., f m are convex; equality constraints are affine problem is quasiconvex if f 0 is quasiconvex (and f 1,..., f m convex) often written as minimize f 0 (x) subject to f i (x) 0, i = 1,..., m Ax = b important property: feasible set of a convex optimization problem is convex A. d Aspremont. M2 OJME: Optimisation convexe. 70/128

71 example minimize f 0 (x) = x x 2 2 subject to f 1 (x) = x 1 /(1 + x 2 2) 0 h 1 (x) = (x 1 + x 2 ) 2 = 0 f 0 is convex; feasible set {(x 1, x 2 ) x 1 = x 2 0} is convex not a convex problem (according to our definition): f 1 is not convex, h 1 is not affine equivalent (but not identical) to the convex problem minimize x x 2 2 subject to x 1 0 x 1 + x 2 = 0 A. d Aspremont. M2 OJME: Optimisation convexe. 71/128

72 Local and global optima any locally optimal point of a convex problem is (globally) optimal Proof: suppose x is locally optimal and y is optimal with f 0 (y) < f 0 (x) x locally optimal means there is an R > 0 such that z feasible, z x 2 R = f 0 (z) f 0 (x) consider z = θy + (1 θ)x with θ = R/(2 y x 2 ) y x 2 > R, so 0 < θ < 1/2 z is a convex combination of two feasible points, hence also feasible z x 2 = R/2 and f 0 (z) θf 0 (x) + (1 θ)f 0 (y) < f 0 (x) which contradicts our assumption that x is locally optimal A. d Aspremont. M2 OJME: Optimisation convexe. 72/128

73 Optimality criterion for differentiable f 0 x is optimal if and only if it is feasible and f 0 (x) T (y x) 0 for all feasible y X x f 0 (x) if nonzero, f 0 (x) defines a supporting hyperplane to feasible set X at x A. d Aspremont. M2 OJME: Optimisation convexe. 73/128

74 unconstrained problem: x is optimal if and only if x dom f 0, f 0 (x) = 0 equality constrained problem minimize f 0 (x) subject to Ax = b x is optimal if and only if there exists a ν such that x dom f 0, Ax = b, f 0 (x) + A T ν = 0 minimization over nonnegative orthant x is optimal if and only if minimize f 0 (x) subject to x 0 x dom f 0, x 0, { f0 (x) i 0 x i = 0 f 0 (x) i = 0 x i > 0 A. d Aspremont. M2 OJME: Optimisation convexe. 74/128

75 Equivalent convex problems two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa some common transformations that preserve convexity: eliminating equality constraints minimize f 0 (x) subject to f i (x) 0, i = 1,..., m Ax = b is equivalent to minimize (over z) f 0 (F z + x 0 ) subject to f i (F z + x 0 ) 0, i = 1,..., m where F and x 0 are such that Ax = b x = F z + x 0 for some z A. d Aspremont. M2 OJME: Optimisation convexe. 75/128

76 introducing equality constraints minimize f 0 (A 0 x + b 0 ) subject to f i (A i x + b i ) 0, i = 1,..., m is equivalent to minimize (over x, y i ) f 0 (y 0 ) subject to f i (y i ) 0, i = 1,..., m y i = A i x + b i, i = 0, 1,..., m introducing slack variables for linear inequalities minimize f 0 (x) subject to a T i x b i, i = 1,..., m is equivalent to minimize (over x, s) f 0 (x) subject to a T i x + s i = b i, i = 1,..., m s i 0, i = 1,... m A. d Aspremont. M2 OJME: Optimisation convexe. 76/128

77 epigraph form: standard form convex problem is equivalent to minimize (over x, t) t subject to f 0 (x) t 0 f i (x) 0, i = 1,..., m Ax = b minimizing over some variables minimize f 0 (x 1, x 2 ) subject to f i (x 1 ) 0, i = 1,..., m is equivalent to minimize f0 (x 1 ) subject to f i (x 1 ) 0, i = 1,..., m where f 0 (x 1 ) = inf x2 f 0 (x 1, x 2 ) A. d Aspremont. M2 OJME: Optimisation convexe. 77/128

78 Quasiconvex optimization minimize f 0 (x) subject to f i (x) 0, i = 1,..., m Ax = b with f 0 : R n R quasiconvex, f 1,..., f m convex can have locally optimal points that are not (globally) optimal (x,f 0 (x)) A. d Aspremont. M2 OJME: Optimisation convexe. 78/128

79 quasiconvex optimization via convex feasibility problems f 0 (x) t, f i (x) 0, i = 1,..., m, Ax = b (1) for fixed t, a convex feasibility problem in x if feasible, we can conclude that t p ; if infeasible, t p Bisection method for quasiconvex optimization given l p, u p, tolerance ɛ > 0. repeat 1. t := (l + u)/2. 2. Solve the convex feasibility problem (1). 3. if (1) is feasible, u := t; else l := t. until u l ɛ. requires exactly log 2 ((u l)/ɛ) iterations (where u, l are initial values) A. d Aspremont. M2 OJME: Optimisation convexe. 79/128

80 Linear program (LP) minimize subject to c T x + d Gx h Ax = b convex problem with affine objective and constraint functions feasible set is a polyhedron c P x A. d Aspremont. M2 OJME: Optimisation convexe. 80/128

81 Chebyshev center of a polyhedron Chebyshev center of P = {x a T i x b i, i = 1,..., m} is center of largest inscribed ball x cheb B = {x c + u u 2 r} a T i x b i for all x B if and only if sup{a T i (x c + u) u 2 r} = a T i x c + r a i 2 b i hence, x c, r can be determined by solving the LP maximize r subject to a T i x c + r a i 2 b i, i = 1,..., m A. d Aspremont. M2 OJME: Optimisation convexe. 81/128

82 (Generalized) linear-fractional program minimize subject to f 0 (x) Gx h Ax = b linear-fractional program f 0 (x) = ct x + d e T x + f, dom f 0(x) = {x e T x + f > 0} a quasiconvex optimization problem; can be solved by bisection also equivalent to the LP (variables y, z) minimize subject to c T y + dz Gy hz Ay = bz e T y + fz = 1 z 0 A. d Aspremont. M2 OJME: Optimisation convexe. 82/128

83 Quadratic program (QP) minimize subject to (1/2)x T P x + q T x + r Gx h Ax = b P S n +, so objective is convex quadratic minimize a convex quadratic function over a polyhedron f 0 (x ) x P A. d Aspremont. M2 OJME: Optimisation convexe. 83/128

84 Examples least-squares minimize Ax b 2 2 analytical solution x = A b (A is pseudo-inverse) can add linear constraints, e.g., l x u linear program with random cost minimize c T x + γx T Σx = E c T x + γ var(c T x) subject to Gx h, Ax = b c is random vector with mean c and covariance Σ hence, c T x is random variable with mean c T x and variance x T Σx γ > 0 is risk aversion parameter; controls the trade-off between expected cost and variance (risk) A. d Aspremont. M2 OJME: Optimisation convexe. 84/128

85 Quadratically constrained quadratic program (QCQP) minimize (1/2)x T P 0 x + q0 T x + r 0 subject to (1/2)x T P i x + qi T x + r i 0, i = 1,..., m Ax = b P i S n +; objective and constraints are convex quadratic if P 1,..., P m S n ++, feasible region is intersection of m ellipsoids and an affine set A. d Aspremont. M2 OJME: Optimisation convexe. 85/128

86 Second-order cone programming (A i R n i n, F R p n ) minimize f T x subject to A i x + b i 2 c T i x + d i, i = 1,..., m F x = g inequalities are called second-order cone (SOC) constraints: (A i x + b i, c T i x + d i ) second-order cone in R n i+1 for n i = 0, reduces to an LP; if c i = 0, reduces to a QCQP more general than QCQP and LP A. d Aspremont. M2 OJME: Optimisation convexe. 86/128

87 Robust linear programming the parameters in optimization problems are often uncertain, e.g., in an LP minimize c T x subject to a T i x b i, i = 1,..., m, there can be uncertainty in c, a i, b i two common approaches to handling uncertainty (in a i, for simplicity) deterministic model: constraints must hold for all a i E i minimize c T x subject to a T i x b i for all a i E i, i = 1,..., m, stochastic model: a i is random variable; constraints must hold with probability η minimize c T x subject to Prob(a T i x b i) η, i = 1,..., m A. d Aspremont. M2 OJME: Optimisation convexe. 87/128

88 deterministic approach via SOCP choose an ellipsoid as E i : E i = {ā i + P i u u 2 1} (ā i R n, P i R n n ) center is ā i, semi-axes determined by singular values/vectors of P i robust LP minimize c T x subject to a T i x b i a i E i, i = 1,..., m is equivalent to the SOCP minimize c T x subject to ā T i x + P i T x 2 b i, i = 1,..., m (follows from sup u 2 1(ā i + P i u) T x = ā T i x + P i T x 2) A. d Aspremont. M2 OJME: Optimisation convexe. 88/128

89 stochastic approach via SOCP assume a i is Gaussian with mean ā i, covariance Σ i (a i N (ā i, Σ i )) a T i x is Gaussian r.v. with mean āt i x, variance xt Σ i x; hence ( ) Prob(a T b i ā T i i x b i ) = Φ x Σ 1/2 i x 2 where Φ(x) = (1/ 2π) x e t2 /2 dt is CDF of N (0, 1) robust LP minimize c T x subject to Prob(a T i x b i) η, i = 1,..., m, with η 1/2, is equivalent to the SOCP minimize c T x subject to ā T i x + Φ 1 (η) Σ 1/2 i x 2 b i, i = 1,..., m A. d Aspremont. M2 OJME: Optimisation convexe. 89/128

90 Impact of reliability {x Prob(a T i x b i ) η, i = 1,..., m} η = 10% η = 50% η = 90% A. d Aspremont. M2 OJME: Optimisation convexe. 90/128

91 Generalized inequality constraints convex problem with generalized inequality constraints minimize f 0 (x) subject to f i (x) Ki 0, i = 1,..., m Ax = b f 0 : R n R convex; f i : R n R k i K i -convex w.r.t. proper cone K i same properties as standard convex problem (convex feasible set, local optimum is global, etc.) conic form problem: special case with affine objective and constraints minimize c T x subject to F x + g K 0 Ax = b extends linear programming (K = R m +) to nonpolyhedral cones A. d Aspremont. M2 OJME: Optimisation convexe. 91/128

92 Semidefinite program (SDP) with F i, G S k minimize c T x subject to x 1 F 1 + x 2 F x n F n + G 0 Ax = b inequality constraint is called linear matrix inequality (LMI) includes problems with multiple LMI constraints: for example, x 1 ˆF1 + + x n ˆFn + Ĝ 0, x 1 F x n Fn + G 0 is equivalent to single LMI x 1 [ ˆF1 0 0 F1 ] + x 2 [ ˆF2 0 0 F2 ] + + x n [ ˆFn 0 0 Fn ] + [ Ĝ 0 0 G ] 0 A. d Aspremont. M2 OJME: Optimisation convexe. 92/128

93 LP and SOCP as SDP LP and equivalent SDP LP: minimize c T x subject to Ax b SDP: minimize c T x subject to diag(ax b) 0 (note different interpretation of generalized inequality ) SOCP and equivalent SDP SOCP: minimize f T x subject to A i x + b i 2 c T i x + d i, i = 1,..., m SDP: minimize f [ T x (c T subject to i x + d i )I A i x + b i (A i x + b i ) T c T i x + d i ] 0, i = 1,..., m A. d Aspremont. M2 OJME: Optimisation convexe. 93/128

94 Eigenvalue minimization minimize λ max (A(x)) where A(x) = A 0 + x 1 A x n A n (with given A i S k ) equivalent SDP minimize subject to t A(x) ti variables x R n, t R follows from λ max (A) t A ti A. d Aspremont. M2 OJME: Optimisation convexe. 94/128

95 Matrix norm minimization minimize A(x) 2 = ( λ max (A(x) T A(x)) ) 1/2 where A(x) = A 0 + x 1 A x n A n (with given A i S p q ) equivalent SDP minimize subject to t[ ti A(x) T A(x) ti ] 0 variables x R n, t R constraint follows from A 2 t A T A t 2 I, t 0 [ ] ti A A T 0 ti A. d Aspremont. M2 OJME: Optimisation convexe. 95/128

96 Duality A. d Aspremont. M2 OJME: Optimisation convexe. 96/128

97 Outline Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis examples generalized inequalities A. d Aspremont. M2 OJME: Optimisation convexe. 97/128

98 Lagrangian standard form problem (not necessarily convex) minimize f 0 (x) subject to f i (x) 0, i = 1,..., m h i (x) = 0, i = 1,..., p variable x R n, domain D, optimal value p Lagrangian: L : R n R m R p R, with dom L = D R m R p, L(x, λ, ν) = f 0 (x) + m λ i f i (x) + i=1 p ν i h i (x) i=1 weighted sum of objective and constraint functions λ i is Lagrange multiplier associated with f i (x) 0 ν i is Lagrange multiplier associated with h i (x) = 0 A. d Aspremont. M2 OJME: Optimisation convexe. 98/128

99 Lagrange dual function Lagrange dual function: g : R m R p R, g(λ, ν) = inf x D = inf x D L(x, λ, ν) ( f 0 (x) + g is concave, can be for some λ, ν m λ i f i (x) + i=1 ) p ν i h i (x) i=1 lower bound property: if λ 0, then g(λ, ν) p proof: if x is feasible and λ 0, then f 0 ( x) L( x, λ, ν) inf L(x, λ, ν) = g(λ, ν) x D minimizing over all feasible x gives p g(λ, ν) A. d Aspremont. M2 OJME: Optimisation convexe. 99/128

100 Least-norm solution of linear equations minimize x T x subject to Ax = b dual function Lagrangian is L(x, ν) = x T x + ν T (Ax b) to minimize L over x, set gradient equal to zero: x L(x, ν) = 2x + A T ν = 0 = x = (1/2)A T ν plug in in L to obtain g: a concave function of ν g(ν) = L(( 1/2)A T ν, ν) = 1 4 νt AA T ν b T ν lower bound property: p (1/4)ν T AA T ν b T ν for all ν A. d Aspremont. M2 OJME: Optimisation convexe. 100/128

101 Standard form LP minimize c T x subject to Ax = b, x 0 dual function Lagrangian is L(x, λ, ν) = c T x + ν T (Ax b) λ T x = b T ν + (c + A T ν λ) T x L is linear in x, hence g(λ, ν) = inf x L(x, λ, ν) = { b T ν A T ν λ + c = 0 otherwise g is linear on affine domain {(λ, ν) A T ν λ + c = 0}, hence concave lower bound property: p b T ν if A T ν + c 0 A. d Aspremont. M2 OJME: Optimisation convexe. 101/128

102 Equality constrained norm minimization dual function minimize subject to g(ν) = inf x ( x νt Ax + b T ν) = x Ax = b where v = sup u 1 u T v is dual norm of { b T ν A T ν 1 otherwise proof: follows from inf x ( x y T x) = 0 if y 1, otherwise if y 1, then x y T x 0 for all x, with equality if x = 0 if y > 1, choose x = tu where u 1, u T y = y > 1: x y T x = t( u y ) as t lower bound property: p b T ν if A T ν 1 A. d Aspremont. M2 OJME: Optimisation convexe. 102/128

103 Two-way partitioning minimize x T W x subject to x 2 i = 1, i = 1,..., n a nonconvex problem; feasible set contains 2 n discrete points interpretation: partition {1,..., n} in two sets; W ij is cost of assigning i, j to the same set; W ij is cost of assigning to different sets dual function g(ν) = inf x (xt W x + i ν i (x 2 i 1)) = inf x xt (W + diag(ν))x 1 T ν { 1 = T ν W + diag(ν) 0 otherwise lower bound property: p 1 T ν if W + diag(ν) 0 example: ν = λ min (W )1 gives bound p nλ min (W ) A. d Aspremont. M2 OJME: Optimisation convexe. 103/128

104 The dual problem Lagrange dual problem maximize g(λ, ν) subject to λ 0 finds best lower bound on p, obtained from Lagrange dual function a convex optimization problem; optimal value denoted d λ, ν are dual feasible if λ 0, (λ, ν) dom g often simplified by making implicit constraint (λ, ν) dom g explicit example: standard form LP and its dual (page 101) minimize subject to c T x Ax = b x 0 maximize b T ν subject to A T ν + c 0 A. d Aspremont. M2 OJME: Optimisation convexe. 104/128

105 Weak and strong duality weak duality: d p always holds (for convex and nonconvex problems) can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP maximize 1 T ν subject to W + diag(ν) 0 gives a lower bound for the two-way partitioning problem on page 103 strong duality: d = p does not hold in general (usually) holds for convex problems conditions that guarantee strong duality in convex problems are called constraint qualifications A. d Aspremont. M2 OJME: Optimisation convexe. 105/128

106 Slater s constraint qualification strong duality holds for a convex problem if it is strictly feasible, i.e., minimize f 0 (x) subject to f i (x) 0, i = 1,..., m Ax = b x int D : f i (x) < 0, i = 1,..., m, Ax = b also guarantees that the dual optimum is attained (if p > ) can be sharpened: e.g., can replace int D with relint D (interior relative to affine hull); linear inequalities do not need to hold with strict inequality,... there exist many other types of constraint qualifications A. d Aspremont. M2 OJME: Optimisation convexe. 106/128

107 Feasibility problems feasibility problem A in x R n. f i (x) < 0, i = 1,..., m, h i (x) = 0, i = 1,..., p feasibility problem B in λ R m, ν R p. λ 0, λ 0, g(λ, ν) 0 where g(λ, ν) = inf x ( m i=1 λ if i (x) + p i=1 ν ih i (x)) feasibility problem B is convex (g is concave), even if problem A is not A and B are always weak alternatives: at most one is feasible proof: assume x satisfies A, λ, ν satisfy B 0 g(λ, ν) m i=1 λ if i ( x) + p i=1 ν ih i ( x) < 0 A and B are strong alternatives if exactly one of the two is feasible (can prove infeasibility of A by producing solution of B and vice-versa). A. d Aspremont. M2 OJME: Optimisation convexe. 107/128

108 Inequality form LP primal problem minimize subject to c T x Ax b dual function g(λ) = inf x ( (c + A T λ) T x b T λ ) { b = T λ A T λ + c = 0 otherwise dual problem maximize b T λ subject to A T λ + c = 0, λ 0 from Slater s condition: p = d if A x b for some x in fact, p = d except when primal and dual are infeasible A. d Aspremont. M2 OJME: Optimisation convexe. 108/128

109 Quadratic program primal problem (assume P S n ++) minimize subject to x T P x Ax b dual function g(λ) = inf x ( x T P x + λ T (Ax b) ) = 1 4 λt AP 1 A T λ b T λ dual problem maximize (1/4)λ T AP 1 A T λ b T λ subject to λ 0 from Slater s condition: p = d if A x b for some x in fact, p = d always A. d Aspremont. M2 OJME: Optimisation convexe. 109/128

110 A nonconvex problem with strong duality minimize x T Ax + 2b T x subject to x T x 1 nonconvex if A 0 dual function: g(λ) = inf x (x T (A + λi)x + 2b T x λ) unbounded below if A + λi 0 or if A + λi 0 and b R(A + λi) minimized by x = (A + λi) b otherwise: g(λ) = b T (A + λi) b λ dual problem and equivalent SDP: maximize b T (A + λi) b λ subject to A + λi 0 b R(A + λi) maximize subject to t [ λ A + λi b b T t ] 0 strong duality although primal problem is not convex (more later) A. d Aspremont. M2 OJME: Optimisation convexe. 110/128

111 Complementary slackness Assume strong duality holds, x is primal optimal, (λ, ν ) is dual optimal f 0 (x ) = g(λ, ν ) = inf x ( f 0 (x ) + f 0 (x ) f 0 (x) + m λ i f i (x) + i=1 m λ i f i (x ) + i=1 ) p νi h i (x) i=1 p νi h i (x ) i=1 hence, the two inequalities hold with equality x minimizes L(x, λ, ν ) λ i f i(x ) = 0 for i = 1,..., m (known as complementary slackness): λ i > 0 = f i (x ) = 0, f i (x ) < 0 = λ i = 0 A. d Aspremont. M2 OJME: Optimisation convexe. 111/128

112 Karush-Kuhn-Tucker (KKT) conditions the following four conditions are called KKT conditions (for a problem with differentiable f i, h i ): 1. Primal feasibility: f i (x) 0, i = 1,..., m, h i (x) = 0, i = 1,..., p 2. Dual feasibility: λ 0 3. Complementary slackness: λ i f i (x) = 0, i = 1,..., m 4. Gradient of Lagrangian with respect to x vanishes (first order condition): f 0 (x) + m λ i f i (x) + i=1 p ν i h i (x) = 0 i=1 If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions A. d Aspremont. M2 OJME: Optimisation convexe. 112/128

113 KKT conditions for convex problem If x, λ, ν satisfy KKT for a convex problem, then they are optimal: from complementary slackness: f 0 ( x) = L( x, λ, ν) from 4th condition (and convexity): g( λ, ν) = L( x, λ, ν) hence, f 0 ( x) = g( λ, ν) If Slater s condition is satisfied, x is optimal if and only if there exist λ, ν that satisfy KKT conditions recall that Slater implies strong duality, and dual optimum is attained generalizes optimality condition f 0 (x) = 0 for unconstrained problem Summary: When strong duality holds, the KKT conditions are necessary conditions for optimality If the problem is convex, they are also sufficient A. d Aspremont. M2 OJME: Optimisation convexe. 113/128

114 example: water-filling (assume α i > 0) minimize n i=1 log(x i + α i ) subject to x 0, 1 T x = 1 x is optimal iff x 0, 1 T x = 1, and there exist λ R n, ν R such that λ 0, λ i x i = 0, 1 x i + α i + λ i = ν if ν < 1/α i : λ i = 0 and x i = 1/ν α i if ν 1/α i : λ i = ν 1/α i and x i = 0 determine ν from 1 T x = n i=1 max{0, 1/ν α i} = 1 interpretation n patches; level of patch i is at height α i flood area with unit amount of water 1/ν x i α i resulting level is 1/ν i A. d Aspremont. M2 OJME: Optimisation convexe. 114/128

115 Duality and problem reformulations equivalent formulations of a problem can lead to very different duals reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting common reformulations introduce new variables and equality constraints make explicit constraints implicit or vice-versa transform objective or constraint functions e.g., replace f 0 (x) by φ(f 0 (x)) with φ convex, increasing A. d Aspremont. M2 OJME: Optimisation convexe. 115/128

116 Introducing new variables and equality constraints minimize f 0 (Ax + b) dual function is constant: g = inf x L(x) = inf x f 0 (Ax + b) = p we have strong duality, but dual is quite useless reformulated problem and its dual minimize f 0 (y) subject to Ax + b y = 0 maximize b T ν f0 (ν) subject to A T ν = 0 dual function follows from g(ν) = inf (f 0(y) ν T y + ν T Ax + b T ν) x,y { f = 0 (ν) + b T ν A T ν = 0 otherwise A. d Aspremont. M2 OJME: Optimisation convexe. 116/128

117 norm approximation problem: minimize Ax b minimize subject to y y = Ax b can look up conjugate of, or derive dual directly g(ν) = inf x,y νt y ν T Ax + b T ν) { b = ν + inf y ( y + ν T y) A T ν = 0 otherwise { b = ν A T ν = 0, ν 1 otherwise (see page 100) dual of norm approximation problem maximize b T ν subject to A T ν = 0, ν 1 A. d Aspremont. M2 OJME: Optimisation convexe. 117/128

118 Implicit constraints LP with box constraints: primal and dual problem minimize subject to c T x Ax = b 1 x 1 maximize b T ν 1 T λ 1 1 T λ 2 subject to c + A T ν + λ 1 λ 2 = 0 λ 1 0, λ 2 0 reformulation with box constraints made implicit minimize f 0 (x) = subject to Ax = b { c T x 1 x 1 otherwise dual function g(ν) = inf 1 x 1 (ct x + ν T (Ax b)) = b T ν A T ν + c 1 dual problem: maximize b T ν A T ν + c 1 A. d Aspremont. M2 OJME: Optimisation convexe. 118/128

119 Problems with generalized inequalities Ki is generalized inequality on R k i definitions are parallel to scalar case: minimize f 0 (x) subject to f i (x) Ki 0, i = 1,..., m h i (x) = 0, i = 1,..., p Lagrange multiplier for f i (x) Ki 0 is vector λ i R k i Lagrangian L : R n R k 1 R k m R p R, is defined as L(x, λ 1,, λ m, ν) = f 0 (x) + m λ T i f i (x) + i=1 p ν i h i (x) i=1 dual function g : R k 1 R k m R p R, is defined as g(λ 1,..., λ m, ν) = inf x D L(x, λ 1,, λ m, ν) A. d Aspremont. M2 OJME: Optimisation convexe. 119/128

120 lower bound property: if λ i K i 0, then g(λ 1,..., λ m, ν) p proof: if x is feasible and λ K i 0, then f 0 ( x) f 0 ( x) + m λ T i f i ( x) + i=1 inf L(x, λ 1,..., λ m, ν) x D = g(λ 1,..., λ m, ν) p ν i h i ( x) i=1 minimizing over all feasible x gives p g(λ 1,..., λ m, ν) dual problem maximize g(λ 1,..., λ m, ν) subject to λ i K i 0, i = 1,..., m weak duality: p d always strong duality: p = d for convex problem with constraint qualification (for example, Slater s: primal problem is strictly feasible) A. d Aspremont. M2 OJME: Optimisation convexe. 120/128

121 Semidefinite program primal SDP (F i, G S k ) minimize subject to c T x x 1 F x n F n G Lagrange multiplier is matrix Z S k Lagrangian L(x, Z) = c T x + Tr (Z(x 1 F x n F n G)) dual function g(z) = inf x L(x, Z) = { Tr(GZ) Tr(Fi Z) + c i = 0, i = 1,..., n otherwise dual SDP maximize Tr(GZ) subject to Z 0, Tr(F i Z) + c i = 0, i = 1,..., n p = d if primal SDP is strictly feasible ( x with x 1 F x n F n G) A. d Aspremont. M2 OJME: Optimisation convexe. 121/128

122 Duality: SOCP example Let s consider the following Second Order Cone Program (SOCP): minimize f T x subject to A i x + b i 2 c T i x + d i, i = 1,..., m, with variable x R n. Let s show that the dual can be expressed as maximize subject to m i=1 (bt i u i + d i v i ) m i=1 (AT i u i + c i v i ) + f = 0 u i 2 v i, i = 1,..., m, with variables u i R n i, v i R, i = 1,..., m and problem data given by f R n, A i R n i n, b i R n i, c i R and d i R. A. d Aspremont. M2 OJME: Optimisation convexe. 122/128

123 Duality: SOCP We can derive the dual in the following two ways: 1. Introduce new variables y i R n i and t i R and equalities y i = A i x + b i, t i = c T i x + d i, and derive the Lagrange dual. 2. Start from the conic formulation of the SOCP and use the conic dual. Use the fact that the second-order cone is self-dual: t x tv + x T y 0, for all v, y such that v y The condition x T y tv is a simple Cauchy-Schwarz inequality A. d Aspremont. M2 OJME: Optimisation convexe. 123/128

124 Duality: SOCP We introduce new variables, and write the problem as minimize c T x subject to y i 2 t i, i = 1,..., m y i = A i x + b i, t i = c T i x + d i, i = 1,..., m The Lagrangian is L(x, y, t, λ, ν, µ) m m m = c T x + λ i ( y i 2 t i ) + νi T (y i A i x b i ) + µ i (t i c T i x d i ) i=1 m = (c A T i ν i i=1 n (b T i ν i + d i µ i ). i=1 i=1 m µ i c i ) T x + i=1 m (λ i y i 2 + νi T y i ) + i=1 i=1 i=1 m ( λ i + µ i )t i A. d Aspremont. M2 OJME: Optimisation convexe. 124/128

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Convex Optimization in Communications and Signal Processing

Convex Optimization in Communications and Signal Processing Convex Optimization in Communications and Signal Processing Prof. Dr.-Ing. Wolfgang Gerstacker 1 University of Erlangen-Nürnberg Institute for Digital Communications National Technical University of Ukraine,

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Convex functions. Definition. f : R n! R is convex if dom f is a convex set and. f ( x +(1 )y) < f (x)+(1 )f (y) f ( x +(1 )y) apple f (x)+(1 )f (y)

Convex functions. Definition. f : R n! R is convex if dom f is a convex set and. f ( x +(1 )y) < f (x)+(1 )f (y) f ( x +(1 )y) apple f (x)+(1 )f (y) Convex functions I basic properties and I operations that preserve convexity I quasiconvex functions I log-concave and log-convex functions IOE 611: Nonlinear Programming, Fall 2017 3. Convex functions

More information

Tutorial on Convex Optimization for Engineers Part II

Tutorial on Convex Optimization for Engineers Part II Tutorial on Convex Optimization for Engineers Part II M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

4. Convex optimization problems (part 1: general)

4. Convex optimization problems (part 1: general) EE/AA 578, Univ of Washington, Fall 2016 4. Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1 Optimization problem

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history of convex optimization 1 1 Mathematical

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Convex Functions. Pontus Giselsson

Convex Functions. Pontus Giselsson Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3 Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is well-defined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Advances in Convex Optimization: Theory, Algorithms, and Applications

Advances in Convex Optimization: Theory, Algorithms, and Applications Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems Instructor: Shaddin Dughmi Outline 1 Convex Optimization Basics 2 Common Classes 3 Interlude: Positive Semi-Definite

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK)

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Convex Functions Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Lecture 9 Sequential unconstrained minimization

Lecture 9 Sequential unconstrained minimization S. Boyd EE364 Lecture 9 Sequential unconstrained minimization brief history of SUMT & IP methods logarithmic barrier function central path UMT & SUMT complexity analysis feasibility phase generalized inequalities

More information

Lecture 7: Convex Optimizations

Lecture 7: Convex Optimizations Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 6 (Conic optimization) 07 Feb, 2013 Suvrit Sra Organizational Info Quiz coming up on 19th Feb. Project teams by 19th Feb Good if you can mix your research

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications Chong-Yung Chi Institute of Communications Engineering & Department of Electrical Engineering National Tsing

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017 Solution to EE 67 Mid-erm Exam, Fall 207 November 2, 207 EE 67 Solution to Mid-erm Exam - Page 2 of 2 November 2, 207 (4 points) Convex sets (a) (2 points) Consider the set { } a R k p(0) =, p(t) for t

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem Exercises Basic terminology and optimality conditions 4.1 Consider the optimization problem f 0(x 1, x 2) 2x 1 + x 2 1 x 1 + 3x 2 1 x 1 0, x 2 0. Make a sketch of the feasible set. For each of the following

More information

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1,

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1, 4 Duality 4.1 Numerical perturbation analysis example. Consider the quadratic program with variables x 1, x 2, and parameters u 1, u 2. minimize x 2 1 +2x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 1 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Convex Optimization. 4. Convex Optimization Problems. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University

Convex Optimization. 4. Convex Optimization Problems. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University Conve Optimization 4. Conve Optimization Problems Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 58 Outline Optimization problems

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine CS295: Convex Optimization Xiaohui Xie Department of Computer Science University of California, Irvine Course information Prerequisites: multivariate calculus and linear algebra Textbook: Convex Optimization

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES. Contents 1. Introduction 1 2. Convex Sets

CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES. Contents 1. Introduction 1 2. Convex Sets CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES DANIEL HENDRYCKS Abstract. This paper develops the fundamentals of convex optimization and applies them to Support Vector

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information