The Log-Generalized Lindley-Weibull Distribution with Applications

Size: px
Start display at page:

Download "The Log-Generalized Lindley-Weibull Distribution with Applications"

Transcription

1 Georgia Southern University Digital Southern Mathematical Sciences Faculty Publications Mathematical Sciences, Department of The Log-Generalized Lindley-Weibull Distribution with Applications Broderick O. Oluyede Georgia Southern University, Fedelis Mutiso University of Washington Shujiao Huang University of Houston Follow this and additional works at: Part of the Mathematics Commons Recommended Citation Oluyede, Broderick O., Fedelis Mutiso, Shujiao Huang "The Log-Generalized Lindley-Weibull Distribution with Applications." Journal of Data Science, 13 (2): source: This article is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Southern. For more information, please contact

2 Journal of Data Science 13(215), The Log Generalized Lindley-Weibull Distribution with Application Broderick O. Oluyede 1, Fedelis Mutiso 2, Shujiao Huang 3 1 Department of Mathematical Sciences, Georgia Southern University 2 Department of Biostatistics, University of Washington 3 Department of Mathematics, University of Houston Abstract: A new distribution called the log generalized Lindley-Weibull (LGLW) distribution for modeling lifetime data is proposed. This model further generalizes the Lindley distribution and allows for hazard rate functions that are monotonically decreasing, monotonically increasing and bathtub shaped. A comprehensive investigation and account of the mathematical and statistical properties including moments, moment generating function, simulation issues and entropy are presented. Estimates of model parameters via the method of maximum likelihood are given. Real data examples are presented to illustrate the usefulness and applicability of this new distribution. Key words: Lindley distribution; Lindley-Weibull distribution; Maximum likelihood estimation 1. Introduction The continuous one parameter Lindley distribution was introduced by Lindley (1958). Lindley used the distribution named after him to illustrate a difference between fiducial distribution and posterior distribution. Lindley distribution with the probability density function (pdf) f(x; θ) = θ2 (1+x)exp ( θx), x >, θ >, (1) 1+θ is a two-component mixture of an exponential distribution with scale parameter θ and gamma distribution with shape parameter 2 and scale parameter θ. The mixing proportion is p = θ/(θ + 1). Sankaran (197) derived the Poisson-Lindley distribution. In this case, Lindley distribution was chosen as the mixing distribution when the parameter of the Poisson distribution is considered random. The resulting Poisson-Lindley distribution provided a better fit to the empirical set of data considered than the negative binomial and Hermite distributions. Recently, Ghitany et al. (28, 211) studied various properties of Lindley distribution and the twoparameter weighted Lindley distribution with applications to survival data. Bakouch et al. (212) introduced an extension of the Lindley distribution that offers more flexibility in the modeling of lifetime data. Ghitany et al. (213) presented results on the two-parameter generalization referred to as the power Lindley distribution. See Krishna and Kumar (211) for additional results on reliability estimation of the Lindley distribution with progressive type II censored sample.

3 282 The Log Generalized Lindley-Weibull Distribution with Application Because of having only one parameter, the Lindley distribution does not provide enough flexibility for analyzing different types of lifetime data. To increase the flexibility for modeling purposes it will be useful to consider further generalizations of this distribution. This paper offers a five-parameter family of distributions which generalizes the Lindley distribution. There are several ways of generalizing a continuous distribution G(x), and they include Kumaraswamy-G, beta-g, McDonald-G, and gamma-g to mention a few. Kumaraswamy (198) distribution is given by G k (x) = 1 (1 x ψ ) ϕ, x 1, for ψ > and ϕ >. Replacing x by G(x) on the right hand side of the equation gives the Kumaraswamy-G family: G KG (x) = 1 (1 G ψ (x)) φ. The beta-g family of distributions (Lee et al., 27, Famoye et al., 25) among others is given by G BG (x) = 1 G(x) B(a, b) wa 1 (1 w) b 1 dw, for a > and b >. The McDonald-G family of distributions (Cordeiro et al., 212) is given by G 1 c (x) G McG (x) = B(ac 1, b) wac 1 1 (1 w) b 1 dw, for a, b and c >. The Gamma-G family of distributions (Zografos and Balakrishnan, 29, Pinho et al., 212) is G GG (x) = γ( θ 1 log(g (x)), α), Γ(α) for α, θ >, where G (x) = 1 G(x). We consider a further generalization of the generalized Lindley distribution via the T-X family of distributions proposed by Alzaatreh et al. (213) to obtain the cumulative distribution function (cdf) of the log generalized Lindley-Weibull distribution. The generalization (Alzaatreh et al., 213) is given by the following cdf: G(x) = W(F(x)) k(y)dy, where < W(F(x)) <, is a nondecreasing function of x, k(. ) is taken to be the generalized Lindley distribution of Zakerzadeh and Dolati (29) and F(x)is the Weibull cdf. The corresponding pdf g, is given by g(x) = f(x) k (W(F(x))), F (x) where W(F(x)) = ln(1 F(x)).

4 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 283 The main objective of this article is to construct and explore the properties of the fiveparameter log generalized Lindley-Weibull (LGLW) distribution. The beauty of this model is the fact that it not only generalizes the generalized Lindley distribution but also exhibits the desirable properties of increasing, decreasing, and bathtub shaped hazard function. The model provides a better fit to data in the sense that it leads to more accurate results and prediction, which should facilitate better public policy in a wide range of areas including but not limited to medicine and environmental health, genetics, reliability, survival analysis and time-to event data analysis. The outline of this paper is as follows: In section 2 some generalized Lindley distributions including the new LGLW distribution are introduced. This section also includes some properties such as the behavior of the hazard function, reverse hazard function and sub-models of the log generalized Lindley-Weibull distribution. Section 3 contains the moment generating function, moments, distribution of functions of log generalized Lindley-Weibull random variables and simulation. Measures of uncertainty are given in section 4. Section 5 contains the estimation of parameters via the maximum likelihood estimation technique. Fisher information and asymptotic confidence intervals are also presented in section 5. We end with applications in section 6 and concluding remarks in section 7. Generalizations of the Lindley Distribution In this section, we present further generalizations of the Lindley distribution. First, we discuss some generalizations that are in the literature, or in preparation. 2.1 Generalized Lindley Distribution Let V 1 and V 2 be two independent random variables distributed according to gamma(α, θ) and gamma(α + 1, θ), respectively. That is, V 1 ~GAM(α, θ) and V 2 ~GAM(α + 1, θ). For β, θ consider the random variable X = V 1 with probability, and X = V θ+β 2 with probability β. It is θ+β easy to verify that the density function of X is given by f GL (x; α, θ, β) = θ f θ+β g α (x; α, θ) + β f θ+β g α+1 (x; α + 1, θ) (2) which may be written as f GL (x; α, θ, β) = θ2 (θx) α 1 (α+βx)e θx, x >, β, α, θ > (3) (θ+β)γ(α+1) where f gα (x) is the gamma pdf with parameters α and θ, that is, f gα (x; α, θ) = θα x α 1 e θx, (4) Γ(α) for x >, α, θ >. See Zakerzadeh and Dolati, (29) for additional details. The distribution contains the Lindley distribution as particular case, where α = β = 1. When β =, equation (3) reduces to the density function of the gamma distribution with the parameters α and θ. The case

5 284 The Log Generalized Lindley-Weibull Distribution with Application α = 1 and β =, reduces to ordinary exponential distribution. In general, if V i ~GAM(α i, θ i ), i = 1,2,, and X = v i with probability p i, and i p i = 1, then θ f X (x) = p i i i Γ(α i ) xαi 1 e θix I (,) (x) (5) Clearly, the generalized Lindley (GL) distribution is a special case of (5). 2.2 Exponentiated Lindley Distribution A generalization of the Lindley distribution due to Nadarajah et al. (211) is the two parameter Exponentiated Lindley distribution with cumulative distribution function (cdf) and probability density function (pdf) given by and F GL (x; θ, α) = [1 1+θ+θx 1+θ e θx ] α, (6) f GL (x; θ, α) = θ2 α 1+θ+θx [1 1+θ 1+θ e θx ] α 1 (1 + x)e θx, (7) for x >, α >, and θ >, respectively. 2.3 Beta-Generalized Lindley Distribution A further generalization of the Lindley distribution, although not studied in this paper is the beta-generalized Lindley (BGL) distribution, (Oluyede and Yang, 214). The four parameter beta-generalized Lindley (BGL) cdf is given by F BGL (x; α, θ, a, b) = 1 B(a,b) G(x;θ,α) ta 1 (1 t) b 1 dt, (8) where G(x; θ, α) = {1 1+θ+θx 1+θ e θx } α, for x, α >, θ >, a >, b >. The corresponding pdf is given by f BGL (x; α, θ, a, b) = αθ2 (1 + x)e θx B(a, b)(1 + θ) 1 + θ + θx {1 1 + θ {1 {1 1+θ+θx 1+θ e θx } α } b 1 aα 1 e θx } (9) for x, α >, θ >, a >, b >. If α = 1, we obtained the beta-lindley (BL) distribution. If a = b = α = 1, we obtain the Lindley distribution. See Yang and Oluyede (214) for additional details on the Exponentiated Kumaraswamy Lindley distribution. 2.4 The Log Generalized Lindley-Weibull Distribution

6 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 285 In this section, we introduce a new generalization of the Lindley distribution via the Weibull model and study its mathematical and statistical properties Generalization-The Model Based on a continuous baseline cdf F(x) and survival function F (x) = 1 F(x), with pdf f(x), Zografos and Balakrishnan (29) defined the cdf G ZB (x) = 1 log (1 F(x)) tδ 1 e t dt, δ > and x R. (1) Γ(δ) Along the same lines, Ristić and Balakrishnan (211) proposed an alternative gammagenerator given by the cdf and pdf and G RB (x) = 1 1 Γ(δ) log(f(x)) tδ 1 e t dt, δ > and x R, (11) g RB (x) = 1 Γ(δ) [ log(f(x))]δ 1 f(x), δ > and x R. (12) Now, we consider a generalizations of the generalized Lindley distribution given by Zakerzadeh and Dolati (29) via the Weibull distribution. The generalization is given by the following cdf (Alzaatreh et al., 213): log (1 F W (x)) G LGLW (x) = f GL (y) dy, (13) where g GL (x) is the generalized Lindley pdf and F W (x) is the Weibull cdf. The pdf of the log generalized Lindley-Weibull (LGLW) distribution is given by g LGLW (x; α, β, θ, γ, c) = f W (x;γ,c) f F W(x;γ,c) GL( ln(1 F W (x; γ, c)) ; α, β, θ),(14) where the survival function F W(x; γ, c) = 1 F W (x; γ, c) = e (x γ )c, for x >, γ >, and c >. The well-known hazard function of the Weibull distribution is given by h W (x; γ, c) = f W (x;γ,c) F W (x;γ,c) = c γ (x γ )c 1. It follows therefore that the five-parameter LGLW cdf is given by G LGLW (x) = ( x γ )c where Γ(s, x) = θ 2 (θy) α 1 (α + βy)e θy dy (β + θ)γ(α + 1) 1 = (β + θ)γ(α) {θ[γ(α) Γ(α, u)] + β [Γ(α) Γ(α + 1, u)]}, α x The corresponding pdf is given by t s 1 e t dt is the upper incomplete gamma function and u = θ ( x γ )c. cθ α+1 cα 1 g LGLW (x; α, θ, β, γ, c) = γ(β + θ)γ(α + 1) (x γ ) {α + β ( x c} γ ) e θ(x γ )c, for x >, and θ, α, c, γ, β >. The graphs of the LGLW pdf, g LGLW are given in Figure 1 for selected values of the parameters α, θ, β, γ, and c. Note that the parameters β, γ, and θ are scale parameters, and α, c are shape parameters. The graphs show that the pdf of the LGLW distribution can be right skewed or decreasing for the selected values of the model parameters.

7 286 The Log Generalized Lindley-Weibull Distribution with Application Some LGLW Sub-models In this subsection, we present some sub-models of the LGLW distribution for selected values of the parameters c, α, γ, β and θ. If c = γ = 1, then g LGLW (x; α, θ, β) = θα+1 x α 1 (α+βx)e θx. This is the generalized (β+θ)γ(α+1) Lindley distribution, denoted by GENLIN(α, θ,\beta). If c = α = γ = β = 1, then g LGLW (x; θ) = θ2 (1 + 1+θ x)e θx, which is the Lindley distribution and is denoted by LIN(θ) for x, θ >. If c = 1 and λ = θ, then g γ(λx) γ LGLW(x) = α (β+λγ)γ(α+1) (λ) {α + β x (x)} γ e λx. If c = α = β = 1, then g LGLW (x) = (1 + x ) γ(1+θ) γ e θ( If α = β = 1, then g LGLW (x) = cθ2 γ(1+θ) (x γ )c 1 {1 + ( x γ )c } e θ( If γ = β = 1, then g LGLW (x) = θ2 x γ ). x γ )c. cθα+1 (1+θ)Γ(α+1) xcα 1 (α + x c )e θxc. θ α+1 If c = 1, then g LGLW (x) = γ(β+θ)γ(α+1) (x γ )α 1 {α + β ( x γ If c = α = 1, then g LGLW (x) = {1 + β γ(β+θ) (x γ θ2 x )} e θ( γ ). If α = 1, then g LGLW (x) = cθ2 γ(β+θ) (x γ )c 1 {1 + β ( x γ )c } e θ( Shape For the LGLW pdf, the first derivative of log (g LGLW (x)) is d cθ {( x dx ln(g γ )c } LGLW(x)) = d 2 x )} e θ( γ ). x γ )c. β + { c(β θ)α β( 1 + c)} ( x γ )c cα 2 + α x {α + β ( x. γ )c } Therefore, g LGLW (x) has a unique model at x, where x is the solution of the equation dx ln{g LGLW(x)} =. That is, cθ {( x γ )c } which implies that 2 β + { c(β θ)α β( 1 + c)} ( x γ )c cα 2 + α x {α + β ( x =, γ )c }

8 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 287 cθ {( x 2 c} γ ) β + { c(β θ)α β( 1 + c)} ( x c γ ) cα 2 + α =. Solving for x in the above equation gives the mode. That is, x = [ {c(β θ)α+β( 1+c)} 2cθβ + { c(β θ)α β( 1+c)}2 4(βcθ)( cα 2 +α) 2cθβ 1 c ] γ.(15) Note that ln(g LGLW (x)/ x) < x > x and ln ( g LGLW (x) ) > x < x x, where x is given by equation (15) above. When α = β = γ = c = 1, x = (1 θ)+ (θ 1)2 2θ = (1 θ)+ (θ+1)2 4θ, (16) 2θ which is the same result for the generalized Lindley distribution given by Zakerzadeh and Dolati (29) Hazard and Reverse Hazard Functions In this section, we present the hazard and reverse hazard functions of the LGLW distribution. Graphs of the hazard function for selected values of the model parameters are given in Figure 2 and 3. The hazard and reverse hazard functions of the LGLW distribution are given by η LGLW cθ α+1 h(x) = g LGLW(x) G LGLW (x) = γ(β + θ)γ(α + 1) (x γ )cα 1 {α + β ( x γ )c } e θ( γ )c 1 1 (β + θ)γ(α) {θ[γ(α) Γ(α, u)] + β, α [Γ(α) Γ(α + 1, u)]} and τ LGLW (x) = g x LGLW(x) cθα+1 ( G LGLW (x) = γ )cα 1 {α + β ( x γ )c } e θ( x γ )c γα {θ[γ(α) Γ(α, u)] + β [Γ(α) α Γ(α + 1, u)]} for θ, α, c, γ, β >, and u = θ ( x γ )c, respectively. We obtain η LGLW (x) = g LGLW(x) and (x) and apply Glaser s Lemma (198) to the LGLW pdf: cθ α+1 g LGLW (x) = γ(β+θ)γ(α+1) (x γ )cα 1 {α + β ( x γ )c } e θ( γ )c, (17) for x >, c, θ, α, γ, β >. Note that cθ α+1 ( x γ )cα 1 (cα 1) {α + β ( x γ )c } e θ(x γ )c g LGLW (x) = γ(β + θ)γ(α + 1)x + c 2 θ α+1 ( x γ )cα 1 β ( x γ )c e θ(x γ )c γ(β + θ)γ(α + 1)x x x g LGLW (x)

9 288 The Log Generalized Lindley-Weibull Distribution with Application and η LGLW (x) = c 2 θ α+1 ( x γ )cα 1 (cα 1) {α + β ( x γ )c } θ ( x γ )c e θ(x γ )c, γ(β + θ)γ(α + 1)x cθ {( x 2 γ )c } β + { c(β θ)α β( 1 + c)} ( x γ )c cα 2 + α x {α + β ( x. γ )c } When c = γ = 1, we have η LGLW (x) = α α2 αβx+θx(α+βx), which is the same result given x(α+βx) by Zakerzadeh and Dolati (29). Now, 2c 2 θ {( x γ )c } β η LGLW (x) = x 2 {α + β ( x γ )c } 2 { c(β θ)α β( 1 + c)} ( x γ )c c + x 2 {α + β ( x γ )c } cθ {( x 2 γ )c } β + { c(β θ)α β( 1 + c)} ( x γ )c cα 2 + α x 2 {α + β ( x γ )c } {cθ {( x 2 γ )c } β + { c(β θ)α β( 1 + c)} ( x γ )c cα 2 + α} β ( x γ )c c x 2 {α + β ( x. γ )c } If c = γ = 1, then η LGLW (x) = α3 +2α 2 βx+αβ 2 x 2 α 2 2αβx, which is the same result obtained x 2 (α+βx) 2 by Zakerzadeh and Dolati (29). The graphs of the hazard and reverse hazard functions are given below for different values of parameters α, θ, β, γ, and c. For the selected values of the parameters α, θ, β, γ, and c, the graphs of the hazard function are decreasing, increasing and bathtub shaped. Moments and Distribution of Functions of Random Variables This section deals with the moment generating function, moments and related functions of LGLW distribution. The mean, standard deviation, coefficients of variation, skewness and kurtosis can be readily computed. Distributions of functions of the LGLW random variables are also presented. 3.1 Moments In this section, we obtain the moments of the LGLW distribution and its sub-models. The k th non-central moment for the LGLW distribution is

10 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 289 E(x k ) = γ k cθ α+1 γ(β + θ)γ(α + 1) (x γ ) cα+k 1 {α + β ( x γ ) c } e θ(x γ )c Let y = ( x γ )c, then x = γy 1 c, and dx = 1 dy c γy1 c 1. Now, E(X k γ k cθ α+1 ) = (β + θ)γ(α + 1) {α k yα+ c 1 e θy dy + β y α+k c +1 1 e θy dy}. Let u = θy, then du dy du = θ and dy =, so that θ E(X k ) = {α ( u α+ k θ ) c 1 e u γ k θ α+1 (β + θ)γ(α + 1) du θ + β (u θ ) α+ k c +1 1 du = γk θ 1 k cγ(α+ k c ) [α + (β+θ)γ(α+1) βθ 1 (α + k )]. (18) c The mean of LGLW distribution is γθ 1 1 c } θ E(X) = (β + θ)γ(α + 1) Γ (α + 1 c ) {α + βθ 1 (α + 1 c )}. If c = 1, then E(X) = γ {α + β+θ βθ 1 (α + 1)}. 3.2 Moment Generating Function Let X denote a random variable with pdf g LGLW (x). The moment generating function (MGF) of X, M(t) = E(exp (tx)), is given by tj θ 1 j cγ j M X (t) = j! (β + θ)γ(α + 1) {αγ (α + j c ) + βθ 1 Γ (α + j c + 1)}. j= t j Note that M X (t) = j= j! E(Xj ), where E(X j ) is given by equation (18). 3.3 Distribution of Functions of Random Variables In this section, distributions of functions of random variables are presented. Recall the LGLW pdf is cθ α+1 cα 1 g LGLW (x) = γ(β + θ)γ(α + 1) (x γ ) {α + β ( x c} γ ) e θ(x γ )c, for x >, α, β, θ, γ, c >. Pdf of Y = ( X γ )c : Let y = ( x γ )c, then x = γy 1 c and dx dy = 1 c γy1 c 1. The pdf of Y = ( X γ )c is given by dx.

11 29 The Log Generalized Lindley-Weibull Distribution with Application θ α+1 f Y (y) = (β + θ)γ(α + 1) yα 1 (α + βy)e θy, for y >, α, β, θ >, which is the GENLIN(α, θ, β). Pdf of W = X c : Let w = x c, then x = w 1 c and dx = 1 dw c w1 c 1. The pdf of W = X c is given by θ α+1 w α 1 f W (w) = γ(β + θ)γ(α + 1) γ cα 1 {α + β (w e θ( γ γc)} c), for w >, α, θ, β, γ, c >. If γ = 1, the two pdf s above are the same. 1 1 Pdf of V = θ ( X γ )c : Let v= θ ( x γ )c, then x = γ ( v ) c, and dx = γ θ dv c (v) c 1 1. The pdf of V = θ θ θ ( X γ )c is given by θ α α 1 f V (v) = (β + θ)γ(α + 1) (v θ ) {α + β ( v θ )} e v, for v >, α, θ, γ, β >. 3.4 Simulation The density of generalized Lindley (GL) distribution can be written in terms of the gamma density function as f(x; α, θ, β) = θ f β+θ g(x; α, θ) + β f β+θ g(x; α + 1, θ). (19) To generate a random data X i, i = 1,, n, from GL(α, θ, β), Zakerzadeh and Dolati (29), provided the following algorithm; 1. Generate U i, i = 1,, n, from U(,1) distribution. 2. Generate V 1i, i = 1,, n, from the gamma(α, θ). 3. Generate V 2i, i = 1,, n, from the gamma(α + 1, θ). 4. If U i θ, then set X β+θ i = V 1i ; otherwise set X i = V 2i, i = 1,, n. Now given γ and c, we can generate random data Y i, i = 1,, n where Y i = 1 γx c i ~LGLW(α, β, θ, γ, c). 2. Uncertainty Measures The concept of entropy plays a vital role in information theory. The entropy of a random variable is defined in terms of its probability distribution and can be shown to be a good measure of randomness or uncertainty. In this section, we present Renyi entropy, generalized entropy and s-entropy for the LGLW distribution. w

12 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang Generalized Entropy Generalized entropy (GE) is widely used to measure inequality trends and differences. It is primarily used in income distributions. Kleiber and Kotz (23) derived Theil index for GB2 distribution and Singh-Maddala model. The generalized entropy (GE) I(α ) is defined as: where I(α ) = v α μ α 1 α (α 1), α,1, (2) ν α = E(X α ) = x α g LGLW (x)dx γ α θ 1 α c α = Γ (α + (β + θ)γ(α + 1) c ) {α + βθ 1 (α + α c )}, and γθ 1 1 c μ = (β + θ)γ(α + 1) Γ (α + 1 c ) {α + βθ 1 (α + 1 c )}. The bottom-sensitive index is I( 1), and the top-sensitive index is I(2). The mean logarithmic deviation (MLD) index is given by: I() = lim α I(α ) = log(μ) ν, (21) where = ν = log(x)dg LGLW (x) = (log(x))g LGLW (x) dx cθ α+1 (log(x)) ( x cα 1 γ(β + θ)γ(α + 1) γ ) {α + β ( x c} γ ) e θ(x γ )c dx. Let y = θ ( x γ )c, then log(x) = log(γ) 1 log(θ) + 1 log (y). Now, we have c c θ ν = (β + θ)γ(α + 1) {log(γ) + 1 c log(y) 1 1 log(θ)} yα c{α + βθ 1 y}e y dy c θ = (β + θ)γ(α + 1) [{log ( γ θ 1 ) αγ (α 1 c + 1) + α c Γ (α 1 c + 1)} c + {log ( γ θ 1 ) βθ 1 Γ (α 1 c c Therefore, the MLD index reduces to I() = log(γ) + (1 1 ) log(θ) log(β + θ) log(γ(α + 1)) c + log (Γ (α + 1 c )) + log {α + βθ 1 (α + 1 c )} βθ 1 + 2) + Γ (α 1 c c + 2)}].

13 292 The Log Generalized Lindley-Weibull Distribution with Application θ (β+θ)γ(α+1) [{log ( γ 1 αγ (α θc) 1 + 1) + α c c Γ (α 1 c +1) } {log ( γ 1) βθ 1 Γ (α 1 + 2) + c θc and Theil index is: βθ 1 I(1) = lim α 1 I(α ) = μ ν 1 log(μ) = θ α 1 c Γ (α + 1 c ) {α + βθ 1 (α + 1 c )} Γ (α + α c ) {α + βθ 1 (α + α c )} c Γ (α 1 c +2) }], (22) log(γ) + (1 1 ) log(θ) log(β + θ) log(γ(α + 1)) c + log (Γ (α + 1 c )) + log {α + βθ 1 (α + 1 c )}. (23) The generalized entropy for the sub-models can be readily obtained as well. 4.2 Renyi Entropy An entropy of a random variable X is a measure of variation of the uncertainty. A popular entropy measure is Rényi entropy (1961). If X has the pdf f(. ), then Rényi entropy is defined by I R (b) = 1 log( 1 b gb (x)dx), where b > and b 1. Suppose X has the LGLW pdf, then for any real number b >, and b 1, b g LGLW (x) dx = cθ α+1 = { γ(β + θ)γ(α + 1) } j= [ cθ α+1 {α + β ( x γ )c } { γ(β + θ)γ(α + 1) } b b! j! (b j)! βj α b j b ( x γ ) b(cα 1) e θb(x γ )c ] dx ( x γ ) b(cα 1)+cj e θb(x γ )c 1 Let ν = θb ( x γ )c, and dx = 1 ( ν ) c 1 γ. Now, making the substitution, we have dν c θb θb b g LGLW cθ α+1 (x)dx = { γ(β + θ)γ(α + 1) } b b! j! (b j)! βj α b j γ c (θb) bα+b c j 1 cγ (bα b + j + 1 ). (24) c c Now, for any real number b >, and b 1, Rényi entropy is given by I R (b) = b 1 b log ( cθ α+1 γ(β + θ)γ(α + 1) ) j= dx.

14 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang b j b! log { j! (b j)! (β α ) α b γ c (θb) bα+b c j 1 cγ (bα b c + j + 1 c )}, j= for α, β, γ, c >. By taking the limit as b 1 and using L Hospital s rule, we obtain Shannon entropy (1948). Rényi entropy for the sub-models can be readily obtained. 4.3 s-entropy The s-entropy is a one parameter generalization of the Shannon entropy and is defined by H s (g LGLW ) = 1 [1 g s s 1 LGLW(x) dx], s >, and s 1. (25) Now, if s R + and s 1, 1 cθ { α+1 H s (g LGLW ) = 1 [ γ(β+θ)γ(α+1) }s ( s j= j ) βj α s j ]. (26) s 1 ( x γ )s(cα 1)+cj e θs(x γ )c dx The integral in equation (26) follow directly from the result of the integral in Rényi entropy with s in place of b. For s=1, H s (g LGLW ) = E[log(g LGLW (X))], which is Shannon entropy (1948). Maximum Likelihood Estimation in the LGLW Distribution In this section, we obtain estimates of the parameters of the LGLW distribution. Methods of maximum likelihood (ML) estimation and asymptotic confidence intervals for the model parameters are presented. 5.1 Maximum Likelihood Estimators Suppose x = (x 1, x 2,, x n ) is a random sample of size n from the LGLW distribution. The log-likelihood function is given by: l(α, β, γ, c, θ) = n ln c + n(α + 1) ln θ n ln γ n ln(β + θ) n ln Γ(α + 1) + n( cα + 1) ln γ + (cα 1) ln x i n + ln {α + β ( x i i=1 θ ( x i i=1. (27) γ )c } n γ )c n i=1 The partial derivatives of l with respect to the parameters are: l α = n ln θ nγ (α+1) Γ(α+1) nc ln γ + c ln n i=1 n 1 x i + i=1, (28) α+β( x i γ )c

15 294 The Log Generalized Lindley-Weibull Distribution with Application l and c = n c l = n + ( n β β+θ l = n + n( cα+1) γ γ γ l = n(α+1) n θ θ β+θ x i γ )c i=1, (29) α+β( x i γ )c n β( x i γ )c c i=1 + 1 θ γ (x i i=1, (3) n γ{α+β( x i γ )c } (x i γ )c n γ )c i=1, (31) x i γ )c ln{β( x i n nα ln γ + α ln x n i=1 i + β( γ )} n i=1 θ ( x i γ )c ln {θ ( x i i=1 )}. (32) γ {α+β( x i γ )c } The MLE of the parameters α, β, γ, θ and c, say α, β, γ, θ, and c are obtained by solving the equations l l l l l =, =, =, =, and =. There is no closed form solution, so these α β γ θ c equations must be solved numerically to obtain the MLE of the parameters α, θ, β, γ and c, Note that, if α, β, γ and c are known, it follows from equation (29) that n θ = β. (33) n i=1 ( x i γ ) c α+β( x i γ ) c When β, θ, γ, and c are known, it follows from equation (31) that α = θ + θ n β+θ n (x i i=1 γ )c 1. (34) When α, θ, γ, and c are known, it follows from equation (31) that n β = θ. (35) n(α+1) θ 5.2 Fisher Information n ( x i i=1 γ )c Let θ = (θ 1, θ 2, θ 3, θ 4, θ 5 ) = (α, β, θ, γ, c), and g LGLW (x; θ) the LGLW pdf. If log(g LGLW (x; θ)) is twice differentiable with respect to θ, and under certain regularity conditions, Fisher information matrix (FIM) is the 5 5 matrix whose elements are: I(θ) = E θ [ 2 log(g LGLW (X;θ)) θ i θ j ]. (36) The second and mixed partial derivatives of the log-likelihood function used to obtain the observed Fisher information matrix can be readily computed. 5.3 Asymptotic Confidence Intervals The 5 5 observed information matrix J(θ) = 2 l(θ) θ θ T can be used for interval estimation of α, β, θ, γ, and c, and for test of hypothesis on these parameters. Under conditions that are

16 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 295 fulfilled for parameters in the interior of the parameter space but not on the boundary, the asymptotic distribution of θ θ can be approximated by N 5 (, J(θ ) 1 ). Thus, the multivariate normal N 5 (, J(θ ) 1 ) distribution can be used to construct approximate confidence intervals and confidence regions for the parameters. In fact, the asymptotic 1(1 η)% confidence intervals for α, β, θ, γ and c are given by α ± Zη I 1 αα (θ ), β ± Zη I 1 ββ (θ ), θ ± Zη I 1 θθ (θ ), γ ± Zη I 1 γγ (θ ), and c ± Zη I 1 cc (θ ), where Zη is the (1 η )th quantile of the standard normal distribution. The likelihood ratio (LR) statistic is useful for testing the goodness-of-fit of the LGLW model and for comparing it with other sub-models such as generalized Lindley (GL) and Lindley (L) distributions. We can easily check if the fit using LGLW model is statistically superior to a fit using the GL model for a given data set by computing w = 2{l(α, β, θ, γ, c ) l(α, β, θ, 1,1)}, where α, β, θ, γ, and c are the unrestricted MLEs and α, β, and θ are the restricted estimates. Also, the LR statistic is asymptotically distributed under the null model as χ 2 2. Further, the LR 2 test rejects the null hypothesis if ω > ξ η, where ξ η denotes the upper 1η% point of the χ 2 distribution. Applications The maximum likelihood estimates (MLEs) of the parameters are obtained via the subroutine NLP in SAS. The maximum likelihood estimates (MLEs) of the parameters are obtained via the subroutine NLP in SAS. The estimates (standard error in parenthesis), -2 Log Likelihood, Akaike Information Criteria (AIC), Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC), SS and KS values are given, where AIC = 2p 2 ln L, AICC = AIC + 2 p(p+1), BIC = p ln n 2 ln L, and KS = max {G n p 1 LGLW(x (j) ) j 1, j G 1 j n n n LGLW(x (j) )}, where L(θ ) = L is the value of the likelihood function evaluated at the estimated parameters, n is the number of observations, and p is the number of estimated parameters are given in Tables 1, 2 and 3. Probability plots (Chambers et al., 1983) are also presented in Figure 4, Figure 5 and Figure 6. For the probability plot, we plotted the estimated cdf G LGLW (x (j) ; α, β, θ, γ, c ) against j.375 n+.25, j = 1,2,, n, where x (j) are the ordered values of the observed data. We also computed a measure of closeness of each plot to the diagonal line. This measure of closeness is given by the sum of squares SS = n j=1 n+.25 )]2. [G LGLW (x (j) ; α, β, θ, γ, c ) ( j.375 This first data (Aarset, 1987) consists of the times to failure of 5 devices put on life test at time. The data are:

17 296 The Log Generalized Lindley-Weibull Distribution with Application The results are given in Table 1, and plots are given in Figure 4. The estimated covariance matrix for the LGLW distribution is given by: E E 1 1.5E E E E 1 1.5E E E E E E E E E E E E E 11 ( 2.72E E E E E 8 ) The 95% asymptotic confidence intervals are: α ± 1.96(.1341), θ.176 ± 1.96(.5), β.161 ± 1.96(.6), γ ± 1.96(.1), c ± 1.96(.28). The LR test statistics of the hypotheses H : LGLW(α, θ, 1,1, c) vs H a : LGLW(α, θ, β, γ, c), H : LGLW(α, θ, β, γ, 1) vs H a : LGLW(α, θ, β, γ, c) and H : LGLW(1, θ, β, γ, c) vs H a : LGLW(α, θ, β, γ, c) are 43.2 (p-value <.1), 34.9 (p-value <.1) and 4.5 (p-value <.1). We conclude LGLW(α, θ, β, γ, c) distribution is significantly better than the submodels. Also, LGLW(α, θ, β, γ, c) distribution gives the smallest AIC, AICC, BIC, SS and KS values. Consequently, we conclude that the LGLW(α, θ, β, γ, c) distribution is the best model for Aarset data. The second data set given by Murthy et al. (24) consists of the failure times of 2 mechanical components. The data are: The results and plots are given in Table 2 and Figure 5. The estimated covariance matrix for the LGLW distribution is given by: ( ) The LR test statistics of the hypotheses H : LGLW(α, θ, β, γ, 1) vs H a : LGLW(α, θ, β, γ, c) and H : LGLW(1, θ, β, γ, c) vs H a : LGLW(α, θ, β, γ, c) are 4.9 (p-value =.27) and 11.8 (p-value <.1). Therefore, we conclude that the LGLW(α, θ, β, γ, c) distribution is significantly better than the LGLW(α, θ, β, γ, 1) and LGLW(1, θ, β, γ, c) sub-models. Also, note that the LGLW(α, θ, β, γ, c) distribution gives the smallest SS, KS values and second smallest AIC, AICC, BIC values when compare to gamma distribution. We conclude that the LGLW(α, θ, β, γ, c) distribution is a reasonably good model for the failure times data.

18 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 297 The third example consists of prices ( 1 4 dollars) of 428 new vehicles for the 24 year (Kiplinger's Personal Finance, Dec 23). The data are given in Table 3. The results and plots are given in Table 4 and Figure 6. The estimated covariance matrix for the LGLW distribution is given by: E E E E E 1 5.5E E E E 1 6.2E E E E E E E 7 ( E E E ) Plots of the fitted densities and the histogram, observed probability vs predicted probability, and empirical survival function are given in Figure 6. The LR test statistics of the hypotheses H : LGLW(α, θ, β, γ, 1) vs H a : LGLW(α, θ, β, γ, c) and H : LGLW(1, θ, β, γ, c) vs H a : LGLW(α, θ, β, γ, c) are 46. (p-value <.1) and 12.6 (pvalue =.4), respectively. We conclude that the LGLW(α, θ, β, γ, c) distribution is significantly better than the sub-models. Also, gamma distribution gives the smallest AIC, AICC, BIC, SS, KS values followed by the LGLW(α, θ, β, γ, c) distribution. Consequently, the gamma and LGLW(α, θ, β, γ, c) distributions are good models for prices of 24 new cars and trucks data. Concluding Remarks In line with results on generalized distributions and following the contents of the T-X class of distributions (Alzaatreh et al., 213), we derive and present the mathematical and statistical properties of a new generalized Lindley distribution called log generalized Lindley-Weibull (LGLW) distribution. This distribution contains several sub-models including Lindley distribution and the generalized Lindley distribution of Zakerzadeh and Dolati (29). The hazard rate function of the LGLW distribution can be decreasing, decreasing or bathtub shaped. Moments and distributions of functions of random variables from the LGLW distribution are derived. Uncertainty measures including generalized entropy, Rényi and Shannon entropies are obtained. We discuss maximum likelihood estimation and hypotheses tests of the model parameters. The LGLW distribution permits testing the goodness-of-fit of Lindley and generalized Lindley distribution by taking these distributions as sub-models. Asymptotic confidence intervals for the parameters of the LGLW distribution are given. We fit the LGLW distribution and its sub-models to three real data sets to demonstrate the potential importance, practical relevance and applicability of this model in lifetime analysis and other areas. Acknowledgments The authors thank the associate editor and anonymous referees for careful review of the manuscript and their suggestions and comments which lead to the improvement of the quality of the paper.

19 298 The Log Generalized Lindley-Weibull Distribution with Application Table 1: LGLW Estimates of Models for Aarset Data Estimates Statistics α Θ β γ c -2 Log Likelihood AIC AICC BIC SS KS GLW(α, θ, β, γ, c) (.1341) (.5) (.6) (.1) (.2) GLW(α, θ, 1,1, c) (.15333) (.4351) - - ( ) GLW(α, θ, β, γ, 1) (.9441) (.116) (.142) (.549) - GLW(1, θ, β, γ, c) (.2363) (.17642) (.266) (.15219) λ k Weibull(λ, k) ( ) ( ) α Β Gamma(α, β) ( ) (.2753) Table 2: LGLW Estimates of Models for Failure Times Data Estimates Statistics α Θ β γ c -2 Log Likelihood AIC AICC BIC SS KS GLW(α, θ, β, γ, c) (1.5231) (2.948) (1.2885) (.23) (.775) GLW(α, θ, β, γ, 1) E (1.62E-18) (3.64E-12) (1.28E-25) (1.32E-1) - GLW(1, θ, β, γ, c) E (.63) (1.19E-5) (.1446) (.3491) λ k Weibull(λ, k) (.226) (.329) α Β Gamma(α, β) (2.731) (27.786)

20 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 299 Table 3: Prices of 24 New Cars and Trucks Data

21 3 The Log Generalized Lindley-Weibull Distribution with Application Table 4: LGLW Estimates of Models for Prices of 24 New Cars and Trucks Data Estimates Statistics α Θ β γ c -2 Log AIC AICC BIC SS KS Likelihood GLW(α, θ, β, γ, c) (.1886) (.3) (.3) (.2) (.8) GLW(α, θ, β, γ, 1) E E (4.73E-17) (4.29E-1) (2.68E-24) (3.1E-1) - GLW(1, θ, β, γ, c) E (.3) (.18) (.5) (.7) λ k Weibull(λ, k) (.11) (.11) Α Β Gamma(α, β) (.35) (.13)

22 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 31 Figure 1: Plot of the pdf of LGLW distribution

23 32 The Log Generalized Lindley-Weibull Distribution with Application Figure 2: Plot of Hazard Function

24 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 33 Figure 3: Plot of Hazard Function

25 34 The Log Generalized Lindley-Weibull Distribution with Application Figure 4: Fitted Densities, Observed Probabilities, and Empirical Survival Functions Plots for Aarset Data

26 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 35 Figure 5: Fitted Densities, Observed Probabilities, and Empirical Survival Functions Plots for Failure Times Data

27 36 The Log Generalized Lindley-Weibull Distribution with Application Figure 6: Fitted Densities, Observed Probabilities, and Empirical Survival Functions Plots for Prices of 24 New Cars and Trucks Data

28 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 37 References [1] Aarset, M. V. (1987). How to Identify Bathtub Hazard Rate, IEEE Transactions on Reliability, 36(1), [1] Aarset, M. V. (1987). How to Identify Bathtub Hazard Rate, IEEE Transactions on Reliability, 36(1), [2] Alzaatreh, A., Lee, C., and Famoye, F. (213). A New Method for Generating Families of Continuous Distributions, Metron, 71(1), [3] Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A. A., and Louzada, F. (212). An Extended Lindley Distribution, Journal of the Korean Statistical Society, 41, [4] Chambers, J., Cleveland, W., Kleiner, B. and Tukey, J. (1983). Graphical Methods for Data Analysis, Chapman and Hall, London. [5] Cordeiro, G. M., Hashimoto, E., M., Ortega, E. M. M, and Pascoa, M. A., R. (212). The McDonald Extended Distribution: Properties and applications, AstA Advances in Statistical Analysis, 96(3), , 212. [6] Eugene, N., Lee, C., and Famoye, F. (22). Beta-normal distribution and its applications, Communications in Statistics: Theory and Methods, 31, [7] Famoye, F., Lee, C., and Olumolade, O. (25). The Beta-Weibull Distribution, Journal of Statistical Theory and Applications, [8] Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K., and Husain, H. A. (211). A Two-Parameter Weighted Lindley Distribution and its Applications to Survival Data, Mathematics and Computers in Simulation, 81, [9] Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N., and Al-Enezi, L. J. (213). Power Lindley Distribution and Associated Inference, Computational Statistics and Data Analysis, 64, [1] Ghitany, M. E., Atieh, B., and Nadarajah, S. (28). Lindley Distribution and its Application, Mathematics and Computers in Simulation, 78(4), [11] Glaser, R. E. (198). Bathtub and related failure rate characterizations, Journal of American Statistical Association, 75, [12] Kleiber, C., and Kotz, S. (23). Statistical Size Distributions in Economics and Actuarial Sciences, Wiley, New York.

29 38 The Log Generalized Lindley-Weibull Distribution with Application [13] Krishna, H., and Kumar, K. (211). Reliability Estimation in Lindley Distribution with Progressively Type II Right Censored Sample, Mathematics and Computers in Simulation, 82, [14] Kumaraswamy, P., (198). Generalized Probability Density Function for Double-Bounded Random Process, Journal of Hydrology, 46, [15] Lindley, D. V. (1958). Fiducial Distributions and Bayes' Theorem, Journal of the Royal Society, Series B, 2, [16] Murthy, D. N. P., Xie, M., and Jiang, R. (24). Weibull models, Wiley series in probability and statistics, John Wiley and Sons. [17] Nadarajah, S., Bakouch, H. S., and Tahmasbi, R. (211). A generalized Lindley Distribution, Technical Report, School of Mathematics, University of Manchester, UK. [18] Oluyede, B. O., and Yang, T. (214). A New class of Generalized Lindley Distribution with Applications, To appear in the Journal of Statistical Computation and Simulation. [19] Pinho, L. G. B., Cordeiro, G. M., and Nobre, J. S. (212). The Gamma-Exponentiated Weibull Distribution, Journal of Statistical Theory and Applications, 11(4), [2] Renyi, A. (1961). On Measures of Entropy and Information, Berkeley Symposium on Mathematical Statistics and Probability, 1(1), [21] Sankaran, M. (197). The Discrete Poisson-Lindley distribution, Biometrics, 26, [22] Shannon, E. (1948). A Mathematical Theory of Communication, The Bell System Technical Journal, 27 (1), , [23] Ristić, M. M., and Balakrishnan, N. (211). The Gamma-Exponentiated Exponential Distribution, Journal of Statistical Computation and Simulation, 82(8), [24] Yang, T., and Oluyede, B. O. (214). The Exponentiated Kumaraswamy Lindley Distribution, Submitted. [25] Zakerzadeh, H., and Dolati, A. (29). Generalized Lindley Distribution, Journal of Mathematical Extension, 3(2), [26] Zografos, K., and Balakrishnan, N. (29). On Families of beta- and Generalized Gamma- Generated Distribution and Associated Inference, Statistical Methodology, 6, Received January 14, 215; accepted March 1, 215.

30 Broderick O. Oluyede, Fedelis Mutiso, Shujiao Huang 39 Broderick O. Oluyede Department of Mathematical Sciences Georgia Southern University, GA 346, USA Fedelis Mutiso Department of Biostatistics University of Washington, Seattle, WA , USA Shujiao Huang Department of Mathematics University of Houston, Houston, TX , USA

31 31 The Log Generalized Lindley-Weibull Distribution with Application

Weighted Inverse Weibull Distribution: Statistical Properties and Applications

Weighted Inverse Weibull Distribution: Statistical Properties and Applications Theoretical Mathematics & Applications, vol.4, no.2, 214, 1-3 ISSN: 1792-9687 print), 1792-979 online) Scienpress Ltd, 214 Weighted Inverse Weibull Distribution: Statistical Properties and Applications

More information

THE WEIBULL GENERALIZED FLEXIBLE WEIBULL EXTENSION DISTRIBUTION

THE WEIBULL GENERALIZED FLEXIBLE WEIBULL EXTENSION DISTRIBUTION Journal of Data Science 14(2016), 453-478 THE WEIBULL GENERALIZED FLEXIBLE WEIBULL EXTENSION DISTRIBUTION Abdelfattah Mustafa, Beih S. El-Desouky, Shamsan AL-Garash Department of Mathematics, Faculty of

More information

THE FIVE PARAMETER LINDLEY DISTRIBUTION. Dept. of Statistics and Operations Research, King Saud University Saudi Arabia,

THE FIVE PARAMETER LINDLEY DISTRIBUTION. Dept. of Statistics and Operations Research, King Saud University Saudi Arabia, Pak. J. Statist. 2015 Vol. 31(4), 363-384 THE FIVE PARAMETER LINDLEY DISTRIBUTION Abdulhakim Al-Babtain 1, Ahmed M. Eid 2, A-Hadi N. Ahmed 3 and Faton Merovci 4 1 Dept. of Statistics and Operations Research,

More information

A GENERALIZED CLASS OF EXPONENTIATED MODI ED WEIBULL DISTRIBUTION WITH APPLICATIONS

A GENERALIZED CLASS OF EXPONENTIATED MODI ED WEIBULL DISTRIBUTION WITH APPLICATIONS Journal of Data Science 14(2016), 585-614 A GENERALIZED CLASS OF EXPONENTIATED MODI ED WEIBULL DISTRIBUTION WITH APPLICATIONS Shusen Pu 1 ; Broderick O. Oluyede 2, Yuqi Qiu 3 and Daniel Linder 4 Abstract:

More information

A New Class of Generalized Dagum. Distribution with Applications. to Income and Lifetime Data

A New Class of Generalized Dagum. Distribution with Applications. to Income and Lifetime Data Journal of Statistical and Econometric Methods, vol.3, no.2, 2014, 125-151 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2014 A New Class of Generalized Dagum Distribution with Applications

More information

Different methods of estimation for generalized inverse Lindley distribution

Different methods of estimation for generalized inverse Lindley distribution Different methods of estimation for generalized inverse Lindley distribution Arbër Qoshja & Fatmir Hoxha Department of Applied Mathematics, Faculty of Natural Science, University of Tirana, Albania,, e-mail:

More information

A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME

A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME STATISTICS IN TRANSITION new series, June 07 Vol. 8, No., pp. 9 30, DOI: 0.307/stattrans-06-07 A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME Rama Shanker,

More information

Theoretical Properties of Weighted Generalized. Rayleigh and Related Distributions

Theoretical Properties of Weighted Generalized. Rayleigh and Related Distributions Theoretical Mathematics & Applications, vol.2, no.2, 22, 45-62 ISSN: 792-9687 (print, 792-979 (online International Scientific Press, 22 Theoretical Properties of Weighted Generalized Rayleigh and Related

More information

The Lindley-Poisson distribution in lifetime analysis and its properties

The Lindley-Poisson distribution in lifetime analysis and its properties The Lindley-Poisson distribution in lifetime analysis and its properties Wenhao Gui 1, Shangli Zhang 2 and Xinman Lu 3 1 Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth,

More information

Beta-Linear Failure Rate Distribution and its Applications

Beta-Linear Failure Rate Distribution and its Applications JIRSS (2015) Vol. 14, No. 1, pp 89-105 Beta-Linear Failure Rate Distribution and its Applications A. A. Jafari, E. Mahmoudi Department of Statistics, Yazd University, Yazd, Iran. Abstract. We introduce

More information

Package LindleyR. June 23, 2016

Package LindleyR. June 23, 2016 Type Package Package LindleyR June 23, 2016 Title The Lindley Distribution and Its Modifications Version 1.1.0 License GPL (>= 2) Date 2016-05-22 Author Josmar Mazucheli, Larissa B. Fernandes and Ricardo

More information

THE MODIFIED EXPONENTIAL DISTRIBUTION WITH APPLICATIONS. Department of Statistics, Malayer University, Iran

THE MODIFIED EXPONENTIAL DISTRIBUTION WITH APPLICATIONS. Department of Statistics, Malayer University, Iran Pak. J. Statist. 2017 Vol. 33(5), 383-398 THE MODIFIED EXPONENTIAL DISTRIBUTION WITH APPLICATIONS Mahdi Rasekhi 1, Morad Alizadeh 2, Emrah Altun 3, G.G. Hamedani 4 Ahmed Z. Afify 5 and Munir Ahmad 6 1

More information

The Marshall-Olkin Flexible Weibull Extension Distribution

The Marshall-Olkin Flexible Weibull Extension Distribution The Marshall-Olkin Flexible Weibull Extension Distribution Abdelfattah Mustafa, B. S. El-Desouky and Shamsan AL-Garash arxiv:169.8997v1 math.st] 25 Sep 216 Department of Mathematics, Faculty of Science,

More information

Logistic-Modified Weibull Distribution and Parameter Estimation

Logistic-Modified Weibull Distribution and Parameter Estimation International Journal of Contemporary Mathematical Sciences Vol. 13, 2018, no. 1, 11-23 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2018.71135 Logistic-Modified Weibull Distribution and

More information

The Beta Lindley-Poisson Distribution with Applications

The Beta Lindley-Poisson Distribution with Applications Georgia Southern University Digital Commons@Georgia Southern Mathematical Sciences Faculty Publications Department of Mathematical Sciences 26 The Beta Lindley-Poisson Distribution with Applications Broderick

More information

A New Class of Generalized Power Lindley. Distribution with Applications to Lifetime Data

A New Class of Generalized Power Lindley. Distribution with Applications to Lifetime Data Theoretical Mathematics & Applications, vol.5, no.1, 215, 53-96 ISSN: 1792-9687 (print, 1792-979 (online Scienpress Ltd, 215 A New Class of Generalized Power Lindley Distribution with Applications to Lifetime

More information

PROPERTIES AND DATA MODELLING APPLICATIONS OF THE KUMARASWAMY GENERALIZED MARSHALL-OLKIN-G FAMILY OF DISTRIBUTIONS

PROPERTIES AND DATA MODELLING APPLICATIONS OF THE KUMARASWAMY GENERALIZED MARSHALL-OLKIN-G FAMILY OF DISTRIBUTIONS Journal of Data Science 605-620, DOI: 10.6339/JDS.201807_16(3.0009 PROPERTIES AND DATA MODELLING APPLICATIONS OF THE KUMARASWAMY GENERALIZED MARSHALL-OLKIN-G FAMILY OF DISTRIBUTIONS Subrata Chakraborty

More information

The Inverse Weibull Inverse Exponential. Distribution with Application

The Inverse Weibull Inverse Exponential. Distribution with Application International Journal of Contemporary Mathematical Sciences Vol. 14, 2019, no. 1, 17-30 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2019.913 The Inverse Weibull Inverse Exponential Distribution

More information

Two Weighted Distributions Generated by Exponential Distribution

Two Weighted Distributions Generated by Exponential Distribution Journal of Mathematical Extension Vol. 9, No. 1, (2015), 1-12 ISSN: 1735-8299 URL: http://www.ijmex.com Two Weighted Distributions Generated by Exponential Distribution A. Mahdavi Vali-e-Asr University

More information

WEIBULL lindley DISTRIBUTION

WEIBULL lindley DISTRIBUTION WEIBULL lindley DISTRIBUTION Authors: A. Asgharzadeh Department of Statistics University of Mazandaran Babolsar Iran S. Nadarajah School of Mathematics University of Manchester Manchester M13 9PL, UK email:

More information

arxiv: v1 [stat.ap] 12 Jun 2014

arxiv: v1 [stat.ap] 12 Jun 2014 On Lindley-Exponential Distribution: Properties and Application Deepesh Bhati 1 and Mohd. Aamir Malik 2 arxiv:146.316v1 [stat.ap] 12 Jun 214 1 Assistant Professor, Department of Statistics, Central University

More information

The Gamma Generalized Pareto Distribution with Applications in Survival Analysis

The Gamma Generalized Pareto Distribution with Applications in Survival Analysis International Journal of Statistics and Probability; Vol. 6, No. 3; May 217 ISSN 1927-732 E-ISSN 1927-74 Published by Canadian Center of Science and Education The Gamma Generalized Pareto Distribution

More information

A New Method for Generating Distributions with an Application to Exponential Distribution

A New Method for Generating Distributions with an Application to Exponential Distribution A New Method for Generating Distributions with an Application to Exponential Distribution Abbas Mahdavi & Debasis Kundu Abstract Anewmethodhasbeenproposedtointroduceanextraparametertoafamilyofdistributions

More information

The Kumaraswamy Gompertz distribution

The Kumaraswamy Gompertz distribution Journal of Data Science 13(2015), 241-260 The Kumaraswamy Gompertz distribution Raquel C. da Silva a, Jeniffer J. D. Sanchez b, F abio P. Lima c, Gauss M. Cordeiro d Departamento de Estat ıstica, Universidade

More information

Kybernetika. Hamzeh Torabi; Narges Montazeri Hedesh The gamma-uniform distribution and its applications. Terms of use:

Kybernetika. Hamzeh Torabi; Narges Montazeri Hedesh The gamma-uniform distribution and its applications. Terms of use: Kybernetika Hamzeh Torabi; Narges Montazeri Hedesh The gamma-uniform distribution and its applications Kybernetika, Vol. 48 (202), No., 6--30 Persistent URL: http://dml.cz/dmlcz/4206 Terms of use: Institute

More information

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution Communications for Statistical Applications and Methods 2016, Vol. 23, No. 6, 517 529 http://dx.doi.org/10.5351/csam.2016.23.6.517 Print ISSN 2287-7843 / Online ISSN 2383-4757 A comparison of inverse transform

More information

The Proportional Likelihood Ratio Order for Lindley Distribution

The Proportional Likelihood Ratio Order for Lindley Distribution Communications of the Korean Statistical Society 2011, Vol. 18, No. 4, 485 493 DOI: 10.5351/CKSS.2011.18.4.485 The Proportional Likelihood Ratio Order for Lindley Distribution Jarrahiferiz, J. a, Mohtashami

More information

A Quasi Gamma Distribution

A Quasi Gamma Distribution 08; 3(4): 08-7 ISSN: 456-45 Maths 08; 3(4): 08-7 08 Stats & Maths www.mathsjournal.com Received: 05-03-08 Accepted: 06-04-08 Rama Shanker Department of Statistics, College of Science, Eritrea Institute

More information

A New Burr XII-Weibull-Logarithmic Distribution for Survival and Lifetime Data Analysis: Model, Theory and Applications

A New Burr XII-Weibull-Logarithmic Distribution for Survival and Lifetime Data Analysis: Model, Theory and Applications Article A New Burr XII-Weibull-Logarithmic Distribution for Survival and Lifetime Data Analysis: Model, Theory and Applications Broderick O. Oluyede 1,, Boikanyo Makubate 2, Adeniyi F. Fagbamigbe 2,3 and

More information

The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications

The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications Gauss M. Cordeiro Morad Alizadeh Edwin M.M.Ortega and Luis H. Valdivieso Serrano Abstract We study some mathematical

More information

Generalized Transmuted -Generalized Rayleigh Its Properties And Application

Generalized Transmuted -Generalized Rayleigh Its Properties And Application Journal of Experimental Research December 018, Vol 6 No 4 Email: editorinchief.erjournal@gmail.com editorialsecretary.erjournal@gmail.com Received: 10th April, 018 Accepted for Publication: 0th Nov, 018

More information

Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution

Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution Biswabrata Pradhan & Debasis Kundu Abstract In this article the Bayes estimates of two-parameter gamma distribution is considered.

More information

MARSHALL-OLKIN EXTENDED POWER FUNCTION DISTRIBUTION I. E. Okorie 1, A. C. Akpanta 2 and J. Ohakwe 3

MARSHALL-OLKIN EXTENDED POWER FUNCTION DISTRIBUTION I. E. Okorie 1, A. C. Akpanta 2 and J. Ohakwe 3 MARSHALL-OLKIN EXTENDED POWER FUNCTION DISTRIBUTION I. E. Okorie 1, A. C. Akpanta 2 and J. Ohakwe 3 1 School of Mathematics, University of Manchester, Manchester M13 9PL, UK 2 Department of Statistics,

More information

On the Comparison of Fisher Information of the Weibull and GE Distributions

On the Comparison of Fisher Information of the Weibull and GE Distributions On the Comparison of Fisher Information of the Weibull and GE Distributions Rameshwar D. Gupta Debasis Kundu Abstract In this paper we consider the Fisher information matrices of the generalized exponential

More information

The Kumaraswamy-Burr Type III Distribution: Properties and Estimation

The Kumaraswamy-Burr Type III Distribution: Properties and Estimation British Journal of Mathematics & Computer Science 14(2): 1-21, 2016, Article no.bjmcs.19958 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org The Kumaraswamy-Burr Type III Distribution:

More information

Dagum-Poisson Distribution: Model, Properties and Application

Dagum-Poisson Distribution: Model, Properties and Application Georgia Southern University Digital Commons@Georgia Southern Mathematical Sciences Faculty Publications Mathematical Sciences, Department of 4-26-2016 Dagum-Poisson Distribution: Model, Properties and

More information

The Gamma-Generalized Inverse Weibull. Distribution with Applications to. Pricing and Lifetime Data

The Gamma-Generalized Inverse Weibull. Distribution with Applications to. Pricing and Lifetime Data Journal of Computations & Modelling, vol.7, no.2, 2017, 1-28 ISSN: 1792-7625 (print), 1792-8850 (online) Scienpress Ltd, 2017 The Gamma-Generalized Inverse Weibull Distribution with Applications to Pricing

More information

arxiv: v1 [math.st] 9 Mar 2016

arxiv: v1 [math.st] 9 Mar 2016 An Extension of the Generalized Linear Failure Rate arxiv:163.31v1 [math.st] 9 Mar 216 Distribution M. R. Kazemi, A. A. Jafari, S. Tahmasebi Department of Statistics, Fasa University, Fasa, Iran Department

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

Burr Type X Distribution: Revisited

Burr Type X Distribution: Revisited Burr Type X Distribution: Revisited Mohammad Z. Raqab 1 Debasis Kundu Abstract In this paper, we consider the two-parameter Burr-Type X distribution. We observe several interesting properties of this distribution.

More information

On the estimation of stress strength reliability parameter of inverted exponential distribution

On the estimation of stress strength reliability parameter of inverted exponential distribution International Journal of Scientific World, 3 (1) (2015) 98-112 www.sciencepubco.com/index.php/ijsw c Science Publishing Corporation doi: 10.14419/ijsw.v3i1.4329 Research Paper On the estimation of stress

More information

The Exponentiated Weibull-Power Function Distribution

The Exponentiated Weibull-Power Function Distribution Journal of Data Science 16(2017), 589-614 The Exponentiated Weibull-Power Function Distribution Amal S. Hassan 1, Salwa M. Assar 2 1 Department of Mathematical Statistics, Cairo University, Egypt. 2 Department

More information

The Distributions of Sums, Products and Ratios of Inverted Bivariate Beta Distribution 1

The Distributions of Sums, Products and Ratios of Inverted Bivariate Beta Distribution 1 Applied Mathematical Sciences, Vol. 2, 28, no. 48, 2377-2391 The Distributions of Sums, Products and Ratios of Inverted Bivariate Beta Distribution 1 A. S. Al-Ruzaiza and Awad El-Gohary 2 Department of

More information

Bivariate Weibull-power series class of distributions

Bivariate Weibull-power series class of distributions Bivariate Weibull-power series class of distributions Saralees Nadarajah and Rasool Roozegar EM algorithm, Maximum likelihood estimation, Power series distri- Keywords: bution. Abstract We point out that

More information

Transmuted New Weibull-Pareto Distribution and its Applications

Transmuted New Weibull-Pareto Distribution and its Applications Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 932-9466 Vol. 3, Issue (June 28), pp. 3-46 Applications and Applied Mathematics: An International Journal (AAM) Transmuted New Weibull-Pareto Distribution

More information

On the Lindley family distribution: quantile function, limiting distributions of sample minima and maxima and entropies

On the Lindley family distribution: quantile function, limiting distributions of sample minima and maxima and entropies On the Lindley family distribution: quantile function, iting distributions of sample minima and maxima and entropies A. E. Bensid and H.Zeghdoudi Abstract. We propose in this paper an overview of several

More information

Inferences on stress-strength reliability from weighted Lindley distributions

Inferences on stress-strength reliability from weighted Lindley distributions Inferences on stress-strength reliability from weighted Lindley distributions D.K. Al-Mutairi, M.E. Ghitany & Debasis Kundu Abstract This paper deals with the estimation of the stress-strength parameter

More information

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION Pak. J. Statist. 2017 Vol. 33(1), 37-61 INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION A. M. Abd AL-Fattah, A.A. EL-Helbawy G.R. AL-Dayian Statistics Department, Faculty of Commerce, AL-Azhar

More information

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring A. Ganguly, S. Mitra, D. Samanta, D. Kundu,2 Abstract Epstein [9] introduced the Type-I hybrid censoring scheme

More information

Properties a Special Case of Weighted Distribution.

Properties a Special Case of Weighted Distribution. Applied Mathematics, 017, 8, 808-819 http://www.scirp.org/journal/am ISSN Online: 15-79 ISSN Print: 15-785 Size Biased Lindley Distribution and Its Properties a Special Case of Weighted Distribution Arooj

More information

The Lomax-Exponential Distribution, Some Properties and Applications

The Lomax-Exponential Distribution, Some Properties and Applications Statistical Research and Training Center دوره ی ١٣ شماره ی ٢ پاییز و زمستان ١٣٩۵ صص ١۵٣ ١٣١ 131 153 (2016): 13 J. Statist. Res. Iran DOI: 10.18869/acadpub.jsri.13.2.131 The Lomax-Exponential Distribution,

More information

Size-biased discrete two parameter Poisson-Lindley Distribution for modeling and waiting survival times data

Size-biased discrete two parameter Poisson-Lindley Distribution for modeling and waiting survival times data IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 1 Ver. III. (Feb. 2014), PP 39-45 Size-biased discrete two parameter Poisson-Lindley Distribution for modeling

More information

WEIBULL BURR X DISTRIBUTION PROPERTIES AND APPLICATION

WEIBULL BURR X DISTRIBUTION PROPERTIES AND APPLICATION Pak. J. Statist. 2017 Vol. 335, 315-336 WEIBULL BURR X DISTRIBUTION PROPERTIES AND APPLICATION Noor A. Ibrahim 1,2, Mundher A. Khaleel 1,3, Faton Merovci 4 Adem Kilicman 1 and Mahendran Shitan 1,2 1 Department

More information

Truncated Weibull-G More Flexible and More Reliable than Beta-G Distribution

Truncated Weibull-G More Flexible and More Reliable than Beta-G Distribution International Journal of Statistics and Probability; Vol. 6 No. 5; September 217 ISSN 1927-732 E-ISSN 1927-74 Published by Canadian Center of Science and Education Truncated Weibull-G More Flexible and

More information

Statistics Masters Comprehensive Exam March 21, 2003

Statistics Masters Comprehensive Exam March 21, 2003 Statistics Masters Comprehensive Exam March 21, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis

The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis Sankhyā : The Indian Journal of Statistics 2017, Volume 79-B, Part 2, pp. 316-335 c 2017, Indian Statistical Institute The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis

More information

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data International Mathematical Forum, 3, 2008, no. 33, 1643-1654 Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data A. Al-khedhairi Department of Statistics and O.R. Faculty

More information

On Five Parameter Beta Lomax Distribution

On Five Parameter Beta Lomax Distribution ISSN 1684-840 Journal of Statistics Volume 0, 01. pp. 10-118 On Five Parameter Beta Lomax Distribution Muhammad Rajab 1, Muhammad Aleem, Tahir Nawaz and Muhammad Daniyal 4 Abstract Lomax (1954) developed

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Chapters 13-15 Stat 477 - Loss Models Chapters 13-15 (Stat 477) Parameter Estimation Brian Hartman - BYU 1 / 23 Methods for parameter estimation Methods for parameter estimation Methods

More information

The Kumaraswamy-G Poisson Family of Distributions

The Kumaraswamy-G Poisson Family of Distributions Journal of Statistical Theory and Applications, Vol. 14, No. 3 (September 2015), 222-239 The Kumaraswamy-G Poisson Family of Distributions Manoel Wallace A. Ramos 1,, Pedro Rafael D. Marinho 2, Gauss M.

More information

The Compound Family of Generalized Inverse Weibull Power Series Distributions

The Compound Family of Generalized Inverse Weibull Power Series Distributions British Journal of Applied Science & Technology 14(3): 1-18 2016 Article no.bjast.23215 ISSN: 2231-0843 NLM ID: 101664541 SCIENCEDOMAIN international www.sciencedomain.org The Compound Family of Generalized

More information

Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter

Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter Statistics Preprints Statistics 10-8-2002 Bayesian Life Test Planning for the Weibull Distribution with Given Shape Parameter Yao Zhang Iowa State University William Q. Meeker Iowa State University, wqmeeker@iastate.edu

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

The comparative studies on reliability for Rayleigh models

The comparative studies on reliability for Rayleigh models Journal of the Korean Data & Information Science Society 018, 9, 533 545 http://dx.doi.org/10.7465/jkdi.018.9..533 한국데이터정보과학회지 The comparative studies on reliability for Rayleigh models Ji Eun Oh 1 Joong

More information

The Burr X-Exponential Distribution: Theory and Applications

The Burr X-Exponential Distribution: Theory and Applications Proceedings of the World Congress on Engineering 7 Vol I WCE 7, July 5-7, 7, London, U.K. The Burr X- Distribution: Theory Applications Pelumi E. Oguntunde, Member, IAENG, Adebowale O. Adejumo, Enahoro

More information

Poisson-odd generalized exponential family of distributions: Theory and Applications

Poisson-odd generalized exponential family of distributions: Theory and Applications Poisson-odd generalized exponential family of distributions: Theory and Applications Mustapha Muhammad Abstract In this paper, we introduce a new family of distributions called the Poisson-odd generalized

More information

Weighted Inverse Weibull and Beta-Inverse Weibull Distribution

Weighted Inverse Weibull and Beta-Inverse Weibull Distribution Georgia Southern University Digital Commons@Georgia Southern Electronic Theses & Dissertations Graduate Studies, Jack N. Averitt College of Spring 21 Weighted Inverse Weibull and Beta-Inverse Weibull Distribution

More information

The gamma half-cauchy distribution: properties and applications

The gamma half-cauchy distribution: properties and applications Hacettepe Journal of Mathematics and Statistics Volume 45 4) 206), 43 59 The gamma half-cauchy distribution: properties and applications Ayman Alzaatreh, M. Mansoor, M. H. Tahir, Ÿ, M. Zubair and Shakir

More information

The Gamma Modified Weibull Distribution

The Gamma Modified Weibull Distribution Chilean Journal of Statistics Vol. 6, No. 1, April 2015, 37 48 Distribution theory Research Paper The Gamma Modified Weibull Distribution Gauss M. Cordeiro, William D. Aristizábal, Dora M. Suárez and Sébastien

More information

The Transmuted Weibull-G Family of Distributions

The Transmuted Weibull-G Family of Distributions The Transmuted Weibull-G Family of Distributions Morad Alizadeh, Mahdi Rasekhi Haitham M.Yousof and G.G. Hamedani Abstract We introduce a new family of continuous distributions called the transmuted Weibull-G

More information

An Extension of the Generalized Exponential Distribution

An Extension of the Generalized Exponential Distribution An Extension of the Generalized Exponential Distribution Debasis Kundu and Rameshwar D. Gupta Abstract The two-parameter generalized exponential distribution has been used recently quite extensively to

More information

MAXIMUM LQ-LIKELIHOOD ESTIMATION FOR THE PARAMETERS OF MARSHALL-OLKIN EXTENDED BURR XII DISTRIBUTION

MAXIMUM LQ-LIKELIHOOD ESTIMATION FOR THE PARAMETERS OF MARSHALL-OLKIN EXTENDED BURR XII DISTRIBUTION Available online: December 20, 2017 Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 17 34 (2019) DOI: 10.1501/Commua1_0000000887 ISSN 1303 5991 http://communications.science.ankara.edu.tr/index.php?series=a1

More information

Bivariate Geometric (Maximum) Generalized Exponential Distribution

Bivariate Geometric (Maximum) Generalized Exponential Distribution Bivariate Geometric (Maximum) Generalized Exponential Distribution Debasis Kundu 1 Abstract In this paper we propose a new five parameter bivariate distribution obtained by taking geometric maximum of

More information

Further results involving Marshall Olkin log logistic distribution: reliability analysis, estimation of the parameter, and applications

Further results involving Marshall Olkin log logistic distribution: reliability analysis, estimation of the parameter, and applications DOI 1.1186/s464-16-27- RESEARCH Open Access Further results involving Marshall Olkin log logistic distribution: reliability analysis, estimation of the parameter, and applications Arwa M. Alshangiti *,

More information

New Flexible Weibull Distribution

New Flexible Weibull Distribution ISSN (Print) : 232 3765 (An ISO 3297: 27 Certified Organiation) Vol. 6, Issue 5, May 217 New Flexible Weibull Distribution Zubair Ahmad 1* and Zawar Hussain 2 Research Scholar, Department of Statistics,

More information

International Journal of Physical Sciences

International Journal of Physical Sciences Vol. 9(4), pp. 71-78, 28 February, 2014 DOI: 10.5897/IJPS2013.4078 ISSN 1992-1950 Copyright 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps International Journal

More information

Generalized Exponential Distribution: Existing Results and Some Recent Developments

Generalized Exponential Distribution: Existing Results and Some Recent Developments Generalized Exponential Distribution: Existing Results and Some Recent Developments Rameshwar D. Gupta 1 Debasis Kundu 2 Abstract Mudholkar and Srivastava [25] introduced three-parameter exponentiated

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

On q-gamma Distributions, Marshall-Olkin q-gamma Distributions and Minification Processes

On q-gamma Distributions, Marshall-Olkin q-gamma Distributions and Minification Processes CHAPTER 4 On q-gamma Distributions, Marshall-Olkin q-gamma Distributions and Minification Processes 4.1 Introduction Several skewed distributions such as logistic, Weibull, gamma and beta distributions

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

Estimation for inverse Gaussian Distribution Under First-failure Progressive Hybird Censored Samples

Estimation for inverse Gaussian Distribution Under First-failure Progressive Hybird Censored Samples Filomat 31:18 (217), 5743 5752 https://doi.org/1.2298/fil1718743j Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Estimation for

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Topp-Leone Inverse Weibull Distribution: Theory and Application

Topp-Leone Inverse Weibull Distribution: Theory and Application EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 5, 2017, 1005-1022 ISSN 1307-5543 www.ejpam.com Published by New York Business Global Topp-Leone Inverse Weibull Distribution: Theory and Application

More information

The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications

The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications Marquette University e-publications@marquette Mathematics, Statistics and Computer Science Faculty Research and Publications Mathematics, Statistics and Computer Science, Department of 1-1-2013 The Zografos-Balakrishnan

More information

The Kumaraswamy-geometric distribution

The Kumaraswamy-geometric distribution Akinsete et al. Journal of Statistical Distributions and Applications 2014 1:17 RESEARCH Open Access The Kumaraswamy-geometric distribution Alfred Akinsete 1* FelixFamoye 2 and Carl Lee 2 *Correspondence:

More information

0, otherwise, (a) Find the value of c that makes this a valid pdf. (b) Find P (Y < 5) and P (Y 5). (c) Find the mean death time.

0, otherwise, (a) Find the value of c that makes this a valid pdf. (b) Find P (Y < 5) and P (Y 5). (c) Find the mean death time. 1. In a toxicology experiment, Y denotes the death time (in minutes) for a single rat treated with a toxin. The probability density function (pdf) for Y is given by cye y/4, y > 0 (a) Find the value of

More information

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions Communications for Statistical Applications and Methods 03, Vol. 0, No. 5, 387 394 DOI: http://dx.doi.org/0.535/csam.03.0.5.387 Noninformative Priors for the Ratio of the Scale Parameters in the Inverted

More information

Some Results on Moment of Order Statistics for the Quadratic Hazard Rate Distribution

Some Results on Moment of Order Statistics for the Quadratic Hazard Rate Distribution J. Stat. Appl. Pro. 5, No. 2, 371-376 (2016) 371 Journal of Statistics Applications & Probability An International Journal http://dx.doi.org/10.18576/jsap/050218 Some Results on Moment of Order Statistics

More information

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger) 8 HENRIK HULT Lecture 2 3. Some common distributions in classical and Bayesian statistics 3.1. Conjugate prior distributions. In the Bayesian setting it is important to compute posterior distributions.

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

The Mc-Γ Distribution and Its Statistical Properties: An Application to Reliability Data

The Mc-Γ Distribution and Its Statistical Properties: An Application to Reliability Data www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1 No. 1; May 212 The Mc-Γ Distribution and Its Statistical Properties: An Application to Reliability Data Francisco W. P. Marciano

More information

Transmuted Exponentiated Gumbel Distribution (TEGD) and its Application to Water Quality Data

Transmuted Exponentiated Gumbel Distribution (TEGD) and its Application to Water Quality Data Transmuted Exponentiated Gumbel Distribution (TEGD) and its Application to Water Quality Data Deepshikha Deka Department of Statistics North Eastern Hill University, Shillong, India deepshikha.deka11@gmail.com

More information

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters Communications for Statistical Applications and Methods 2017, Vol. 24, No. 5, 519 531 https://doi.org/10.5351/csam.2017.24.5.519 Print ISSN 2287-7843 / Online ISSN 2383-4757 Goodness-of-fit tests for randomly

More information

The Log-generalized inverse Weibull Regression Model

The Log-generalized inverse Weibull Regression Model The Log-generalized inverse Weibull Regression Model Felipe R. S. de Gusmão Universidade Federal Rural de Pernambuco Cintia M. L. Ferreira Universidade Federal Rural de Pernambuco Sílvio F. A. X. Júnior

More information

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests International Journal of Performability Engineering, Vol., No., January 24, pp.3-4. RAMS Consultants Printed in India Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests N. CHANDRA *, MASHROOR

More information

A NEW WEIBULL-G FAMILY OF DISTRIBUTIONS

A NEW WEIBULL-G FAMILY OF DISTRIBUTIONS A NEW WEIBULL-G FAMILY OF DISTRIBUTIONS M.H.Tahir, M. Zubair, M. Mansoor, Gauss M. Cordeiro, Morad Alizadeh and G. G. Hamedani Abstract Statistical analysis of lifetime data is an important topic in reliability

More information

Transmuted Pareto distribution

Transmuted Pareto distribution ProbStat Forum, Volume 7, January 214, Pages 1 11 ISSN 974-3235 ProbStat Forum is an e-journal For details please visit wwwprobstatorgin Transmuted Pareto distribution Faton Merovci a, Llukan Puka b a

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information