arxiv: v3 [math.ap] 20 Mar 2018

Size: px
Start display at page:

Download "arxiv: v3 [math.ap] 20 Mar 2018"

Transcription

1 Mnmal tme problem for dscrete crowd models wth a localzed ector feld Mchel Duprez Morgan Morancey Francesco Ross arx: [math.ap] 20 Mar 2018 Abstract In ths work, we study the mnmal tme to steer a gen crowd to a desred confguraton. The control s a ector feld, representng a perturbaton of the crowd elocty, localzed on a fxed control set. We characterze the mnmal tme for a dscrete crowd model, both for exact and approxmate controllablty. Ths leads to an algorthm that computes the control and the mnmal tme. We fnally present a numercal smulaton. I. INTRODUCTION In recent years, the study of systems descrbng a crowd of nteractng agents has drawn a great nterest from the control communty. A better understandng of such nteracton phenomena can hae a strong mpact n seeral key applcatons, such as road traffc and egress problems for pedestrans. For few reews about ths topc, see e.g. [1], [2], [3], [4], [5], [6], [7]. Besde the descrpton of nteractons, t s now releant to study problems of control of crowds,.e. of controllng such systems by actng on few agents, or on a small subset of the confguraton space. The nature of the control problem reles on the model used to descrbe the crowd. In ths artcle, we focus on dscrete models, n whch the poston of each agent s clearly dentfed; the crowd dynamcs s descrbed by a large dmensonal ordnary dfferental equaton, n whch couplngs of terms represent nteractons. For control of such models, a large lterature s aalable, see e.g. reews [8], [9], [10], as well as applcatons, both to pedestran crowds [11], [12] and to road traffc [13], [14]. The key aspect of such crowd models, s that agents are consdered dentcal, or ndstngushable. Thus, control problems need to take nto account that each confguraton s ndeed defned modulo a permutaton of agents. Snce n general the number of agents s large, t s then nterestng to fnd methods n whch control goals (controllablty, optmal control) are reached wthout computng all the permutatons. In the present work, we study the followng dscrete model, where the crowd s descrbed by a ector wth nd components (n, d N ) representng the postons of n agents n the space R d. The natural (uncontrolled) ector Ths work has been carred out n the framework of Archmède Labex (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX ), funded by the Inestssements d Aenr French Goernment programme managed by the French Natonal Research Agency (ANR). M. Duprez and M. Morancey are wth Ax Marselle Unersté, CNRS, Centrale Marselle, I2M, Marselle, France mduprez@math.cnrs.fr morgan.morancey@un-amu.fr F. Ross s wth Dpartmento d Matematca Tullo Le-Cta, Unerstà degl Stud d Padoa, Va Treste 63, Padoa, Italy francesco.ross@math.unpd.t feld s denoted by : R d R d, assumed Lpschtz and unformly bounded. We act on the ector feld n a fxed subdoman ω of the space, whch wll be a nonempty open conex subset of R d. The admssble controls are thus functons of the form 1 ω u : R d R + R d. The dynamcs s gen by the followng ordnary dfferental equaton { ẋ (t) = (x (t)) + 1 ω (x (t))u(x (t), t), x (0) = x 0. (1) where X 0 := {x 0 1,..., x 0 n} R d s the ntal confguraton of the crowd. Ths representaton wth confguratons can be appled only f the dfferent agents are consdered dentcal or nterchangeable, as t s often the case for crowd models wth a large number of agents. The functon +1 ω u represents the elocty ector feld actng on the crowd X := {x 1,..., x n }. Thus we can modfy ths ector feld only on a gen nonempty open subset ω of the space R d. Ths knd of control s one of the orgnalty of our research. Such constrant s hghly non-tral, snce the control problem s non-lnear. At the best of our knowledge, mnmal tme problems n ths settng hae not been studed. Notce that (1) represents a specfc crowd model, as the elocty feld s gen, and nteractons between agents are not taken nto account. Neertheless, t s necessary to understand control propertes for such smple equatons as a frst step, before dealng wth ector felds dependng on the crowd tself. Moreoer, one can consder ths problem as the local perturbaton of an nteracton model along a reference trajectory descrbed by. The frst queston about control of (1) s to descrbe controllablty results,..e whch confguratons can be steered from one to another. We soled ths problem n [15], whose man results are recalled n Secton II. When controllablty s ensured, t s then nterestng to study mnmal tme problems. Indeed, from the theoretcal pont of ew, t s the frst problem n whch optmalty condtons can be naturally defned. More related to applcatons descrbed aboe, mnmal tme problems play a crucal role: egress problems can be descrbed n ths settng, whle traffc control s often descrbed n terms of mnmzaton of (maxmal or aerage) total trael tme. For dscrete models, the dynamcs can be wrtten n terms of fnte-dmensonal control systems. For ths reason, mnmal tme problems can sometmes be addressed wth classcal (lnear or non-lnear) control theory, see e.g. [16], [17], [18]. Our man am here s to dere a method that takes nto account the ndstngushablty of agents, wthout passng through the computaton of all possble permutatons.

2 Classcal methods are then not adapted. For ths reason, our man results presented n Secton II wll explctly dentfy fast algorthms to fnd mnmzng permutatons. Moreoer, these effcent methods wll be also useful for numercal methods, presented n Secton IV. REMARK 1.1: Another releant approach fo crowds modelng s gen by contnuous models. There, the dea s to represent the crowd by the spatal densty of agents; n ths settng, the eoluton of the densty soles a partal dfferental equaton of transport type. Nonlocal terms (such as conolutons) model the nteractons between the agents. For the few aalable results of control of such systems, see e.g. [19], [20], [21], [15], [22]. Ths paper s organsed as follows. In Sec. II, we ge the settng and our man results about the mnmal tme for (exact and approxmate) controllablty for (1). These results are proed n Sec. III. Fnally, n Sec. IV we ntroduce an algorthm to compute the nfmum tme for approxmate control of dscrete models and ge a numercal example. II. MAIN RESULTS To ensure the well-posedness of System (1), we search a control 1 ω u satsfyng the followng condton: CONDITION 1 (Carathéodory condton): Let 1 ω u be such that for all t R, x 1 ω u(x, t) s Lpschtz, for all x R d, t 1 ω u(x, t) s measurable and there exsts M > 0 such that 1 ω u M. In ths settng, System (1) s well defned. Then, the flow can be properly defned. DEFINITION 1: We defne the flow assocated to a ector feld w : R d R + R d satsfyng the Carathéodory condton as the applcaton (x 0, t) Φ w t (x 0 ) such that, for all x 0 R d, t Φ w t (x 0 ) s the unque soluton to { ẋ(t) = w(x(t), t) for a.e. t 0, x(0) = x 0. One of the key propertes of solutons to System (1) s that they cannot separate or merge partcles. Thus, the general nterestng settngs for crowd models s the one of dstnct confguratons as defned below. DEFINITION 2: A confguraton X = {x 1,..., x n } s sad to be dsjont f x x j for all j. Snce we deal wth eloctes + 1 ω u satsfyng the Carathéodory condton, f X 0 s a dsjont confguraton, then the soluton X(t) to System (1) s also a dsjont confguraton at each tme t 0. From now on, we wll assume that the followng condton s satsfed by ntal and fnal confguratons. CONDITION 2 (Geometrc condton): Let X 0, X 1 be two dsjont confguratons n R d satsfyng: () For each {1,..., n}, there exsts t 0 > 0 such that Φ t 0 (x 0 ) ω. () For each {1,..., n}, there exsts t 1 > 0 such that Φ t 1 (x 1 ) ω. The Geometrc Condton 2 means that the trajectory of each partcle crosses the control regon forward n tme and the trajectores of each poston of the target confguraton crosses the control regon backward n tme. It s the mnmal condton that we can expect to steer any ntal condton to any target. Indeed, we proed n [15] that one can approxmately steer an ntal to a fnal confguraton of the System (1) f they satsfy the Geometrc Condton 2. In the sequel, we wll defne the followng functons for all x R d and j {0, 1}: t 0 (x) := nf{t R + : Φ t (x) ω}, t 1 (x) := nf{t R + : Φ t(x) ω}, t 0 (x) := nf{t R + : Φ t (x) ω}, t 1 (x) := nf{t R + : Φ t(x) ω}. It s clear that t always holds t j (x) t j (x). In some stuatons, ths nequalty can be strct. For example, n Fgure 1, t holds t 1 (x 1 1) < t 1 (x 1 1). Moreoer, n ths specfc case these functons can een be dscontnous wth respect to x. x 0 1 Fg. 1. Example of dfference between t 1 (x 1 1 ) and t1 (x 1 1 ). For smplcty, we use the notatons x 1 1 ω x 1 1 t j := t j (x j ) and tj := tj (x j ), (2) for {1,..., n} and j {0, 1}. We then defne { M e (X 0, X 1 ) := max{t 0, t1 : = 1,..., n}, Ma (X 0, X 1 ) := max{t 0, t1 : = 1,..., n}. We now state our frst man result. THEOREM 2.1: Let X 0 := {x 0 1,..., x 0 n} and X 1 := {x 1 1,..., x 1 n} be dsjont confguratons satsfyng the Geometrc Condton 2. Arrange the sequences {t 0 } and {t 1 j } j to be ncreasngly and decreasngly ordered, respectely. Then M e (X 0, X 1 ) := max {1,...,n} t0 + t 1 (3) s the nfmum tme T e (X 0, X 1 ) for exact control of System (1) n the followng sense: () For each T > M e (X 0, X 1 ), System (1) s exactly controllable from X 0 to X 1 at tme T,.e. there exsts a control 1 ω u : R d R + R d satsfyng the Carathéodory condton and steerng X 0 exactly to X 1. () For each T (Me (X 0, X 1 ), M e (X 0, X 1 )], System (1) s not exactly controllable from X 0 to X 1. () There exsts (at most) a fnte number of tmes T [0, Me (X 0, X 1 )] for whch System (1) s exactly controllable from X 0 to X 1. We ge a proof of Theorem 2.1 n Secton III. We now turn to approxmate controllablty. We wll use the followng dstance between confguratons.

3 DEFINITION 3: Consder X 0 := {x 0 1,..., x 0 n} and X 1 := {x 1 1,..., x 1 n} two confguratons of R d and defne the dstance ( n ) X 0 X 1 1 := nf σ S n n x0 x 1 σ(), =1 where S n s the set of permutatons on {1,..., n}. Ths dstance 1 clearly takes nto account the ndstngushablty of agents, n the sense that ts alue does not depend on the orderng of X 0, X 1. We now state our second man result. THEOREM 2.2: Let X 0 := {x 0 1,..., x 0 n} and X 1 := {x 1 1,..., x 1 n} be dsjont confguratons satsfyng the Geometrc Condton 2. Arrange the sequences {t 0 } and {t 1 j} j to be ncreasngly and decreasngly ordered, respectely. Then M a (X 0, X 1 ) := max {1,...,n} t0 + t 1 s the nfmum tme T a (X 0, X 1 ) for approxmate controllablty of System (1) n the followng sense: () For each T > M a (X 0, X 1 ), System (1) s approxmately controllable from X 0 to X 1 at tme T,.e. for any ε > 0, there exsts a control 1 ω u satsfyng the Carathéodory condton such that the assocated soluton X(t) to System (1) satsfes X(T ) X 1 < ε. () For each T (M a (X 0, X 1 ), M a (X 0, X 1 )], System (1) s not approxmately controllable from X 0 to X 1. () There exsts (at most) a fnte number of tmes T [0, M a (X 0, X 1 )] for whch System (1) s approxmately controllable from X 0 to X 1. We ge a proof of Theorem 2.2 n Secton III. In both theorems, controllablty can occur at small tmes but t s a ery specfc stuaton whch s not entrely due to the control. See Remark 3.1 for examples. REMARK 2.1: It s well know that the notons of approxmate and exact controllablty are equalent for fnte dmensonal lnear systems, when the control acts lnearly, see e.g. [24]. We remark that t s not the case for System (1), whch hghlghts the fact that we are dealng wth a nonlnear control problem. The dfference s ndeed related to the fact that for exact and approxmate controllablty, tangent trajectores ge dfferent behaors. For example, n Fgure 1, f we denote by X 0 := {x 0 1} and X 1 := {x 1 1}, then t holds M a (X 0, X 1 ) < M e (X 0, X 1 ) due to the presence of a tangent trajectory. An approxmate trajectory s represented as dashed lnes n the case T (M a (X 0, X 1 ), M e (X 0, X 1 )) n Fgure 1. III. PROOFS OF MAIN RESULTS In ths secton, we proe Theorem 2.1 and 2.2 A. Mnmal tme for exact controllablty We frst obtan the followng result: PROPOSITION 1: Let X 0 := {x 0 1,..., x 0 n} R d and X 1 := {x 1 1,..., x 1 n} R d be two dsjont confguratons satsfyng the Geometrc Condton 2. Consder the sequences {t 0 } and {t 1 } gen n (2). Then M e (X 0, X 1 ) := mn max {1,...,n} t0 + t 1 σ() (4) σ S n s the nfmum tme T e (X 0, X 1 ) to exactly control System (1) n the sense of Theorem 2.1. Proof: We frst proe the result correspondng to Item () of Theorem 2.1. Let T := M e (X 0, X 1 ) + δ wth δ > 0. For all {1,..., n}, there exst s 0 (t 0, t0 + δ/3) and s 1 (t1, t1 + δ/3) such that y0 := Φ (x 0 s 0 ) ω and y1 := Φ (x 1 s 1 ) ω. Item (), Step 1: The goal s to buld a flow wth no ntersecton of the trajectores x (t), x j (t) wth j. For all, j {1,..., n}, we defne the cost K j (y 0, s 0, y 1 j, s 1 j) := (y 0, s 0 ) (y 1 j, T s 1 j) R d+1 f s 0 < T s 1 j and K j(y 0, s0, y1 j, s1 j ) := otherwse. Consder the mnmzaton problem: 1 nf π B n n n K j (y 0, s 0, yj 1, s 1 j)π j, (5),j=1 where B n s the set of the bstochastc n n matrces,.e. the matrces π := (π j ) 1,j n satsfyng, for all, j {1,..., n}, n =1 π j = 1, n j=1 π j = 1, π j 0. The nfmum n (5) s fnte snce T > M e (X 0, X 1 ). The problem (5) s a lnear mnmzaton problem on the closed conex set B n. Hence, as a consequence of Kren-Mlman s Theorem (see [25]), the functonal (5) admts a mnmum at an extremal pont of B n,.e. a permutaton matrx. Let σ be a permutaton, for whch the assocated matrx mnmzes (5). Consder the straght trajectores y (t) steerng y 0 at tme s0 to yσ() 1 at tme T s1 σ(), that are explctly defned by y (t) := T s1 σ() t T s 1 σ() y s0 0 + t s 0 T s 1 σ() y s0 σ() 1. (6) We now proe by contradcton that these trajectores hae no ntersecton: Assume that there exst and j such that the assocated trajectores y (t) and y j (t) ntersect. If we assocate y 0 and yj 0 to yσ(j) 0 and yσ() 0 respectely,.e. we consder the permutaton σ T,j, where T,j s the transposton between the th and the j th elements, then the assocated cost (5) s strctly smaller than the cost assocated to σ (see Fgure 2). Ths s n contradcton wth the fact that σ mnmzes (5). (y 0, s0 ) (y 0 j, s0 j ) (y 1 σ(j), T s1 σ(j) ) (y 1 σ(), T s1 σ() ) 1 Ths dstance concdes wth the Wassersten dstance for emprcal measures (see [23, p. 5]). Fg. 2. An optmal permutaton.

4 Item (), Step 2: We now defne a correspondng control sendng x 0 to x 1 σ() for all {1,..., n}. Consder a trajectory z satsfyng: z (t) := Φ t (x 0 ) for all t (0, s0 ), y (t) for all t (s 0, T s1 σ() ), Φ t T (x1 ) for all t (T s1 σ(), T ). The trajectores z hae no ntersecton. Snce ω s conex, then, usng the defnton of the trajectory y (t) n (6), the ponts y (t) belong to ω for all t (s 0, T s1 σ() ). For all {1,..., n}, choose r, R satsfyng 0 < r < R and such that for all t (s 0, T s1 σ() ) t holds B r (z (t)) B R (z (t)) ω and, for all t (0, T ) and, j {1,..., n}, t holds B R (z (t)) B Rj (z j (t)) =. Such rad r, R exst as a consequence of the fact that we deal wth a fnte number of trajectores that do not cross. The correspondng control can be chosen as a C functon satsfyng yσ() 1 y0 T s 1 σ() f t (s0, T s1 σ() ) s0 and x B r (z (t)), u(x, t) := f t (s 0 u(x, t) := 0, T s1 σ() ) and x B R (z (t)), u(x, t) := 0 f t (s 0, T s1 σ() ). Ths control then satsfes the Carathéodory condton and each -th component of the assocated soluton to System (1) s z (t), thus u steers x 0 to x1 σ() n tme T. Item (): Assume that System (1) s exactly controllable at a tme T > Me (X 0, X 1 ), and consder σ the correspondng permutaton defned by x (T ) = x 1 σ(). The dea of the proof s that the trajectory steers x 0 to ω n tme t0, then t moes nsde ω for a small but poste tme, then t steers a pont from ω to x σ() n tme t1 σ(), hence T > t0 + t1 σ(). Fx an ndex {1,..., n}. Frst recall the defnton of t 0, t1 σ() and obsere that t holds both T > t0 and T > t 1 σ(). Then, the trajectory x (t) satsfes 2 x (t) ω for all t (0, t 0 ), as well as x (t) ω for all t (T t 1 σ(), T ). Moreoer, we proe that t exsts τ (0, T ) for whch t holds x (τ ) ω. By contradcton, f such τ does not exst, then the trajectory x (t) neer crosses the control regon, hence t concdes wth Φ t (x 0 ). But n ths case, by defnton of t 0 as the nfmum of tmes such that Φ t (x 0 ) ω and recallng that t 0 < T, there exsts τ (t 0, T ) such that t holds x (τ ) = Φ τ (x 0 ) ω. Contradcton. Also obsere that ω s open, hence there exsts ɛ such that x (τ) ω for all τ (τ ɛ, τ + ɛ). We merge the condtons x (t) ω for all t (0, t 0 ) (T t 1 σ(), T ) wth x (τ) ω for all τ (τ ɛ, τ + ɛ ) wth a gen τ (0, T ). Ths mples that t holds t 0 < τ < T t 1 σ(), hence T > t 0 + t 1 σ(). 2 These estmates hold een f x 0 ω, for whch t holds t0 = 0. Such estmate holds for any {1,..., n}. Thus, usng the defnton of M e (X 0, X 1 ), t holds T > M e (X 0, X 1 ). Item (): By defnton of Me (X 0, X 1 ), there exsts l {0, 1} and m {1,..., n} such that Me (X 0, X 1 ) = t l m. We only study the case l = 0, snce the case l = 1 can be recoered by reersng tme. By defnton of t 0 m, the trajectory Φ t (x 0 m) satsfes Φ t (x 0 m) ω for all t [0, Me (X 0, X 1 )]. Then, for any choce of the control u localzed n ω, t holds Φ +1ωu t (x 0 m) = Φ t (x 0 m),.e. the choce of the control plays no role n the trajectory startng from x 0 m on the tme nteral t [0, Me (X 0, X 1 )]. Obsere that t holds (Φ t (x 0 m)) 0 for all t [0, Me (X 0, X 1 )], due to the fact that the ector feld s tme-ndependent and the trajectory Φ t (x 0 m) enters ω for some t > Me (X 0, X 1 ). We now proe that the set of tmes t [0, Me (X 0, X 1 )] for whch exact controllablty holds s fnte. A necessary condton to hae exact controllablty at tme t s that the equaton Φ t (x 0 m) = x 1 admts a soluton for some tme t [0, Me (X 0, X 1 )] and ndex {1,..., n}. Then, we am to proe that the set of tmes-ndexes (t, ) solng such equaton s fnte. By contradcton, assume to hae an nfnte number of solutons (t, ). Snce the set {1,..., n} s fnte, ths mples that there exsts an ndex I and an nfnte number of (dstnct) tmes t k [0, Me (X 0, X 1 )] such that Φ t k (x 0 m) = x 1 I. By compactness of [0, M e (X 0, X 1 )], there exsts a conergng subsequence (that we do not relabel) t k t [0, Me (X 0, X 1 )]. Snce s contnuous, we can compute (Φ t (x 0 m)) by usng the defnton and takng the subsequence t k t, that ges (Φ t (x 0 Φ t m)) = lm k (x 0 m) Φ t (x 0 m) k t k t = 0. Ths s n contradcton wth the fact that (Φ t (x 0 m)) 0 for all t [0, Me (X 0, X 1 )]. Formula (4) leads to the proof of Theorem 2.1. Proof of Theorem 2.1. Consder M e (X 0, X 1 ) gen n (4). By relabelng partcles, we assume that the sequence {t 0 } {1,...,n} s ncreasngly ordered. Let σ 0 be a mnmzng permutaton n (4). We buld recursely a sequence of permutatons {σ 1,..., σ n } as follows: Let k 1 be such that t 1 σ s a maxmum of the set 0(k 1) {t1 σ,..., 0(1) t1 σ 0(n) }. We denote by σ 1 := σ 0 T 1,k1, where T,j s the transposton between the -th and the j-th elements. It holds t 0 k 1 + t 1 σ 0(k 1) max{t0 1 + t 1 σ 0(1), t0 1 + t 1 σ 1(1), t0 k 1 + t 1 σ 1(k 1) }. Thus σ 1 mnmzes (4) too, snce t holds max {1,...,n} {t0 + t 1 σ } max 0() {1,...,n} {t0 + t 1 σ }. 1() We then buld terately the permutaton σ k. The sequence {t 1 σ n(1),..., t1 σ n(n) } s then decreasng and σ n s a mnmzng permutaton n (4). Thus M e (X 0, X 1 ) = M e (X 0, X 1 ). Wth Theorem 2.1, we ge an explct and smple expresson of the nfmum tme for exact controllablty of dscrete models. Ths result s also useful for numercal smulatons of Secton IV.

5 B. Mnmal tme for approxmate controllablty We now proe Theorem 2.2, whch characterzes the nfmum tme for approxmate control of System (1). Proof of Theorem 2.2. We frst proe Item (). As for Theorem 2.1, we frst proe that the mnmal tme s M a (X 0, X 1 ) := mn max {1,...,n} t0 + t 1 σ(). σ S n Indeed, as n the proof of Theorem 2.1, the permutaton method mples M a (X 0, X 1 ) = M a (X 0, X 1 ). Ths pont s left to the reader. Frst assume that T > M a (X 0, X 1 ). Let ε > 0. For each x 1, we proe the exstence of ponts y1 satsfyng y 1 x 1 ε and y := Φ t 1 (y 1 ) ω. (7) For each x 1, obsere that the Geometrc Condton 2 mples that ether x 1 ω or that the trajectory enters ω backward n tme. In the frst case, defne y 1 := x 1. In the second case, remark that (Φ t(x 1 )) s nonzero for a whole nteral t [0, t], wth t > t 1, and Φ (x 1 t 1 ) ω, hence the flow Φ ( ) s a dffeomorphsm n a neghborhood of x 1 t 1. Then, there exsts y 1 Rd such that (7) s satsfed. We denote by Y 1 := {y1, 1..., yn}. 1 For all {1,..., n}, snce y ω, then t 1 (y 1) t1, hence M e (X 0, Y 1 ) M a (X 0, X 1 ) < T. Proposton 1 mples that we can exactly steer X 0 to Y 1 at tme T wth a control u satsfyng the Carathéodory condton. Denote by X(t) the soluton to System (1) for the ntal condton X 0 and the control u. It then holds X 1 X(T ) = X 1 Y 1 n =1 1 n y1 x 1 ε. We now proe Item (). Consder a control tme T > M a (X 0, X 1 ) at whch System (1) s approxmately controllable. We am to proe that t satsfes T > M a (X 0, X 1 ). For each k N, there exsts a control u k satsfyng the Carathéodory condton such that the correspondng soluton X k (t) to System (1) satsfes X 1 X k (T ) 1/k. (8) We denote by Yk 1 := {yk,1 1,..., y1 k,n } the confguraton defned by yk, 1 := X k,(t ), where X k, s the -th component of X k. Snce X 0 s dsjont and u k satsfes the Carathéodory condton, then Yk 1 s dsjont too. We now proe that t holds T > M e (X 0, Y 1 k ). (9) Snce T > Ma (X 0, X 1 ), then (9) s equalent to T > t 1 (y1 k, ) for all {1,..., n}. By contradcton, assume that there exsts j {1,..., n} such that t 1 (yk,j 1 ) T. Assume that t 1 (yk,j 1 ) > T, the case t1 (yk,j 1 ) = T beng smlar snce ω s open. Then for any t [0, T ] t holds Φ t(yk,j 1 ) ω. Thus, the localzed control does not act on the trajectory,.e. for each t [0, T ] t holds Φ t(yk,j 1 ) = Φ+1ωu k t (yk,j 1 ). Snce yk,j 1 = Φ+1ωu k T (x 0 j ) = Φ T (x0 j ), then Φ t (x 0 j ) ω for all t [0, T ]. Ths s a contradcton wth the fact that t 0 j M a (X 0, X 1 ) < T. Thus (9) holds. Snce Y 1 k = X k(t ), then Proposton 1 mples that T > M e (X 0, Y 1 k ). (10) For each control u k, denote by σ k the permutaton for whch t holds yk, 1 = Φ +1ωu k T (x 0 σ k ()). Up to extract a subsequence, for all k large enough, σ k s equal to a permutaton σ. Inequalty (8) mples that for all {1,..., n} t holds y 1 k, x 1 σ(). (11) k Snce t 1 (yk, 1 ) M e (X 0, Yk 1 ) < T, up to a subsequence, for a s 0, t holds t 1 (y 1 k,) k s. (12) Usng (11), (12) and the contnuty of the flow, t holds Φ t 1 (yk, 1 )(y1 k, ) Φ s (x 1 σ() ) 0. k The fact that Φ t 1 (yk, 1 )(y1 k, ) ω for each = 1,..., n leads to Φ s (x 1 σ() ) ω. Thus t1 (x 1 σ() ) lm k t1 (yk, 1 ). Denotng δ := (T M e (X 0, X 1 ))/2, usng (10), we obtan M a (X 0, X 1 ) max {1,...,n} t 0 + t1 σ() max {1,...,n} t 0 + t1 (yk,σ() 1 ) + δ = M e (X 0, Y 1 k ) + δ < T. We fnally proe Item () of Theorem 2.2. Let T (0, M a (X 0, X 1 )) be such that System (1) s approxmately controllable. For any ε > 0, there exsts u ε such that the assocated trajectory to System (1) satsfes X ε (T ) X 1 < ε. (13) There exsts j {1,..., n} such that t holds t 0 (x 0 j ) = Ma (X 0, X 1 ) > T or t 1 (x 1 j ) = M a (X 0, X 1 ) > T. Assume that t 0 (x 0 j ) = M a (X 0, X 1 ) > T, the case t 1 (x 1 j ) = Ma (X 0, X 1 ) beng smlar. Defne x ε,j (t) := Φ +1ωuε t (x 0 j ). Inequalty (13) mples that t exsts k {1,..., n} such that x ε,j (T ) x 1 k ε < ε. (14) As t 0 (x 0 j ) > T, the trajectory Φ t (x 0 j ) does not cross the control set ω for t [0, T ), hence x ε,j (T ) = Φ +1ωuε T (x 0 j) = Φ T (x 0 j) does not depend on ε. Defne R := 1 2 mn p,q x 1 p x 1 q, that s strctly poste snce X 1 s dsjont. For each ɛ < R, estmate (14) ges k ε = k ndependent on ε and x ε,j (T ) = Φ t (x 0 j ) = x1 k. Use now the proof of Item () n Proposton 1 to proe that the equaton Φ t (x 0 j ) = x1 k admts a fnte number of solutons (t, k) wth t [0, t 0 (x 0 j )] and k {1,..., n}. REMARK 3.1: We llustrate Item () wth two examples. Fgure 3 (left). The ector feld s (1, 0), thus uncontrolled trajectores are rght translatons. The tme Me (X 0, X 1 ) at whch we can act on the partcles and the mnmal tme M e (X 0, X 1 ) are respectely equal

6 to 1 and 2. We obsere that System (1) s nether exactly controllable nor approxmately controllable on the whole nteral [0, M e (X 0, X 1 )). Fgure 3 (rght). The ector feld s ( y, x), thus uncontrolled trajectores are rotatons wth constant angular elocty. The tme M e (X 0, X 1 ) at whch we can act on the partcles and the mnmal tme M e (X 0, X 1 ) are respectely equal to 3π/4 and π. We remark that System (1) s exactly controllable, then approxmately controllable, at tme T = π/2 [0, M e (X 0, X 1 )). 1 x 1 1 x 0 1 x 1 1 ω ω x 0 1 Fg. 3. Examples n the case T (0, M e (X 0, X 1 )). IV. ALGORITHM AND NUMERICAL SIMULATIONS We consder a crowd descrbed by a dscrete confguraton X(t) whose eoluton s gen by System (1). We present the followng algorthm to compute numercally the tme and the control realzng the exact controllablty between two confguratons satsfyng the Geometrc Condton 2. Algorthm 1 Mnmal tme problem for exact controllablty Step 1: Computaton of the mnmal tme (3). Step 2: Computaton of an optmal permutaton to steer X 0 to X 1 mnmzng (5). Step 3: Computaton of the control u and the soluton X to System (1) on (0, T ). The analyss and conergence of ths method for contnuous crowds wll be studed n the forthcomng paper [22]. We now ge a numercal example n dmenson 2, for whch we sole the mnmal tme problem wth Algorthm 1. Consder := (1, 0), the control regon ω represented by the rectangle n Fgure 4 and the ntal and fnal confguratons X 0, X 1 gen n the frst and fourth pctures of Fgure 4. We control the crowd at tme T = T e (X 0, X 1 ) + δ, wth δ = 0.1. REFERENCES [1] R. Axelrod, The Eoluton of Cooperaton: Resed Edton. Basc Books, [2] N. Bellomo et al., Acte Partcles, Volume 1: Adances n Theory, Models, and Applcatons, ser. Modelng and Smulaton n Scence, Engneerng and Technology. Sprnger Internatonal Publshng, [3] S. Camazne, Self-organzaton n Bologcal Systems, ser. Prnceton studes n complexty. Prnceton Unersty Press, [4] E. Crstan et al., Multscale modelng of pedestran dynamcs, [5] D. Helbng and R. Calek, Quanttate Socodynamcs: Stochastc Methods and Models of Socal Interacton Processes, ser. Theo. and Dec. Lb. B. Sprnger Neth., [6] M. Jackson, Socal and Economc Networks. Prnc. Un. Press, [7] R. Sepulchre, Consensus on nonlnear spaces, Ann. re. n contr., ol. 35, no. 1, pp , Fg. 4. Soluton at tme t = 0, t = 2.58, t = 5.18 and t = T = [8] F. Bullo et al., Dstrbuted Control of Robotc Networks: A Mathematcal Approach to Moton Coordnaton Algorthms, ser. Prnc. Ser. n Appl. Math. Prnc. Un. Press, [9] V. Kumar et al., Cooperate Control: Block Island Workshop on Cooperate Control, ser. Lecture Notes n Control and Informaton Scences. Sprnger Berln Hedelberg, [10] L. Zhyun et al., Leader follower formaton a complex Laplacan, Automatca, ol. 49, no. 6, pp , [11] A. Ferscha and K. Za, Lfebelt: Crowd eacuaton based on brotactle gudance, IEEE Peras. Comp., ol. 9, no. 4, pp , [12] P. Luh et al., Modelng and optmzaton of buldng emergency eacuaton consderng blockng effects on crowd moement, IEEE Trans. on Autom. Sc. and Eng., ol. 9, no. 4, pp , [13] C. Canudas de Wt et al., Graph constraned-ctm obserer desgn for the Grenoble south rng, IFAC Proceedngs Volumes, ol. 45, no. 24, pp , [14] A. Hegy et al., Specalst: A dynamc speed lmt control algorthm based on shock wae theory, n Intel. Transp. Syst. IEEE, 2008, pp [15] M. Duprez et al., Approxmate and exact controllablty of the contnuty equaton wth a localzed ector feld, Submtted, [16] A. A. Agrache and Y. Sachko, Control theory from the geometrc ewpont. Sprnger Scence & Busness Meda, 2013, ol. 87. [17] V. Jurdjec, Geometrc control theory. Cam. un. press, 1997, ol. 52. [18] E. D. Sontag, Mathematcal control theory: determnstc fnte dmensonal systems. Sprnger Scence & Busness Meda, 2013, ol. 6. [19] B. Pccol et al., Control to flockng of the knetc Cucker-Smale model, J. Math. Anal., ol. 47, no. 6, pp , [20] M. Capongro et al., Mean-feld sparse Jurdjec-Qunn control, Math. Models Methods Appl. Sc., ol. 27, no. 7, pp , [21], Sparse Jurdjec-Qunn stablzaton of dsspate systems, Automatca J. IFAC, ol. 86, pp , [22] M. Duprez et al., Mnmal tme problem for crowd models wth a localzed ector feld, In preparaton, [23] C. Vllan, Topcs n optmal transportaton, ser. Graduate Studes n Mathematcs. AMS, Prodence, RI, 2003, ol. 58. [24] J.-M. Coron, Control and nonlnearty, ser. Mathematcal Sureys and Monographs. Prodence, RI: AMS, 2007, ol [25] M. Kren and D. Mlman, On extreme ponts of regular conex sets, Studa Math., ol. 9, pp , 1940.

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD SIMUATION OF WAVE POPAGATION IN AN HETEOGENEOUS EASTIC OD ogéro M Saldanha da Gama Unversdade do Estado do o de Janero ua Sào Francsco Xaver 54, sala 5 A 559-9, o de Janero, Brasl e-mal: rsgama@domancombr

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

The interface control domain decomposition (ICDD) method for the Stokes problem. (Received: 15 July Accepted: 13 September 2013)

The interface control domain decomposition (ICDD) method for the Stokes problem. (Received: 15 July Accepted: 13 September 2013) Journal of Coupled Systems Multscale Dynamcs Copyrght 2013 by Amercan Scentfc Publshers All rghts reserved. Prnted n the Unted States of Amerca do:10.1166/jcsmd.2013.1026 J. Coupled Syst. Multscale Dyn.

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter J. Basc. Appl. Sc. Res., (3541-546, 01 01, TextRoad Publcaton ISSN 090-4304 Journal of Basc and Appled Scentfc Research www.textroad.com The Quadratc Trgonometrc Bézer Curve wth Sngle Shape Parameter Uzma

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

The Second Eigenvalue of Planar Graphs

The Second Eigenvalue of Planar Graphs Spectral Graph Theory Lecture 20 The Second Egenvalue of Planar Graphs Danel A. Spelman November 11, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Modelli Clamfim Equazioni differenziali 7 ottobre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 7 ottobre 2013 professor Danele Rtell danele.rtell@unbo.t 1/18? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Approximate Smallest Enclosing Balls

Approximate Smallest Enclosing Balls Chapter 5 Approxmate Smallest Enclosng Balls 5. Boundng Volumes A boundng volume for a set S R d s a superset of S wth a smple shape, for example a box, a ball, or an ellpsod. Fgure 5.: Boundng boxes Q(P

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

Geometry of Müntz Spaces

Geometry of Müntz Spaces WDS'12 Proceedngs of Contrbuted Papers, Part I, 31 35, 212. ISBN 978-8-7378-224-5 MATFYZPRESS Geometry of Müntz Spaces P. Petráček Charles Unversty, Faculty of Mathematcs and Physcs, Prague, Czech Republc.

More information

Modelli Clamfim Equazioni differenziali 22 settembre 2016

Modelli Clamfim Equazioni differenziali 22 settembre 2016 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 22 settembre 2016 professor Danele Rtell danele.rtell@unbo.t 1/22? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices

Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices Approxmate D-optmal desgns of experments on the convex hull of a fnte set of nformaton matrces Radoslav Harman, Mára Trnovská Department of Appled Mathematcs and Statstcs Faculty of Mathematcs, Physcs

More information

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS The 3 rd Internatonal Conference on Mathematcs and Statstcs (ICoMS-3) Insttut Pertanan Bogor, Indonesa, 5-6 August 28 MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS 1 Deky Adzkya and 2 Subono

More information

A SURVEY OF PROPERTIES OF FINITE HORIZON DIFFERENTIAL GAMES UNDER ISAACS CONDITION. Contents

A SURVEY OF PROPERTIES OF FINITE HORIZON DIFFERENTIAL GAMES UNDER ISAACS CONDITION. Contents A SURVEY OF PROPERTIES OF FINITE HORIZON DIFFERENTIAL GAMES UNDER ISAACS CONDITION BOTAO WU Abstract. In ths paper, we attempt to answer the followng questons about dfferental games: 1) when does a two-player,

More information

The L(2, 1)-Labeling on -Product of Graphs

The L(2, 1)-Labeling on -Product of Graphs Annals of Pure and Appled Mathematcs Vol 0, No, 05, 9-39 ISSN: 79-087X (P, 79-0888(onlne Publshed on 7 Aprl 05 wwwresearchmathscorg Annals of The L(, -Labelng on -Product of Graphs P Pradhan and Kamesh

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA A CLASS OF RECURSIVE SETS Florentn Smarandache Unversty of New Mexco 200 College Road Gallup, NM 87301, USA E-mal: smarand@unmedu In ths artcle one bulds a class of recursve sets, one establshes propertes

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Lecture 20: November 7

Lecture 20: November 7 0-725/36-725: Convex Optmzaton Fall 205 Lecturer: Ryan Tbshran Lecture 20: November 7 Scrbes: Varsha Chnnaobreddy, Joon Sk Km, Lngyao Zhang Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer:

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT

UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT 12/6/211 1 UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT George Wlke gwlke@umd.edu December 6, 211 Supersor: Wllam Dorland, Dept. of Physcs bdorland@umd.edu Abstract: Smulatons of turbulent

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information