CHEMICAL EQUILIBRIUM

Size: px
Start display at page:

Download "CHEMICAL EQUILIBRIUM"

Transcription

1 14 CHAPTER CHEMICAL EQUILIBRIUM 14.1 The Nature f Chemical Equilibrium 14. The Empirical Law f Mass Actin 14.3 Thermdynamic Descriptin f the Equilibrium State 14.4 The Law f Mass Actin fr Related and Simultaneus Equilibria 14.5 Equilibrium Calculatins fr Gas-Phase and Hetergeneus Reactins 613

2 THE NATURE OF CHEMICAL EQUILIBRIUM [C(H O) 6 ] Cl - [CCl 4 ] H O A B C D [C(H O) 6 ] + [CCl 4 ] - Add HCl t (a): Add water t (b): Sme C(II) Sme C(II) [CCl 4 ] - [C(H O) 6 ] + Lavender clr f (c) & (d): [CCl 4 ] - + [C(H O) 6 ] Fig Time dependence f reactants and prducts in the spntaneus reactin: [C(H O) 6 ] Cl - [CCl 4 ] H O. (a) Partial cnversin f [C(H O) 6 ] + int [CCl 4 ] -. (b) Partial cnversin f [CCl 4 ] - int [C(H O) 6 ] +.

3 617 Characteristics f the Equilibrium State HO() l HO( g) Frward reactin: Evapratin f liquid water t water vapr Backward reactin: Cndensatin f water vapr t liquid water At equilibrium, the frward and backward rates becmes equal. Fundamental Characteristics f equilibrium states 1. N macrscpic evidence f change. Reached by spntaneus prcesses 3. Dynamic balance f frward and reverse prcesses 4. Same regardless f directin f apprach 14. THE EMPIRICAL LAW OF MASS ACTION 618 Expressins f Equilibrium Cnstant: Law f Mass Actin Reactins in slutin (C.M. Guldberg & P. Waage, 1864) a A+b B c C+d D K C c [C] eq[d] = [A] a [B] eq d eq b eq ~ dimensins f (cnc) c+d-a-b Reactins in the gas phase K P c ( P ) ( P ) = ( ) a P ( P ) d C eq D eq b A eq B eq ~ dimensins f (press) c+d-a-b

4 Law f Mass Actin fr Gas-Phase Reactins 619 Thermdynamic Equilibrium Cnstant, K ~ dimensinless c ( PC / Pref ) ( PD / Pref ) a ( P / P ) ( P / P ) A ref B ref d b K c PP C P P d D ( c+ d-a- b) KPref K a b P A B Fr P ref = 1 atm, K = K P numerically. Mass actin law fr a general reactin invlving ideal gases c ( PC) ( PD) a ( P ) ( P ) A B d b K Law f Mass Actin fr Reactins in Slutin c d ([C]/ cref ) ([D]/ cref ) c d c 1 M K ref [C] [D] a b K ([A]/ cref ) ([B]/ cref ) a b [A] [B] 619 Law f Mass Actin fr Gas-Phase Reactins 1. Gases appear in K as partial pressures, measured in atm.. Disslved species enter as cncentratins, in mles per liter. 3. Pure slids, pure liquids, slvent in chemical reactin d nt appear in K. 4. Partial pressures and cncentratins f prducts appear in the numeratr, and thse f reactants in the denminatr; each is raised t a pwer equal t its cefficient in the balanced chemical equatin fr the reactin.

5 A388 Hmgeneus equilibria reactants and prducts all in the same phase Hetergeneus equilibria reactants and prducts with different phases Activities f pure slids and liquids = 1 Ca(OH) (s) Ca + (aq) + OH - (aq) - When the slutin is very dilute, the slvent is treated as a pure substance and ignred when writing K. frm the net inic equatin THERMODYNAMIC DESCRIPTION OF THE EQUILIBRIUM STATE Dependence f Gibbs Free Energy f a Gas n Pressure At cnstant T, P 1 P (ideal gas) G = (H TS) = H T S = TS (H = 0 at cnstant T fr an ideal gas) V P P 1 P S nrln nrln nrln G nrt ln V1 P P1 P1 G f taking the gas frm the reference state (P ref = 1 atm) t any P: P G nrt ln nrt ln P P ref

6 Equilibrium Expressin fr Reactins in the Gas Phase 65 Ex. 3 NO(g) N O(g) + NO (g) Fig A three-step prcess (red arrws) t calculate G f a reactin (blue arrw) fr which reactants and prducts are nt in their standard states f 1 atm. P P ref G1 3RT RT PNO PNO ref Step 1: ln ln Step : G G 3 65 PNO P P P NO NO NO Pref Pref Pref Pref Step 3: G RT ln RT ln RT ln 3 G = G 1 + G + G 3 G RT ln PNO/ P P / P ref NO ref 3 PNO/ Pref At equilibrium, G = 0 (cnst T & P). PNO/ P P / P ref NO ref 3 PNO/ Pref G RT ln RT ln K( T )

7 67 Fr the general reactin, aa+bb cc +dd At equilibrium, G c PC / Pref PD / Pref a P / P P / P ln d RT b A ref B ref RT ln K( T ) Reactins in Ideal Slutin Fr the general reactin, aa+bb At equilibrium, cc +dd G c [C] / cref [D] / cref a [A] / c [B] / c d RT ln RT b ref ref ln K( T ) 68 Activity, a G nrt ln P/P nrt ln P (ideal gas) ref nrt ln c/c nrt ln c (ideal slutin) ref G nrtln a (nnideal system) Activity cefficient, I ( i = 1 fr the reference state) a i = i P i /P ref (gas) = i c i /c ref (slutin) General expressin fr the equilibrium cnstant a a c C a A a a d D b B K

8 14.4 THE LAW OF MASS ACTION FOR RELATED AND SIMULTANEOUS EQUILIBRIA Relatinships amng Equilibrium Expressins Reversed reactin Inversed K H (g) + O (g) H O(g), K 1 = P(H O) / P(H ) P(O ) H O(g) H (g) + O (g), K = P(H ) P(O ) / P(H O) = K Multiplied by a cnstant K raised t a pwer equal t the cnstant H (g) + (1/) O (g) H O(g), K 3 = P(H O) / P(H )P(O ) 1/ = K 1 1/ 631 Additin (r Subtractin) f reactins Multiplicatin (r Divisin) f K s BrCl(g) Cl (g) + Br (g), K 1 = P(Cl )P(Br ) / P(BrCl) Br (g) + I (g) IBr(g), K = P(IBr) / P(Br )P(I ) BrCl(g) + I (g) IBr(g) + Cl (g), K 3 =? K 3 = K 1 K = P(IBr) P(Cl ) / P(BrCl) P(I )

9 63 EXAMPLE 14.7 At 5 C, + 1 () = () = () =? = = EQUILIBRIUM CALCULATIONS FOR GAS- PHASE AND HETEROGENEOUS REACTIONS 63 Step 1 Step Step 3 Balanced chemical equatin Partial pressures; (a) initial (b) changes (c) equilibrium Apprximatin schemes f neglecting a very small quantity

10 Evaluating Equilibrium Cnstants frm Reactin Data CO(g) + Cl (g) COCl (g) phsgene At 600 C, P 0 (CO) = 0.60 atm, P 0 (Cl ) = 1.10 atm, initially. P(COCl ) = 0.10 atm at equilibrium. K =? EXAMPLE 14.8 CO(g) + Cl (g) COCl (g) Initial Change Equilibrium K P COCl PCO PCl (0.10) 0.0 (0.50)(1.00) 633 Calculating Equilibrium Cmpsitins When K is knwn 635 EXAMPLE H (g) + I (g) HI(g) At 400 K, P 0 (H ) = 1.30 atm, P 0 (I ) = atm, in a sealed tube. At 600 K, K = 9.6. P(H ), P(I ), and P(HI)? At 600 K, frm the ideal gas law at cnst V, P 0 (H ) = 1.30 atm x (600 K / 400 K) = atm P 0 (I ) = atm x (600 K / 400 K) = atm

11 635 H (g) + I (g) HI(g) Initial Change x x +x Equilibrium x x x = = 9.6 x = r.35 (unphysical!) P(H ) = atm, P(I ) = 0.06 atm, P(HI) = atm A399 Fr ideal gases,

12 14 CHAPTER CHEMICAL EQUILIBRIUM 14.6 The Directin f Change in Chemical Reactins: Empirical Descriptin 14.7 The Directin f Change in Chemical Reactins: Thermdynamic Explanatin 14.8 Distributin f a Single Species between Immiscible Phases: Extractin and Separatin Prcesses 14.6 THE DIRECTION OF CHANGE IN CHEMICAL REACTIONS: EMPIRICAL DESCRIPTION The Reactin Qutient, Q aa+bb cc +dd 639 c PC PD a Q= P P A B Reactin qutient d b K= eq c eq PC PD eq a eq PA PB Equilibrium cnstant d b N (g) + 3 H (g) NH 3 (g), P(N ) : P(H ) = 1 : 3 PNH P P 3 NH3 NH3 K P P P /3 P P /3 N H H H H P P NH3 H

13 639 P P NH3 H Fig N (g) + 3 H (g) NH 3 (g) (a) Q < K : G < 0, Q must increase, frward reactin, Q > K : G > 0, Q must decrease, reverse reactin (b) Frm initial nnequilibrium cnditins n either side f the parabla, the partial pressures apprach equilibrium alng lines with slpe /3, because three mles f H are cnsumed t prduce tw mles f NH Hemglbin and Oxygen Transprt Myglbin Hemglbin Hemglbin A large prtein (glbin) + 4 irn-cntaining hemes Each heme carries a mlecule f O (near the lung) Myglbin ~ Only ne heme grup (near cells)

14 S -shaped fractinal saturatin curve fr HB 641 A plt f the fractin f the xygen binding sites f Hb and Mb that are ccupied as a functin f the partial pressure f O. External Effects n K: Principle f Le Châtelier 643 Fig Partial pressure versus time fr the equilibrium: H (g) + I (g) HI(g) (1) LHS f the dashed line: Apprach t equilibrium (Ex ) () Abrupt perturbatin by increasing P(H ) t.0 atm. (3) Le Châtelier principle wrks n the RHS f the dashed line: Decrease in P(I ) and increase in P(HI), resulting in the decrease in P(H ) t cunteract the perturbatin. (4) Apprach t a new equilibrium!

15 643 Le Châtelier s principle (1884) A system in equilibrium that is subject t a stress will react in a way that tends t cunteract the stress. Le Châtelier s principle predicts the directin f change f a system under an external perturbatin. Henry Le Châtelier (Fra, ) Effects f Changing the Cncentratin f a Reactant r Prduct 643 EXAMPLE H (g) + I (g) HI(g) An equilibrium mixture at 600 K (Ex ): P(H ) = atm, P(I ) = atm, P(HI) = atm K(600 K) = 9.6 External perturbatin (additin f H ) Abrupt increase f P(H ) t.000 atm New equilibrium reached New equilibrium partial pressures?

16 643 H (g) + I (g) HI(g) Initial Change x x + x Equilibrium.000 x x x = =9.6 x = r.99 (unphysical!) At new equilibrium, P(H ) = 1.86 atm, P(I ) = atm, P(HI) = 3.9 atm Effects f Changing the Vlume P ( g) P ( g) Q P / P Fig An equilibrium mixture f P and P 4 (center) is cmpressed (left) r expanded (right). Cmpressin Equilibrium shifts tward the frward directin. Expansin Equilibrium shifts tward the backward directin.

17 Effects f Changing the Temperature 645 NO (g) N O 4 (g) high T lw T Exthermic H (5 C) = 58.0 kj ml 1 PNO 4 K P NO K(5 C) = P(N O 4 )/P (NO ) = 8.8 Fig Equilibrium between N O 4 and NO depends n temperature. Right: Ice bath at 0 C, Mstly N O 4, Pale clr Left: Water bath at 50 C, Mstly NO, Deep clr A413 The Haber prcess Irn xide catalyst

18 Maximizing the Yield f a Reactin Haber-Bsch prcess: Fixatin f N frm air N (g) + 3 H (g) NH 3 (g), H < 0 (exthermic) 646 Large K at lw T (slw reactin) and at high P 500C, 00 atm, catalyst, cntinuus NH 3 remval lw T NH 3 at 500 C ttal P NH THE DIRECTION OF CHANGE IN CHEMICAL REACTIONS: THERMODYNAMIC EXPLANATION The Magnitude f the Equilibrium Cnstant 646 K ln K G S H RT R RT G S H exp exp exp RT R RT Large value f K Fr S psitive and large and H negative and large Increasing the number f micrstates (S > 0) and decreasing enthalpy (H < 0)

19 Free Energy Changes and the Reactin Qutient 647 aa+bb cc +dd G = G + RT ln Q Q c PC / Pref PD / Pref a P / P P / P A ref B ref At equilibrium, G = 0 and Q K. G = RT ln K d b G = RT ln K + RT ln Q = RT ln (Q/K) Fig The free energy f a reactin system is pltted against its prgress frm pure reactants(left) t pure prducts (right). Temperature Dependence f Equilibrium Cnstants 648 RT ln K G H TS ln / ln K 1 ln K K G RT H RT 1 H RT H RT S R / / S R S R 1 1 ln K H K R T T 1 1 Van t Hff equatin Fig Temperature dependence f the equilibrium cnstant fr the reactin N (g) + 3 H (g) NH 3 (g)

20 Effect f temperature change n K Depends n the sign f H H < 0 (exthermic) K as T H > 0 (endthermic) K as T 1 1 ln K H K R T T Fig Sketch f ln K against 1/T fr an exthermic and fr an endthermic reactin as predicted by thermdynamics. A41 EXAMPLE The equilibrium cnstant K fr the synthesis f ammnia is 6.8x10 5 at 98 K. Predict its value at 400 K. H f0 (NH 3 (g)) = kjml -1

21 649 Temperature Dependence f Vapr Pressure HO( l) HO( g) PH O(g) K K P H 1 1 ln vap ln K1 P1 R T T1 At the nrmal biling pint, T 1 = T b at P 1 = 1 atm. H vap 1 1 lnp R T Tb DISTRIBUTION OF A SINGLE SPECIES BETWEEN IMMISCIBLE PHASES: EXTRACTION AND SEPARATION PROCESSES Hetergeneus equilibrium Partitining a slute species between tw immiscible slvent phases I in H O and CCl 4 I (aq) I (CCl 4 ) Partitin cefficient, K I 4 I CCl K 85 (at 5 C) 1 aq ~ I mre sluble in CCl 4 than in H O Shifting the equilibrium Add I in the water. I (aq) + I (aq) I 3 (aq) Mre I (aq) in the water cnsumed. Le Châtelier s principle causes mre I t mve frm CCl 4 t H O.

22 Extractin Prcesses 651 EXAMPLE [I (aq)] i =.00 x 10 3 M L f this aq slutin is extracted with L f CCl 4 at 5 C. [I (aq)] f =? n(i ) = (.00 x 10 3 ml L 1 )(0.100 L) =.00 x 10 4 ml Let y mles remain in aqueus slutin. CCl 4 I 4 (.0010 y) / K 85 I y / aq y = 4.6 x 10 6 ml r.3% Fig (a) I (aq) n CCl 4 in a separatry funnel. (b) After shaking. Chrmatgraphic Separatins Separatin technique based n partitin equilibria Cntinuus extractin prcess Exchange f slute species between mbile and statinary phases [A] Partitin rati, K [A] statinary mbile 65

23 65 Paper chrmatgraphy Thin layer chrmatgraphy (TLC) 653 Gas-liquid chrmatgraphy Clumn chrmatgraphy

24 Thank yu fr listening t this lecture, and please cntinue t I t knw a variety f Green Wrld!

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Nv. 26 Chapter 19 Chemical Thermdynamics Entrpy, Free Energy, and Equilibrium Nv. 26 Spntaneus Physical and Chemical Prcesses Thermdynamics: cncerned with the questin: can a reactin ccur? A waterfall runs

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj Chemistry 102 ANSWER KEY REVIEW QUESTIONS Chapter 18 1. Calculate the heat reactin ( H ) in kj/ml r the reactin shwn belw, given the H values r each substance: NH (g) + F 2 (g) NF (g) + HF (g) H (kj/ml)

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

GOAL... ability to predict

GOAL... ability to predict THERMODYNAMICS Chapter 18, 11.5 Study f changes in energy and transfers f energy (system < = > surrundings) that accmpany chemical and physical prcesses. GOAL............................. ability t predict

More information

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C? NOTES: Thermchemistry Part 1 - Heat HEAT- TEMPERATURE - Thermchemistry: the study f energy (in the frm f heat) changes that accmpany physical & chemical changes heat flws frm high t lw (ht cl) endthermic

More information

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 (Nte: questins 1 t 14 are meant t be dne WITHOUT calculatrs!) 1.Which f the fllwing is prbably true fr a slid slute with a highly endthermic heat

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Lecture 16 Thermodynamics II

Lecture 16 Thermodynamics II Lecture 16 Thermdynamics II Calrimetry Hess s Law Enthalpy r Frmatin Cpyright 2013, 2011, 2009, 2008 AP Chem Slutins. All rights reserved. Fur Methds fr Finding H 1) Calculate it using average bnd enthalpies

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t eep this site up and bring yu even mre cntent cnsider dnating via the lin n ur site. Still having truble understanding the material? Chec ut ur Tutring

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

CHAPTER PRACTICE PROBLEMS CHEMISTRY

CHAPTER PRACTICE PROBLEMS CHEMISTRY Chemical Kinetics Name: Batch: Date: Rate f reactin. 4NH 3 (g) + 5O (g) à 4NO (g) + 6 H O (g) If the rate f frmatin f NO is 3.6 0 3 ml L s, calculate (i) the rate f disappearance f NH 3 (ii) rate f frmatin

More information

Chapter 4 Thermodynamics and Equilibrium

Chapter 4 Thermodynamics and Equilibrium Chapter Thermdynamics and Equilibrium Refer t the fllwing figures fr Exercises 1-6. Each represents the energies f fur mlecules at a given instant, and the dtted lines represent the allwed energies. Assume

More information

Chapter 9. Chemical Equilibrium

Chapter 9. Chemical Equilibrium Chapter 9. Chemical Equilibrium 9.1 The Nature of Chemical Equilibrium -Approach to Equilibrium [Co(H 2 O) 6 ] 2+ + 4 Cl- [CoCl 4 ] 2- + 6 H 2 O Characteristics of the Equilibrium State example) H 2 O(l)

More information

Chemistry 1A Fall 2000

Chemistry 1A Fall 2000 Chemistry 1A Fall 2000 Midterm Exam III, versin B Nvember 14, 2000 (Clsed bk, 90 minutes, 155 pints) Name: SID: Sectin Number: T.A. Name: Exam infrmatin, extra directins, and useful hints t maximize yur

More information

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS CHPTER 6 / HRVEY. CHEMICL B. THERMODYNMICS ND C. MNUPULTING CONSTNTS D. CONSTNTS FOR CHEMICL RECTIONS 1. Precipitatin Reactins 2. cid-base Reactins 3. Cmplexatin Reactins 4. Oxidatin-Reductin Reactins

More information

CHEM 1001 Problem Set #3: Entropy and Free Energy

CHEM 1001 Problem Set #3: Entropy and Free Energy CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre.

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

/ / Chemistry. Chapter 1 Chemical Foundations

/ / Chemistry. Chapter 1 Chemical Foundations Name Chapter 1 Chemical Fundatins Advanced Chemistry / / Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne

More information

Chapter 8 Reduction and oxidation

Chapter 8 Reduction and oxidation Chapter 8 Reductin and xidatin Redx reactins and xidatin states Reductin ptentials and Gibbs energy Nernst equatin Disprprtinatin Ptential diagrams Frst-Ebswrth diagrams Ellingham diagrams Oxidatin refers

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures?

Unit 11 Solutions- Guided Notes. What are alloys? What is the difference between heterogeneous and homogeneous mixtures? Name: Perid: Unit 11 Slutins- Guided Ntes Mixtures: What is a mixture and give examples? What is a pure substance? What are allys? What is the difference between hetergeneus and hmgeneus mixtures? Slutins:

More information

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier Lecture 14 Chater 16, Sectins 3-4 Equilibrium Nifty K math Q and K Cnnectin with G Le Chatelier Remember In general fr a reactin like aa + bb dd + ee K [ ] d D [ E] e [ ] a A [ ] b B K s can be cmbined

More information

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia: University Chemistry Quiz 3 2015/04/21 1. (10%) Cnsider the xidatin f ammnia: 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(l) (a) Calculate the ΔG fr the reactin. (b) If this reactin were used in a fuel cell,

More information

Lecture 4. The First Law of Thermodynamics

Lecture 4. The First Law of Thermodynamics Lecture 4. The First Law f Thermdynamics THERMODYNAMICS: Basic Cncepts Thermdynamics: (frm the Greek therme, meaning "heat" and, dynamis, meaning "pwer") is the study f energy cnversin between heat and

More information

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q Chemistry Ntes Lecture 15 [st] 3/6/09 IMPORTANT NOTES: -( We finished using the lecture slides frm lecture 14) -In class the challenge prblem was passed ut, it is due Tuesday at :00 P.M. SHARP, :01 is

More information

CHEM 103 Calorimetry and Hess s Law

CHEM 103 Calorimetry and Hess s Law CHEM 103 Calrimetry and Hess s Law Lecture Ntes March 23, 2006 Prf. Sevian Annuncements Exam #2 is next Thursday, March 30 Study guide, practice exam, and practice exam answer key are already psted n the

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Name Chem 161, Sectin: Grup Number: ALE 28. Hess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 5 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk

More information

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w Islated, Clsed and Open Systems 9.1 Energy as a Reactant r a Prduct 9.2 Transferring Heat and Ding Wrk 9.5 Heats f Reactin and Calrimetry 9.6 Hess s Law and Standard Heats f Reactin 9.7 Heats f Reactin

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P Thermchemistry The study energy changes that ccur during chemical : at cnstant vlume ΔU = q V n at cnstant pressure = q P nly wrk Fr practical reasns mst measurements are made at cnstant, s thermchemistry

More information

Chemical Equilibrium

Chemical Equilibrium 0.110/5.60 Fall 005 Lecture #10 age 1 Chemical Equilibrium Ideal Gases Questin: What is the cmsitin f a reacting miture f ideal gases? e.g. ½ N (g, T, ) + 3/ H (g, T, ) = NH 3 (g, T, ) What are N,, and

More information

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above 6.3-110 In the half reactin I 2 2 I the idine is (a) reduced (b) xidized (c) neither f the abve 6.3-120 Vitamin C is an "antixidant". This is because it (a) xidizes readily (b) is an xidizing agent (c)

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

Chapter One. Matter and Energy - Chemistry the study of matter and its changes the "central science" Natural Laws

Chapter One. Matter and Energy - Chemistry the study of matter and its changes the central science Natural Laws Chapter One Matter and Measurement http://www.chemistry.armstrng.edu/ nivens/curse_list.htm OWL HOMEWORK REQUIRED!!! Matter and Energy - Chemistry the study f matter and its changes the "central science"

More information

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points +2 pints Befre yu begin, make sure that yur exam has all 7 pages. There are 14 required prblems (7 pints each) and tw extra credit prblems (5 pints each). Stay fcused, stay calm. Wrk steadily thrugh yur

More information

OFB Chapter 7 Chemical Equilibrium

OFB Chapter 7 Chemical Equilibrium OFB Chapter 7 Chemical Equilibrium 7-1 Chemical Reactions in Equilibrium 7-2 Calculating Equilibrium Constants 7-3 The Reaction Quotient 7-4 Calculation of Gas-Phase Equilibrium 7-5 The effect of External

More information

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O WYSE Academic Challenge Sectinal Chemistry Exam 2008 SOLUTION SET 1. Crrect answer: B. Use PV = nrt t get: PV = nrt 2. Crrect answer: A. (2.18 atm)(25.0 L) = n(0.08206 L atm/ml K)(23+273) n = 2.24 ml Assume

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Chapter 9 Chemical Reactions NOTES

Chapter 9 Chemical Reactions NOTES Chapter 9 Chemical Reactins NOTES Chemical Reactins Chemical reactin: Chemical change 4 Indicatrs f Chemical Change: (1) (2) (3) (4) Cnsist f reactants (starting materials) and prducts (substances frmed)

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

CHM 152 Practice Final

CHM 152 Practice Final CM 152 Practice Final 1. Of the fllwing, the ne that wuld have the greatest entrpy (if cmpared at the same temperature) is, [a] 2 O (s) [b] 2 O (l) [c] 2 O (g) [d] All wuld have the same entrpy at the

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Answer Key ALE 28. ess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 4 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk neatly using dimensinal analysis

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Hess Law - Enthalpy of Formation of Solid NH 4 Cl

Hess Law - Enthalpy of Formation of Solid NH 4 Cl Hess Law - Enthalpy f Frmatin f Slid NH 4 l NAME: OURSE: PERIOD: Prelab 1. Write and balance net inic equatins fr Reactin 2 and Reactin 3. Reactin 2: Reactin 3: 2. Shw that the alebraic sum f the balanced

More information

Spontaneous Processes, Entropy and the Second Law of Thermodynamics

Spontaneous Processes, Entropy and the Second Law of Thermodynamics Chemical Thermdynamics Spntaneus Prcesses, Entrpy and the Secnd Law f Thermdynamics Review Reactin Rates, Energies, and Equilibrium Althugh a reactin may be energetically favrable (i.e. prducts have lwer

More information

Thermochemistry. Thermochemistry

Thermochemistry. Thermochemistry Thermchemistry Petrucci, Harwd and Herring: Chapter 7 CHEM 1000A 3.0 Thermchemistry 1 Thermchemistry The study energy in chemical reactins A sub-discipline thermdynamics Thermdynamics studies the bulk

More information

Name AP CHEM / / Chapter 1 Chemical Foundations

Name AP CHEM / / Chapter 1 Chemical Foundations Name AP CHEM / / Chapter 1 Chemical Fundatins Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne value and anther.

More information

188 CHAPTER 6 THERMOCHEMISTRY

188 CHAPTER 6 THERMOCHEMISTRY 188 CHAPTER 6 THERMOCHEMISTRY 4. a. ΔE = q + w = J + 100. J = 77 J b. w = PΔV = 1.90 atm(.80 L 8.0 L) = 10.5 L atm ΔE = q + w = 50. J + 1060 = 1410 J c. w = PΔV = 1.00 atm(9.1 L11. L) = 17.9 L atm 101.

More information

2 Physico-Chemical Principles of Steelmaking Processes

2 Physico-Chemical Principles of Steelmaking Processes 2 Physic-Chemical Principles f Steelmaking Prcesses 2.1 INRODUCION Irnmaking and steelmaking invlve a variety f chemical reactins, and ther physicchemical prcesses, such as viscus flw, interfacial phenmena,

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY CHEMICAL REACTIONS INVOLVE ENERGY The study energy and its transrmatins is knwn as thermdynamics. The discussin thermdynamics invlve the cncepts energy, wrk, and heat. Types Energy Ptential energy is stred

More information

17.1 Ideal Gas Equilibrium Constant Method. + H2O CO + 3 H2 ν i ν i is stoichiometric number is stoichiometric coefficient

17.1 Ideal Gas Equilibrium Constant Method. + H2O CO + 3 H2 ν i ν i is stoichiometric number is stoichiometric coefficient 17.1 Ideal Gas Equilibrium Cnstant Methd CH 4 + H2O CO + 3 H2 ν i -1-1 1 3 ν i is stichimetric number is stichimetric cefficient ν i (1) dn1 dn = ν1 ν 2 2 Prcess 1. # phases? Methd? (K a methd). 2. Find

More information

SPONTANEITY, ENTROPY, AND FREE ENERGY

SPONTANEITY, ENTROPY, AND FREE ENERGY CHAER 7 SONANEIY, ENROY, AND FREE ENERGY Questins. Living rganisms need an external surce f energy t carry ut these prcesses. Green plants use the energy frm sunlight t prduce glucse frm carbn dixide and

More information

Chemistry 114 First Hour Exam

Chemistry 114 First Hour Exam Chemistry 114 First Hur Exam Please shw all wrk fr partial credit Name: (4 pints) 1. (12 pints) Espress is made by frcing very ht water under high pressure thrugh finely grund, cmpacted cffee. (Wikipedia)

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chemistry/ Biotechnology Reference Sheets

Chemistry/ Biotechnology Reference Sheets Cmmn Metric Prefixes: Giga (G) = 1,000,000,000 = Kil (k) = 1,000 = Deci (d) =.1 = Milli (m) =.001 = Nan (n) =.000000001 = 9 6 1 10 Mega (M) = 1,000,000 = 1 10 0 1 10 Basic unit = meter, gram, liter, secnd

More information

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s)

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s) Chapter 9 - Stichimetry Sectin 9.1 Intrductin t Stichimetry Types f Stichimetry Prblems Given is in mles and unknwn is in mles. Given is in mles and unknwn is in mass (grams). Given is in mass and unknwn

More information

CHEM 116 Concentrations and Colligative Properties

CHEM 116 Concentrations and Colligative Properties UMass stn, Chem 116 CHEM 116 Cncentratins and Clligative Prperties FSG is Mndays 11:00 am Lecture 10 Prf. Sevian and Tuesdays 3:30 pm bth in S-1-89 Tday s agenda Ways f expressing cncentratin Clligative

More information

Thermochemistry Heats of Reaction

Thermochemistry Heats of Reaction hermchemistry Heats f Reactin aa + bb cc + dd hermchemical Semantics q V = Heat f Rxn at [V] = U = Energy (change) f Rxn q P = Heat f Rxn at [P] = H = Enthalpy (change) f Rxn Exthermic rxns: q < 0 Endthermic

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

" 1 = # $H vap. Chapter 3 Problems

 1 = # $H vap. Chapter 3 Problems Chapter 3 rblems rblem At 1 atmsphere pure Ge melts at 1232 K and bils at 298 K. he triple pint ccurs at =8.4x1-8 atm. Estimate the heat f vaprizatin f Ge. he heat f vaprizatin is estimated frm the Clausius

More information

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) Equilibrium Forward and Backward Reactions Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) forward rate = k f [H 2 ][I 2 ] 2HI(g) H 2 (g) + I 2 (g) backward rate = k b [HI]

More information

19 Applications of Standard Electrode Potentials

19 Applications of Standard Electrode Potentials 9 Applicatins f Standard lectrde Ptentials ( Calculating thermdynamic cell ptentials ( Calculating equilibrium cnstants fr redx reactins ( Cnstructing redx titratin curves 9A Calculating Ptentials f lectrchemical

More information

Chem 111 Summer 2013 Key III Whelan

Chem 111 Summer 2013 Key III Whelan Chem 111 Summer 2013 Key III Whelan Questin 1 6 Pints Classify each f the fllwing mlecules as plar r nnplar? a) NO + : c) CH 2 Cl 2 : b) XeF 4 : Questin 2 The hypthetical mlecule PY 3 Z 2 has the general

More information

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions Chem 116 POGIL Wrksheet - Week 4 Prperties f Slutins Key Questins 1. Identify the principal type f slute-slvent interactin that is respnsible fr frming the fllwing slutins: (a) KNO 3 in water; (b) Br 2

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 6 Hmewrk Questins TEXTBOOK HOMEWORK 6.25 A 27.7-g sample f the radiatr clant ethylene glycl releases 688 J f heat. What was the initial temperature f the sample if the final temperature

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Chapter 3 Homework Solutions

Chapter 3 Homework Solutions Chapter Hmewrk Slutins. n = ml = 5 C = 98 K = 5 C = 98 K p = atm p = 5 atm. Cpm = (5/)R he entrpy changes fr the heating and cmpressin can e calculated separately and added. Heat at cnstant pressure S

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

CHEM-443, Fall 2013, Section 010 Midterm 2 November 4, 2013

CHEM-443, Fall 2013, Section 010 Midterm 2 November 4, 2013 CHEM-443, Fall 2013, Sectin 010 Student Name Midterm 2 Nvember 4, 2013 Directins: Please answer each questin t the best f yur ability. Make sure yur respnse is legible, precise, includes relevant dimensinal

More information

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions?

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions? 1 CHEM 1032 FALL 2017 Practice Exam 4 1. Which f the fllwing reactins is spntaneus under nrmal and standard cnditins? A. 2 NaCl(aq) 2 Na(s) + Cl2(g) B. CaBr2(aq) + 2 H2O(aq) Ca(OH)2(aq) + 2 HBr(aq) C.

More information

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe

CHEMISTRY XL-14A CHEMICAL EQUILIBRIA. August 20, 2011 Robert Iafe CHEMISTRY XL-14A CHEMICAL EQUILIBRIA August 20, 2011 Robert Iafe Unit Overview 2 Reactions at Equilibrium Equilibrium Calculations Le Châtelier s Principle Catalysts Reactions at Equilibrium 3 Reversibility

More information

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity:

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity: [15.1B Energy Cycles Lattice Enthalpy] pg. 1 f 5 CURRICULUM Representative equatins (eg M+(g) M+(aq)) can be used fr enthalpy/energy f hydratin, inizatin, atmizatin, electrn affinity, lattice, cvalent

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium 1 Which statement incorrectly describes a chemical reaction approaching equilibrium? As a chemical reaction approaches equilibrium, the net change in the amount of reactants

More information

5 th grade Common Core Standards

5 th grade Common Core Standards 5 th grade Cmmn Cre Standards In Grade 5, instructinal time shuld fcus n three critical areas: (1) develping fluency with additin and subtractin f fractins, and develping understanding f the multiplicatin

More information

Work and Heat Definitions

Work and Heat Definitions Wrk and eat Deinitins FL- Surrundings: Everything utside system + q -q + System: he part S the rld e are bserving. Wrk, : transer energy as a result unbalanced rces - eat, q: transer energy resulting rm

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Three Definitions of Acids/Bases Type Acid Base Problems with it Arrhenius Bronsted-Lowry Lewis. NH 3(aq) + H 2O(l)

Three Definitions of Acids/Bases Type Acid Base Problems with it Arrhenius Bronsted-Lowry Lewis. NH 3(aq) + H 2O(l) CP NT Ch 19: Acid and Bases An Intrductin Prperties f Acids 1. taste 2. Can prduce H + ( ) ins ( ) 3. Change the clr f litmus frm t 4. Reacts with such as Zn and Mg t prduce gas. Ba(s) + H 2SO 4 BaSO 4(aq)

More information