y + 3y = 0, y(0) = 2, y (0) = 3

Size: px
Start display at page:

Download "y + 3y = 0, y(0) = 2, y (0) = 3"

Transcription

1 MATH 3 HOMEWORK #3 PART A SOLUTIONS Problem 311 Find the solution of the given initial value problem Sketch the graph of the solution and describe its behavior as t increases y + 3y 0, y(0), y (0) 3 Solution The characteristic equation is 0 r + 3r r(r + 3) which has roots r 3, 0 Thus the general solution is y c 1 + c e 3t Since y 3c e 3t, the initial conditions imply y(0) c 1 + c 3 y (0) 3c Thus c 1 and c 1 1, so the solution to the IVP is y 1 e 3t Note that y 1 as t y t Problem 311 Find the solution of the given initial value problem Sketch the graph of the solution and describe its behavior as t increases y + y y 0, y(0) 0, y (0) 1 Solution The characteristic equation is 0 r + r which has roots Then the general solution is r 1 ± which has derivative y c 1 1 y c 1 e 1 t + c e 1+ t e 1 t c 1 e 1+ t

2 The initial conditions imply so 0 y(0) c 1 + c 1 y (0) c c 1 1 c c 1 + c 1 ( Then c 1 and c, so the solution to the IVP is ) y e 1 t + e 1+ t Since 1 + > 0, the solution tends to as t 10 y 8 6 Problem 31 Solve the initial value problem t y y 0, y(0), y (0) β Then find β so that the solution approaches zero as t Solution The characteristic equation is 0 r 1, which has roots r ±1/ Then the general solution is y c 1 e t/ + c e t/ which has derivative y c 1 e t/ + c et/ The initial conditions imply y(0) c 1 + c β c 1 + c

3 The second equation is equivalent to β c 1 + c, so + β c, hence c 1 + β and c 1 1 β Thus the solution to the IVP is y (1 β)e t/ + (1 + β)e t/ The term e t/ tends to as t, so we set β 1 to eliminate it For β 1, we have y e t/ 0 as t Problem 316 Consider the initial value problem (see Example 5) where β > 0 y + 5y + 6y 0, y(0), y (0) β, (a) Solve the initial value problem (b) Determine the coordinates t m and y m of the maximum point of the solution as functions of β (c) Determine the smallest value of β for which y m (d) Determine the behavior of t m and y m as β Solution (a) The characteristic equation is 0 r + 5r + 6 (r + )(r + 3), which has roots r, 3 The general solution is with derivative The initial conditions imply y c 1 e t + c e 3t y c 1 e t 3c e 3t c 1 + c β c 1 3c so + β c Then c β so c β, so the solution to the IVP is (b) Differentiating, we have y (6 + β)e t + ( β)e 3t y (6 + β)e t 3( β)e 3t (6 + β)e t + 3( + β)e 3t Setting y 0 yields (6 + β)e t m 3( + β)e 3t m e t m Then y m 6 + β ) + β ( 3(+β) ( 3(+β) 8(6 + β)3 ( + β) 7( + β 3( + β) (6 + β) t m ln 3(+β) ( 3(+β) (6 + β)3 7( + β) 3 (6 + β) + β ( 3(+β) ( ( + β) (6 + β)

4 To ensure that this is a maximum, we compute y (t m ): y (t m ) 6 + β 9 9 (+β) (6+β) + β 7 (+β 8 (6+β 16 9 (6 + β ( + β) 8 (6 + β 3 ( + β) 8 (6 + β 9 ( + β) < 0 since β > 0 Thus (t m, y m ) is a maximum by the second derivative test (c) Observe that (6 + β 7( + β) (6 + β)3 7( + β) 0 (6 + β 7( + β) 0 β 3 9β 108β 16 0 (β + 3)(β (6 6 3))(β ( )) The only positive root of the above equation is β , so y m for β (d) As β, t m ln y m ( ( + β) ln (6 + β) (6 + β)3 7( + β) ( ) 3(/β + 1) ln(3/) (6/β + 1) Problem 39 Determine the longest interval on which the given initial value problem is certain to have a unique twice-differentiable solution Do not attempt to find the solution t(t )y + 3ty + y, y(3) 3, y (3) 1 Solution Rewriting the equation as y + 3 t y + t(t ) y t(t ) we see that the coefficient functions are discontinuous at t 0 and t Since t 0 3 is in (0, ), then (0, ) is the largest such interval Problem 310 Determine the longest interval on which the given initial value problem is certain to have a unique twice-differentiable solution Do not attempt to find the solution y + (cos(t))y + 3(ln t )y 0, y() 3, y () 1 Solution Since ln t is discontinuous at t 0 and t 0 > 0, then the desired interval is (0, ) Problem 38 Consider the equation y y y 0 (a) Show that y 1 (t) e t and y (t) e t form a fundamental set of solutions (b) Let y 3 (t) e t, y (t) y 1 (t) + y (t), and y 5 (t) y 1 (t) y 3 (t) Are y 3 (t), y (t), and y 5 (t) also solutions of the given differential equation? (c) Determine whether each of the following pairs forms a fundamental set of solutions: [y 1 (t), y 3 (t)]; [y (t), y 3 (t)]; [y 1 (t), y (t)]; [y (t), y 5 (t)]

5 Solution (a) The characteristic equation is 0 r r (r )(r + 1), which has roots r, 1 Thus e t and e t are both solutions Alternatively, one can show they are solutions simply by substituting them into the differential equation Computing the Wronskian, we find W(y 1, y )(t) 3e t which is nonzero for all t Thus y 1, y form a fundamental set (b) Yes, since they are all linear combinations of the fundamental solutions and the equation is homogeneous (c) We compute Problem 338 W(y 1, y 3 )(t) 6e t 0 for all t y 1, y 3 form a fundamental set W(y, y 3 )(t) 0 y, y 3 not a fundamental set W(y 1, y )(t) 6e t y 1, y form a fundamental set W(y, y 5 )(t) 0 y, y 5 not a fundamental set Solution Abel s formula, which we did not cover in class, is needed to solve this problem Please give all students full marks on this problem Problem 339 Solution Abel s formula, which we did not cover in class, is needed to solve this problem Please give all students full marks on this problem 5

Linear Independence and the Wronskian

Linear Independence and the Wronskian Linear Independence and the Wronskian MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Operator Notation Let functions p(t) and q(t) be continuous functions

More information

Lecture 31. Basic Theory of First Order Linear Systems

Lecture 31. Basic Theory of First Order Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 31. Basic Theory of First Order Linear Systems April 4, 2012 Konstantin Zuev (USC) Math 245, Lecture 31 April 4, 2012 1 / 10 Agenda Existence

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 October 9, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

ODE Homework Solutions of Linear Homogeneous Equations; the Wronskian

ODE Homework Solutions of Linear Homogeneous Equations; the Wronskian ODE Homework 3 3.. Solutions of Linear Homogeneous Equations; the Wronskian 1. Verify that the functions y 1 (t = e t and y (t = te t are solutions of the differential equation y y + y = 0 Do they constitute

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22]

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] HW2 Solutions MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, 2013 Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] Section 3.1: 1, 2, 3, 9, 16, 18, 20, 23 Section 3.2: 1, 2,

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Math 334 A1 Homework 3 (Due Nov. 5 5pm)

Math 334 A1 Homework 3 (Due Nov. 5 5pm) Math 334 A1 Homework 3 Due Nov. 5 5pm No Advanced or Challenge problems will appear in homeworks. Basic Problems Problem 1. 4.1 11 Verify that the given functions are solutions of the differential equation,

More information

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I February 23, 2017 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

VANDERBILT UNIVERSITY. MATH 2610 ORDINARY DIFFERENTIAL EQUATIONS Practice for test 1 solutions

VANDERBILT UNIVERSITY. MATH 2610 ORDINARY DIFFERENTIAL EQUATIONS Practice for test 1 solutions VANDERBILT UNIVERSITY MATH 2610 ORDINARY DIFFERENTIAL EQUATIONS Practice for test 1 solutions The first test will cover all material discussed up to (including) section 4.5. Important: The solutions below

More information

Homework #6 Solutions

Homework #6 Solutions Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly

More information

MATH 307: Problem Set #7

MATH 307: Problem Set #7 MATH 307: Problem Set #7 Due on: Feb 11, 2016 Problem 1 First-order Variation of Parameters The method of variation of parameters uses the homogeneous solutions of a linear ordinary differential equation

More information

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t.

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t. Calculus IV - HW 3 Due 7/13 Section 3.1 1. Give the general solution to the following differential equations: a y 25y = 0 Solution: The characteristic equation is r 2 25 = r 5r + 5. It follows that the

More information

APPM 2360: Midterm 3 July 12, 2013.

APPM 2360: Midterm 3 July 12, 2013. APPM 2360: Midterm 3 July 12, 2013. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor s name, (3) your recitation section number and (4) a grading table. Text books, class notes,

More information

Homework for Section 1.4, Continuity and One sided Limits. Study 1.4, # 1 21, 27, 31, 37 41, 45 53, 61, 69, 87, 91, 93. Class Notes: Prof. G.

Homework for Section 1.4, Continuity and One sided Limits. Study 1.4, # 1 21, 27, 31, 37 41, 45 53, 61, 69, 87, 91, 93. Class Notes: Prof. G. GOAL: 1. Understand definition of continuity at a point. 2. Evaluate functions for continuity at a point, and on open and closed intervals 3. Understand the Intermediate Value Theorum (IVT) Homework for

More information

Exam 3 Review Sheet Math 2070

Exam 3 Review Sheet Math 2070 The syllabus for Exam 3 is Sections 3.6, 5.1 to 5.3, 5.5, 5.6, and 6.1 to 6.4. You should review the assigned exercises in these sections. Following is a brief list (not necessarily complete) of terms,

More information

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Linear Independence MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Given a set of vectors {v 1, v 2,..., v r } and another vector v span{v 1, v 2,...,

More information

MATH 251 Examination I July 1, 2013 FORM A. Name: Student Number: Section:

MATH 251 Examination I July 1, 2013 FORM A. Name: Student Number: Section: MATH 251 Examination I July 1, 2013 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit problems,

More information

Heat Equation on Unbounded Intervals

Heat Equation on Unbounded Intervals Heat Equation on Unbounded Intervals MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 28 Objectives In this lesson we will learn about: the fundamental solution

More information

Section 2.1 (First Order) Linear DEs; Method of Integrating Factors. General first order linear DEs Standard Form; y'(t) + p(t) y = g(t)

Section 2.1 (First Order) Linear DEs; Method of Integrating Factors. General first order linear DEs Standard Form; y'(t) + p(t) y = g(t) Section 2.1 (First Order) Linear DEs; Method of Integrating Factors Key Terms/Ideas: General first order linear DEs Standard Form; y'(t) + p(t) y = g(t) Integrating factor; a function μ(t) that transforms

More information

= L y 1. y 2. L y 2 (2) L c y = c L y, c.

= L y 1. y 2. L y 2 (2) L c y = c L y, c. Definition: A second order linear differential equation for a function y x is a differential equation that can be written in the form A x y B x y C x y = F x. We search for solution functions y x defined

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 5 JoungDong Kim Set 5: Section 3.1, 3.2 Chapter 3. Second Order Linear Equations. Section 3.1 Homogeneous Equations with Constant Coefficients. In this

More information

Math Spring 2014 Homework 2 solution

Math Spring 2014 Homework 2 solution Math 3-00 Spring 04 Homework solution.3/5 A tank initially contains 0 lb of salt in gal of weater. A salt solution flows into the tank at 3 gal/min and well-stirred out at the same rate. Inflow salt concentration

More information

2. A Motivational Example: Consider the second-order homogeneous linear DE: y y 2y = 0

2. A Motivational Example: Consider the second-order homogeneous linear DE: y y 2y = 0 MATH 246: Chapter 2 Section 2 Justin Wyss-Gallifent 1. Introduction: Since even linear higher-order DEs are difficult we are going to simplify even more. For today we re going to look at homogeneous higher-order

More information

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section: MATH 251 Examination I October 8, 2015 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

MATH10001 Mathematical Workshop Difference Equations part 2 Non-linear difference equations

MATH10001 Mathematical Workshop Difference Equations part 2 Non-linear difference equations MATH10001 Mathematical Workshop Difference Equations part 2 Non-linear difference equations In a linear difference equation, the equation contains a sum of multiples of the elements in the sequence {y

More information

MATH 251 Examination I October 9, 2014 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 9, 2014 FORM A. Name: Student Number: Section: MATH 251 Examination I October 9, 2014 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

MATH 312 Section 1.2: Initial Value Problems

MATH 312 Section 1.2: Initial Value Problems MATH 312 Section 1.2: Initial Value Problems Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Introduction to Initial Value Problems 2 Existence and Uniqueness 3 Conclusion Families

More information

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination I February 25, 2016 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit

More information

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section: MATH 5 Final Examination May 3, 07 FORM A Name: Student Number: Section: This exam has 6 questions for a total of 50 points. In order to obtain full credit for partial credit problems, all work must be

More information

MATH 2050 Assignment 4 Fall Due: Thursday. u v v 2 v = P roj v ( u) = P roj u ( v) =

MATH 2050 Assignment 4 Fall Due: Thursday. u v v 2 v = P roj v ( u) = P roj u ( v) = MATH 5 Assignment 4 Fall 8 Due: Thursday [5]. Let u = and v =. Find the projection of u onto v; and the projection of v onto u respectively. ANS: The projection of u onto v is P roj v ( u) = u v v. Note

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Problem 1 In each of the following problems find the general solution of the given differential

Problem 1 In each of the following problems find the general solution of the given differential VI Problem 1 dt + 2dy 3y = 0; dt 9dy + 9y = 0. Problem 2 dt + dy 2y = 0, y(0) = 1, y (0) = 1; dt 2 y = 0, y( 2) = 1, y ( 2) = Problem 3 Find the solution of the initial value problem 2 d2 y dt 2 3dy dt

More information

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition MATH 3860 REVIEW FOR FINAL EXAM The final exam will be comprehensive. It will cover materials from the following sections: 1.1-1.3; 2.1-2.2;2.4-2.6;3.1-3.7; 4.1-4.3;6.1-6.6; 7.1; 7.4-7.6; 7.8. The following

More information

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables.

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables. 8.5.8 Lesson Date: Graphs of Non-Linear Functions Student Objectives I can examine the average rate of change for non-linear functions and learn that they do not have a constant rate of change. I can determine

More information

u u + 4u = 2 cos(3t), u(0) = 1, u (0) = 2

u u + 4u = 2 cos(3t), u(0) = 1, u (0) = 2 MATH HOMEWORK #6 PART A SOLUTIONS Problem 7..5. Transform the given initial value problem into an initial value problem for two first order equations. u + 4 u + 4u cost, u0, u 0 Solution. Let x u and x

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective:

Name Period. Date: Topic: 9-2 Circles. Standard: G-GPE.1. Objective: Name Period Date: Topic: 9-2 Circles Essential Question: If the coefficients of the x 2 and y 2 terms in the equation for a circle were different, how would that change the shape of the graph of the equation?

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

Answer Key b c d e. 14. b c d e. 15. a b c e. 16. a b c e. 17. a b c d. 18. a b c e. 19. a b d e. 20. a b c e. 21. a c d e. 22.

Answer Key b c d e. 14. b c d e. 15. a b c e. 16. a b c e. 17. a b c d. 18. a b c e. 19. a b d e. 20. a b c e. 21. a c d e. 22. Math 20580 Answer Key 1 Your Name: Final Exam May 8, 2007 Instructor s name: Record your answers to the multiple choice problems by placing an through one letter for each problem on this answer sheet.

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2 lim f() = lim (0.8-0.08) = 0, " "!10!10 lim f() = lim 0 = 0.!10!10 Therefore, lim f() = 0.!10 lim g() = lim (0.8 - "!10!10 0.042-3) = 1, " lim g() = lim 1 = 1.!10!0 Therefore, lim g() = 1.!10 EXERCISE

More information

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University These notes are intended as a supplement to section 3.2 of the textbook Elementary

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section: MATH 251 Examination I October 10, 2013 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

Revision notes for Pure 1(9709/12)

Revision notes for Pure 1(9709/12) Revision notes for Pure 1(9709/12) By WaqasSuleman A-Level Teacher Beaconhouse School System Contents 1. Sequence and Series 2. Functions & Quadratics 3. Binomial theorem 4. Coordinate Geometry 5. Trigonometry

More information

Homogeneous Equations with Constant Coefficients

Homogeneous Equations with Constant Coefficients Homogeneous Equations with Constant Coefficients MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 General Second Order ODE Second order ODEs have the form

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Lesson 23: The Defining Equation of a Line

Lesson 23: The Defining Equation of a Line Student Outcomes Students know that two equations in the form of and graph as the same line when and at least one of or is nonzero. Students know that the graph of a linear equation, where,, and are constants

More information

Math 331 Homework Assignment Chapter 7 Page 1 of 9

Math 331 Homework Assignment Chapter 7 Page 1 of 9 Math Homework Assignment Chapter 7 Page of 9 Instructions: Please make sure to demonstrate every step in your calculations. Return your answers including this homework sheet back to the instructor as a

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information

Math 2Z03 - Tutorial # 4. Oct. 5th, 6th, 7th, 2015

Math 2Z03 - Tutorial # 4. Oct. 5th, 6th, 7th, 2015 Math 2Z03 - Tutorial # 4 Oct. 5th, 6th, 7th, 2015 Tutorial Info: Tutorial Website: http://ms.mcmaster.ca/ dedieula/2z03.html Office Hours: Mondays 3pm - 5pm (in the Math Help Centre) Tutorial #4: 3.1 Theory

More information

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا

More information

What can I tell from a survey?

What can I tell from a survey? CCA Ch 10: Solving Comple Equations Name Team # 10.1.1 What can I tell from a survey? Association in Two-Way Tables 10-1. a. c. d. d. 10-. a. Complete the following two-way table: Laptop No Laptop TOTAL

More information

Math K (24564) - Homework Solutions 02

Math K (24564) - Homework Solutions 02 Math 39100 K (24564) - Homework Solutions 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Reduction of Order, B & D Chapter 3, p. 174 Constant Coefficient

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

Chapter 4. Higher-Order Differential Equations

Chapter 4. Higher-Order Differential Equations Chapter 4 Higher-Order Differential Equations i THEOREM 4.1.1 (Existence of a Unique Solution) Let a n (x), a n,, a, a 0 (x) and g(x) be continuous on an interval I and let a n (x) 0 for every x in this

More information

20D - Homework Assignment 5

20D - Homework Assignment 5 Brian Bowers TA for Hui Sun MATH D Homework Assignment 5 November 8, 3 D - Homework Assignment 5 First, I present the list of all matrix row operations. We use combinations of these steps to row reduce

More information

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5 Math 24 Final Exam Solution 17 December 1999 1. Find the general solution to the differential equation ty 0 +2y = sin t. Solution: Rewriting the equation in the form (for t 6= 0),we find that y 0 + 2 t

More information

Homework 2 Solutions Math 307 Summer 17

Homework 2 Solutions Math 307 Summer 17 Homework 2 Solutions Math 307 Summer 17 July 8, 2017 Section 2.3 Problem 4. A tank with capacity of 500 gallons originally contains 200 gallons of water with 100 pounds of salt in solution. Water containing

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

Lesson 12: Solving Equations

Lesson 12: Solving Equations Exploratory Exercises 1. Alonzo was correct when he said the following equations had the same solution set. Discuss with your partner why Alonzo was correct. (xx 1)(xx + 3) = 17 + xx (xx 1)(xx + 3) = xx

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

First Order Linear Ordinary Differential Equations

First Order Linear Ordinary Differential Equations First Order Linear Ordinary Differential Equations The most general first order linear ODE is an equation of the form p t dy dt q t y t f t. 1 Herepqarecalledcoefficients f is referred to as the forcing

More information

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients?

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? 1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? Let y = ay b with y(0) = y 0 We can solve this as follows y =

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test 2 SOLUTIONS 1. Find the radius of convergence of the power series Show your work. x + x2 2 + x3 3 + x4 4 + + xn

More information

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS The two methods we will use to solve systems are substitution and elimination. Substitution was covered in the last lesson and elimination is covered in this lesson. Method of Elimination: 1. multiply

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

4. Higher Order Linear DEs

4. Higher Order Linear DEs 4. Higher Order Linear DEs Department of Mathematics & Statistics ASU Outline of Chapter 4 1 General Theory of nth Order Linear Equations 2 Homogeneous Equations with Constant Coecients 3 The Method of

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Second-Order Linear ODEs A second order ODE is called linear if it can be written as y + p(t)y + q(t)y = r(t). (0.1) It is called homogeneous if r(t) = 0, and nonhomogeneous otherwise. We shall assume

More information

EXAM 2 MARCH 17, 2004

EXAM 2 MARCH 17, 2004 8.034 EXAM MARCH 7, 004 Name: Problem : /30 Problem : /0 Problem 3: /5 Problem 4: /5 Total: /00 Instructions: Please write your name at the top of every page of the exam. The exam is closed book, closed

More information

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1 Math 392 Exam 1 Solutions Fall 20104 1. (10 pts) Find the general solution to the differential equation = 1 y 2 t + 4ty = 1 t(y 2 + 4y). Hence (y 2 + 4y) = t y3 3 + 2y2 = ln t + c. 2. (8 pts) Perform Euler

More information

Practice Midterm Solutions

Practice Midterm Solutions Practice Midterm Solutions Math 4B: Ordinary Differential Equations Winter 20 University of California, Santa Barbara TA: Victoria Kala DO NOT LOOK AT THESE SOLUTIONS UNTIL YOU HAVE ATTEMPTED EVERY PROBLEM

More information

Math 110 Test # 1. The set of real numbers in both of the intervals [0, 2) and ( 1, 0] is equal to. Question 1. (F) [ 1, 2) (G) (2, ) (H) [ 1, 2]

Math 110 Test # 1. The set of real numbers in both of the intervals [0, 2) and ( 1, 0] is equal to. Question 1. (F) [ 1, 2) (G) (2, ) (H) [ 1, 2] Friday July 8, 00 Jacek Szmigielski Math 0 Test # Fill in the bubbles that correspond to the correct answers. No aids: no calculators, closed book. You are not permitted to consult with your fellow students

More information

THE USE OF CALCULATORS, BOOKS, NOTES ETC. DURING THIS EXAMINATION IS PROHIBITED. Do not write in the blanks below. 1. (5) 7. (12) 2. (5) 8.

THE USE OF CALCULATORS, BOOKS, NOTES ETC. DURING THIS EXAMINATION IS PROHIBITED. Do not write in the blanks below. 1. (5) 7. (12) 2. (5) 8. MATH 4 EXAMINATION II MARCH 24, 2004 TEST FORM A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination consists of 2 problems. The first 6 are multiple choice questions, the next two are short

More information

Lecture 16. Theory of Second Order Linear Homogeneous ODEs

Lecture 16. Theory of Second Order Linear Homogeneous ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 16. Theory of Second Order Linear Homogeneous ODEs February 17, 2012 Konstantin Zuev (USC) Math 245, Lecture 16 February 17, 2012 1 / 12 Agenda

More information

Problem Points Problem Points Problem Points

Problem Points Problem Points Problem Points Name Signature Student ID# ------------------------------------------------------------------ Left Neighbor Right Neighbor 1) Please do not turn this page until instructed to do so. 2) Your name and signature

More information

AP CALCULUS BC SUMMER ASSIGNMENT

AP CALCULUS BC SUMMER ASSIGNMENT AP CALCULUS BC SUMMER ASSIGNMENT Dear BC Calculus Student, Congratulations on your wisdom in taking the BC course! We know you will find it rewarding and a great way to spend your junior/senior year. This

More information

Math 115 Practice for Exam 2

Math 115 Practice for Exam 2 Math 115 Practice for Exam Generated October 30, 017 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Math 23 Practice Quiz 2018 Spring

Math 23 Practice Quiz 2018 Spring 1. Write a few examples of (a) a homogeneous linear differential equation (b) a non-homogeneous linear differential equation (c) a linear and a non-linear differential equation. 2. Calculate f (t). Your

More information

2.1 Differential Equations and Solutions. Blerina Xhabli

2.1 Differential Equations and Solutions. Blerina Xhabli 2.1 Math 3331 Differential Equations 2.1 Differential Equations and Solutions Blerina Xhabli Department of Mathematics, University of Houston blerina@math.uh.edu math.uh.edu/ blerina/teaching.html Blerina

More information

6 - Theory of Higher-Order Linear Differential Equations

6 - Theory of Higher-Order Linear Differential Equations 6 - Theory of Higher-Order Linear Differential Equations 6.1 Basic Theory of Linear Differential Equations Homework: p. 325-326 #1, 7, 15, 19 ü Introduction A linear differential equation of order n is

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

Rewrite logarithmic equations 2 3 = = = 12

Rewrite logarithmic equations 2 3 = = = 12 EXAMPLE 1 Rewrite logarithmic equations Logarithmic Form a. log 2 8 = 3 Exponential Form 2 3 = 8 b. log 4 1 = 0 4 0 = 1 log 12 = 1 c. 12 12 1 = 12 log 4 = 1 d. 1/4 1 4 1 = 4 GUIDED PRACTICE for Example

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015 Math 2Z03 - Tutorial # 6 Oct. 26th, 27th, 28th, 2015 Tutorial Info: Tutorial Website: http://ms.mcmaster.ca/ dedieula/2z03.html Office Hours: Mondays 3pm - 5pm (in the Math Help Centre) Tutorial #6: 3.4

More information