PROJECT MANAGEMENT CHAPTER 1

Size: px
Start display at page:

Download "PROJECT MANAGEMENT CHAPTER 1"

Transcription

1 PROJECT MANAGEMENT CHAPTER 1 Project management is the process and activity of planning, organizing, motivating, and controlling resources, procedures and protocols to achieve specific goals in scientific or daily problems. A project is an endeavor ( او محولة (مسعى to accomplish a specific objective through a unique set of interrelated tasks and the effective utilization of resources. It has a clearly defined objective stated in terms of scope, schedule, and cost. The responsibility of the project manager is to make sure that the project objective is accomplished and that the work scope is completed in a quality manner, within budget, and on time, to the customer s satisfaction. A project has a well-defined objective - an expected result or product. The objective of a project is usually defined in terms of scope, schedule, and cost. For example, the objective of a project might be to introduce to the market- in 10 months and within a budget of $500,000-a new food preparation appliance that meets certain predefined performance specifications. Furthermore, it is expected that the work scope will be accomplished in a quality manner and to the customer s satisfaction. ATTRIBUTES OF A PROJECT A project is carried out through a series of interdependent tasks-that is, a number of nonrepetitive tasks that need to be accomplished in a certain sequence in order to achieve the project objective. A project utilizes various resources to carry out the tasks. Such resources can include different people, organizations, equipment, materials, and facilities. A project has a specific time frame, or finite life span. It has a start time and a date by which the objective must be accomplished. A project may be a unique or one-time endeavor. Some projects like designing and building a space station are unique because they have never before been attempted. 1

2 PROJECT MANAGEMENT CHAPTER 1 Other projects, such as developing a new product, building a house, or planning a wedding, are unique because of the customization they require. A project has a customer. The customer is the entity that provides the funds (capital) necessary to accomplish the project. It can be a person, an organization, or a partnership of two or more people or organizations. Finally, a project involves a degree of uncertainty. Before a project is started, a plan is prepared based on certain assumptions and estimates. It is important to document these assumptions, because they will influence the development of the project budget, schedule, and work scope. A project is based on a unique set of tasks and estimates of how long each task should take, various resources and assumptions about the availability and capability of those resources, and estimates of the costs associated with the resources. This combination of assumptions and estimates causes a degree of uncertainty that the project objective will be completely accomplished. The following are some examples of projects: Developing and introducing a new product Planning a wedding Designing and implementing a computer system Modernizing a factory Consolidating two manufacturing plants Hosting a conference Building a shopping mall Performing a series of surgeries Rebuilding a town after a natural disaster Hosting a dinner PROJECT LIFE CYCLE Figure 1 shows the four phases of the project lifecycle and the relative amount of effort and time devoted to each phase. The first phase of the project life cycle involves the identification of a need, problem, or opportunity and can result in the customer s requesting proposals from individuals, a project team, or organizations (contractors) to address the identified need or solve the problem. The need and requirements are usually written up by the 2

3 PROJECT MANAGEMENT CHAPTER 1 customer in a document called a request for proposal (RFP). Through the RFP, the customer asks individuals or contractors to submit proposals on how they might solve the problem, along with the associated cost and schedule. FIGURE 1 Project Life Cycle Efforts The second phase of the project life cycle is the development of a proposed solution to the need or problem. In this phase, the contractor effort is dominant. Contractors interested in responding to the RFP may spend several weeks developing approaches to solving the problem, estimating the types and amounts of resources that would be needed as well as the time it would take to design and implement the proposed solution. Each contractor documents this information in a written proposal. All of the contractors submit their proposals to the customer. The third phase of the project life cycle is the implementation of the proposed solution. This phase begins after the customer decides which of the proposed solutions will best fulfill the need and an agreement is reached between the customer and the individual or contractor who submitted the proposal. This phase, referred to as performing the project, involves doing the detailed planning for the project and then implementing that plan to accomplish the project objective. During the course of performing the project, different types of resources will be utilized. The final phase of the project life cycle is terminating the project. An important task during this phase is evaluating performance of the project in order to learn what could be improved if a similar project were to be carried out in the future. This phase should include obtaining feedback from the customer to determine the level of the customers satisfaction and whether the project meet the customer s expectations. Also, feedback should be obtained from the project team in the form of recommendations for improving performance of projects in the future. 3

4

5

6

7

8

9 , and are Linear Programming The method linear programming was used to get optimal solution. General Linear Programming Problem A general mathematical way of representing a Linear Programming Problem (L.P.P.) is as given below: Where all crjr brir arijr s are constants and xrjr decision variables. UExample1:U A company manufactures two products X and Y, which require, the following resources. The resources are the capacities machine M1, M2, and M3. The available capacities are 50, 25 and 15 hours respectively in the planning period. Product X requires 1 hour of machine M2 and 1 hour of machine M3. Product Y requires 2 hours of machine M1, 2 hours of machine M2 and 1 hour of machine M3. The profit contribution of products X and Y are Rs.5/ per unit and Rs.4/ per unit respectively. Formulate the problem Solution: The contents of the statement of the problem can be summarized as follows: Maximize Z = 5x + 4y OBJECTIVE FUNCTION. Mohammad Hameed 1 D.U.C.

10 For Machine M1 0x + 2y 50 For Machine M2 1x + 2y 25 CONSTRAINTS For machine M3 1x + 1y 15 x, y 0 UExample2:U A retail store stocks two types of shirts A and B. These are packed in attractive cardboard boxes. During a week the store can sell a maximum of 400 shirts of type A and a maximum of 300 shirts of type B. The storage capacity, however, is limited to a maximum of 600 of both types combined. Type A shirt fetches a profit of Rs. 2/ per unit and type B a profit of Rs. 5/ per unit. How many of each type the store should stock per week to maximize the total profit? Formulate a mathematical model of the problem. Solution: Maximize Z = 2a + 5b s.t. 1a + 0b 400 0a + 1b 300 1a + 1b 600 a, b 0 Graphical Method For Solution Linear Programming Model (LP) Only two variable problems are considered, because we can draw straight lines in two-dimensional plane (X- axis and Y-axis). UExample3:U A company manufactures two products, X and Y by using three machines A, B, and C. Machine A has 4 hours of capacity available during the coming week. Similarly, the available capacity of machines B and C during the coming week is 24 hours and 35 hours respectively. One unit of product X requires one hour of Machine A, 3 hours of machine B and 10 hours of machine C. Similarly one unit of product Y requires 1 hour, 8 hour and 7 hours of machine A, B and C respectively. When one unit of X is sold in the market, it yields a profit of Rs. 5/per product and that of Y is Rs. 7/per unit. Solve the problem by using graphical method to find the optimal product mix. Mohammad Hameed 2 D.U.C.

11 USolution:U The details given in the problem is given in the table below: Let the company manufactures x units of X and y units of Y, and then the L.P. model is: Maximise Z = 5x + 7y s.t. 1x + 1y 4 machine A 3x + 8y 24 machine B 10x + 7y 35 machine C x,y 0 As we cannot draw graph for inequalities, let us consider them as equations. Maximise Z = 5x + 7y s.t. 1x + 1y = 4 3x + 8y = 24 10x + 7y = 35 x, y are 0 machine A machine B machine C Let us take machine A. and find the boundary conditions. If x = 0, machine A can manufacture 4/1 = 4 units of y. Similarly, if y = 0, machine A can manufacture 4/1 = 4 units of x. Machine B When x = 0, y = 24/8 = 3 and when y = 0 x = 24/3 = 8 Machine C When x = 0, y = 35/10 = 3.5 and when y = 0, x = 35 / 7 = 5. Mohammad Hameed 3 D.U.C.

12 Graph for machine A Graph for machine B Graph for machine C Graph for machine A, B and C combined Method 1. Here we find the co-ordinates of corners of the closed polygon ROUVW and substitute the values in the objective function. In maximization problem, we select the coordinates giving maximum value. And in minimization problem, we select the coordinates, which gives minimum value. In the problem the co-ordinates of the corners are: R = (0, 3.5), O = (0,0), U = (3.5,0), V = (2.5, 1.5) and W = (1.6,2.4). Substituting these values in objective function: Z( 0,3.5) = = Rs , at point R Z (0,0) = = Rs , Z(3.5,0) = = Rs Z (2.5, 1.5) = = Rs Z (1.6, 2.4) = = Rs at point O at point U at point V at point W Mohammad Hameed 4 D.U.C.

13 Method 2. Isoprofit Line Method: Isoprofit line, a line on the graph drawn as per the objective function, assuming certain profit. On this line any point showing the values of x and y will yield same profit. UFor exampleu in the given problem, the objective function is Maximise Z = 5x + 7y. we draw line ZZ (preferably dotted line) for 5x + 7y = 35. Then draw parallel line to this line ZZ at origin. The line at origin indicates zero rupees profit. Hence slowly move this line away from origin. While moving it touches corners of the polygon showing certain higher profit. Finally, it touches the farthermost corner covering all the area of the closed polygon. This point where the line passes (farthermost point) is the UOPTIMAL SOLUTIONU of the problem. In the figure the line ZZ passing through point W covers the entire area of the polygon, hence it is the point that yields highest profit. Now point W has co-ordinates (1.6, 2.4). Now Optimal profit Z = = Rs UExample4:U A company produces both interior and exterior paints from two raw materials, Ml and M.1. The following table provides the basic data of the problem: A market survey indicates that the daily demand for interior paint cannot exceed that for exterior paint by more than 1 ton. Also, the maximum daily demand for interior paint is 2 tons. The A company wants to determine the optimum (best) product mix of interior and exterior paints that maximizes the total daily profit. Mohammad Hameed 5 D.U.C.

14 USolutionU: Mohammad Hameed 6 D.U.C.

15

16

17

18 = = 0, = 0

19 = 0 = = 0 = 0 = + = = 4 = 4 = = 25 7 = 18 = 18 = + = = 1 = { + } = {( + ) ( + )} {(4 + 1), (1 + 1)} = + = = 7 = + = = 11 = + = = 15 = { + } = {( + ) ( + )} {(11 + 1), (15 + 2)} = { + } = {( + ) ( + )} {(5 + 5), (17 + 1)} = { + } = {( + ) ( + )} {(8 + 7), (17 + 8)} = 5 = 7 = = {( ) ( )} {(18 1), (25 8)} = = 17 2 = 15 = = 17 1 = 16 = = {( ) ( )} {(15 8), (16 4)} = = 18 5 = 13 = = 7 6 = 11 = = 13 1 = 12 = = {( ) ( )} {(12 4), (1 1)} = 15 = 16 = 13 = 11 = 12 = = 17 = 12 )

20 = + ( ) ( ) =

21 = = 0, = 0 = 0 = = 46 = 46 = + = = 20 = 20 = = = 36 = 36 = + = = 30 = = 36 6 = 30 = 30 = { + } = {( + ) ( + )} = 36 {( ), (30 + 6)} = = {( ) ( )} {(30 10), (36 12)} = 20 = + = = 46 = 46 = = {( ) ( )} {(20 20), (30 25)} = = + ( ) = ( )

22 = 0 = = 15 = 0 = + = = 2 = + = = 2 = + = = 1 = + = = 6 = + = = 7 = 2 = 1 = 7 = { + } = {( + ) ( + )} {(2 + 8), (1 + 3)} = { + } = {( + ) ( + )} {(6 + 1), (7 + 4)} = { + } = {( + ) ( + )} {(11 + 3), (10 + 5)} = = {( ) {(15 3) = (12) = {( ) (15 5) } = {( ) (12 1) } = {( ) (12 4) } = = {( ) ( )} {(10 8), (8 5)} = {( ) (10 3) } = {( ) (11 4) } = 12 = = {( ) ( ) ( )} {(7 2), (2 2)(7 1)} = 10 = 11 = 8 = 2 = 7 = 7 == 0

23 = 7 = 0, = 0 = + ( ) = ( )

24 = =. = =.

25

26 ) ) ) ) ( ( ) ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = = 0 = = 32.5 = 32.5 = { + } = {( + ) = + = = 3.5 = { + } = = 2,1 {( + ) ( + ) = max{ ) ( )} = 1 = { + } = = 3,4 {( + ) ( + ) = max{ ) ( )} = + = = 25.8 = { + } = = 5,3 {( + ) ( + ) = max{ ) ( )} = 24.5 = + = = 34.9 = + = = 32.5 = 5.3 = 3.5 = = 34.9 = 34.9 = {( ) (32.5 8) } = {( ) ( ) } = = {( ) ( )} = 25.8 {( ), (24.5 5)} = {( ) (19.5 7) } = = {( ) = 10 ( )} {( ), ( )} = {( ) (11 4) } = = {( ) ( )} {( ), ( )} = 24.5 = 11 = 12.5 = 7 = 0

27 ) = 0, = 0 = 5.3

28 ( ) ( (. ) ( ( ) = ( ( ) = ( ( ) = ( ( ) = 3 ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = ( ( ) = 2 ( ( ) = = 0, = 0

29 = 0 = = = 32.5 = { + } = {( + ) = + = = 4 = + = = 5 = { + } = = 3,4 {( + ) ( + ) = max{5 + 3) (4 + 4)} = (8,8) = + = = 10 = { + } = = 5,6 {( + ) ( + ) = max{8 + 5) (10 + 7)} = 17 = + = = 19 = + = 17 + = = { + } = = 8,9 {( + ) ( + ) = max{19 + 2) ( + 5)} = = 4 = 5 = 10 = 17 = = 2 = 8 = = 5 = = = = = {( ) ( )} 2, ( } = {( ) (17 7) } = {( ) (17 5) } = {( ) (10 5) } = { } = {12 4) = 8 = = {( ) ( )} {(8 2), (5 3)} = { } = {2 2) = 0 = 0 = = = 17 = 10 = 12 = 5 = 8 = 2

30 = 0 = 3

31

32

33

34

LP Definition and Introduction to Graphical Solution Active Learning Module 2

LP Definition and Introduction to Graphical Solution Active Learning Module 2 LP Definition and Introduction to Graphical Solution Active Learning Module 2 J. René Villalobos and Gary L. Hogg Arizona State University Paul M. Griffin Georgia Institute of Technology Background Material

More information

2. Linear Programming Problem

2. Linear Programming Problem . Linear Programming Problem. Introduction to Linear Programming Problem (LPP). When to apply LPP or Requirement for a LPP.3 General form of LPP. Assumptions in LPP. Applications of Linear Programming.6

More information

Transportation Problem

Transportation Problem Transportation Problem. Production costs at factories F, F, F and F 4 are Rs.,, and respectively. The production capacities are 0, 70, 40 and 0 units respectively. Four stores S, S, S and S 4 have requirements

More information

Concept and Definition. Characteristics of OR (Features) Phases of OR

Concept and Definition. Characteristics of OR (Features) Phases of OR Concept and Definition Operations research signifies research on operations. It is the organized application of modern science, mathematics and computer techniques to complex military, government, business

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information

Bachelor s Degree Programme Operations Research (Valid from 1st January, 2012 to 30th November, 2012.)

Bachelor s Degree Programme Operations Research (Valid from 1st January, 2012 to 30th November, 2012.) AOR-01 ASSIGNMENT BOOKLET Bachelor s Degree Programme Operations Research (Valid from 1st January, 2012 to 30th November, 2012.) It is compulsory to submit the assignment before filling in the exam form.

More information

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2 Spring 2018 IE 102 Operations Research and Mathematical Programming Part 2 Graphical Solution of 2-variable LP Problems Consider an example max x 1 + 3 x 2 s.t. x 1 + x 2 6 (1) - x 1 + 2x 2 8 (2) x 1,

More information

The Transportation Problem

The Transportation Problem CHAPTER 12 The Transportation Problem Basic Concepts 1. Transportation Problem: BASIC CONCEPTS AND FORMULA This type of problem deals with optimization of transportation cost in a distribution scenario

More information

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1 ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1 SUB:OPERATION RESEARCH CLASS: III B.SC SUB CODE:EMT617S SUB INCHARGE:S.JOHNSON SAVARIMUTHU 2 MARKS QUESTIONS 1. Write the general model of

More information

...(iii), x 2 Example 7: Geetha Perfume Company produces both perfumes and body spray from two flower extracts F 1. The following data is provided:

...(iii), x 2 Example 7: Geetha Perfume Company produces both perfumes and body spray from two flower extracts F 1. The following data is provided: The LP formulation is Linear Programming: Graphical Method Maximize, Z = 2x + 7x 2 Subject to constraints, 2x + x 2 200...(i) x 75...(ii) x 2 00...(iii) where x, x 2 ³ 0 Example 7: Geetha Perfume Company

More information

Operations Research: Introduction. Concept of a Model

Operations Research: Introduction. Concept of a Model Origin and Development Features Operations Research: Introduction Term or coined in 1940 by Meclosky & Trefthan in U.K. came into existence during World War II for military projects for solving strategic

More information

Linear Programming. H. R. Alvarez A., Ph. D. 1

Linear Programming. H. R. Alvarez A., Ph. D. 1 Linear Programming H. R. Alvarez A., Ph. D. 1 Introduction It is a mathematical technique that allows the selection of the best course of action defining a program of feasible actions. The objective of

More information

LINEAR PROGRAMMING. Lessons 28. Lesson. Overview. Important Terminology. Making inequalities (constraints)

LINEAR PROGRAMMING. Lessons 28. Lesson. Overview. Important Terminology. Making inequalities (constraints) LINEAR PROGRAMMING Learning Outcomes and Assessment Standards Learning Outcome 2: Functions and algebra Assessment Standard 12.2.8 Solve linear programming problems by optimising a function in two variables,

More information

Graphical and Computer Methods

Graphical and Computer Methods Chapter 7 Linear Programming Models: Graphical and Computer Methods Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna 2008 Prentice-Hall, Inc. Introduction Many management

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form problems Graphical representation

More information

The Assignment Problem

The Assignment Problem CHAPTER 12 The Assignment Problem Basic Concepts Assignment Algorithm The Assignment Problem is another special case of LPP. It occurs when m jobs are to be assigned to n facilities on a one-to-one basis

More information

Chapter 3 Introduction to Linear Programming PART 1. Assoc. Prof. Dr. Arslan M. Örnek

Chapter 3 Introduction to Linear Programming PART 1. Assoc. Prof. Dr. Arslan M. Örnek Chapter 3 Introduction to Linear Programming PART 1 Assoc. Prof. Dr. Arslan M. Örnek http://homes.ieu.edu.tr/~aornek/ise203%20optimization%20i.htm 1 3.1 What Is a Linear Programming Problem? Linear Programming

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 1 Second Group of Students (with first letter of surnames I Z) Problem Set Rules: Due: February 12, 2013 1. Each student should

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 1 (Second Group of Students) Students with first letter of surnames G Z Due: February 12, 2013 1. Each

More information

CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming

CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming Integer Programming, Goal Programming, and Nonlinear Programming CHAPTER 11 253 CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming TRUE/FALSE 11.1 If conditions require that all

More information

Programmers A B C D Solution:

Programmers A B C D Solution: P a g e Q: A firm has normally distributed forecast of usage with MAD=0 units. It desires a service level, which limits the stock, out to one order cycle per year. Determine Standard Deviation (SD), if

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form Graphical representation

More information

Math 381 Midterm Practice Problem Solutions

Math 381 Midterm Practice Problem Solutions Math 381 Midterm Practice Problem Solutions Notes: -Many of the exercises below are adapted from Operations Research: Applications and Algorithms by Winston. -I have included a list of topics covered on

More information

CHAPTER-3 MULTI-OBJECTIVE SUPPLY CHAIN NETWORK PROBLEM

CHAPTER-3 MULTI-OBJECTIVE SUPPLY CHAIN NETWORK PROBLEM CHAPTER-3 MULTI-OBJECTIVE SUPPLY CHAIN NETWORK PROBLEM 3.1 Introduction A supply chain consists of parties involved, directly or indirectly, in fulfilling customer s request. The supply chain includes

More information

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions 11. Consider the following linear program. Maximize z = 6x 1 + 3x 2 subject to x 1 + 2x 2 2x 1 + x 2 20 x 1 x 2 x

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS This is for your practice. DEPARTMENT OF MATHEMATICS Ma162 Samples from old Final Exams 1. Fred Foy has $100, 000 to invest in stocks, bonds and a money market account. The stocks have an expected return

More information

Duality in LPP Every LPP called the primal is associated with another LPP called dual. Either of the problems is primal with the other one as dual. The optimal solution of either problem reveals the information

More information

Practice Questions for Math 131 Exam # 1

Practice Questions for Math 131 Exam # 1 Practice Questions for Math 131 Exam # 1 1) A company produces a product for which the variable cost per unit is $3.50 and fixed cost 1) is $20,000 per year. Next year, the company wants the total cost

More information

Modern Logistics & Supply Chain Management

Modern Logistics & Supply Chain Management Modern Logistics & Supply Chain Management As gold which he cannot spend will make no man rich, so knowledge which he cannot apply will make no man wise. Samuel Johnson: The Idler No. 84 Production Mix

More information

Graph the linear inequality. 1) x + 2y 6

Graph the linear inequality. 1) x + 2y 6 Assignment 7.1-7.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the linear inequality. 1) x + 2y 6 1) 1 2) x + y < -3 2) 2 Graph the

More information

School of Business. Blank Page

School of Business. Blank Page Maxima and Minima 9 This unit is designed to introduce the learners to the basic concepts associated with Optimization. The readers will learn about different types of functions that are closely related

More information

Linear Programming CHAPTER 11 BASIC CONCEPTS AND FORMULA. Basic Concepts 1. Linear Programming

Linear Programming CHAPTER 11 BASIC CONCEPTS AND FORMULA. Basic Concepts 1. Linear Programming CHAPTER 11 Linear Programming Basic Concepts 1. Linear Programming BASIC CONCEPTS AND FORMULA Linear programming is a mathematical technique for determining the optimal allocation of re- sources nd achieving

More information

PREPARED BY: INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

PREPARED BY: INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 PREPARED BY: A. SOMAIAH, ASST. PROFESSOR T. VANAJA, ASST. PROFESSOR DEPT. OF MECHANICAL ENGINEERING 1 Syllabus UNIT-I Development

More information

Chapter 2 Introduction to Optimization and Linear Programming

Chapter 2 Introduction to Optimization and Linear Programming Ch. 2 Introduction to Optimization and Linear Programming TB-9 Chapter 2 Introduction to Optimization and Linear Programming Multiple Choice 1. What most motivates a business to be concerned with efficient

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 2 First Group of Students) Students with first letter of surnames A H Due: February 21, 2013 Problem Set Rules: 1. Each student

More information

OR: Exercices Linear Programming

OR: Exercices Linear Programming OR: Exercices Linear Programming N. Brauner Université Grenoble Alpes Exercice 1 : Wine Production (G. Finke) An American distillery produces 3 kinds of genuine German wines: Heidelberg sweet, Heidelberg

More information

Pearson Edexcel GCE Decision Mathematics D2. Advanced/Advanced Subsidiary

Pearson Edexcel GCE Decision Mathematics D2. Advanced/Advanced Subsidiary Pearson Edexcel GCE Decision Mathematics D2 Advanced/Advanced Subsidiary Friday 23 June 2017 Morning Time: 1 hour 30 minutes Paper Reference 6690/01 You must have: D2 Answer Book Candidates may use any

More information

LINEAR PROGRAMMING BASIC CONCEPTS AND FORMULA

LINEAR PROGRAMMING BASIC CONCEPTS AND FORMULA CHAPTER 11 LINEAR PROGRAMMING Basic Concepts 1. Linear Programming BASIC CONCEPTS AND FORMULA Linear programming is a mathematical technique for determining the optimal allocation of re- sources nd achieving

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS Ma 62 Final Exam December 4, 20 Instructions: No cell phones or network-capable devices are allowed during the exam. You may use calculators, but you must show your work to receive

More information

Introduction. Formulating LP Problems LEARNING OBJECTIVES. Requirements of a Linear Programming Problem. LP Properties and Assumptions

Introduction. Formulating LP Problems LEARNING OBJECTIVES. Requirements of a Linear Programming Problem. LP Properties and Assumptions Valua%on and pricing (November 5, 2013) LEARNING OBJETIVES Lecture 10 Linear Programming (part 1) Olivier J. de Jong, LL.M., MM., MBA, FD, FFA, AA www.olivierdejong.com 1. Understand the basic assumptions

More information

Section 4.1 Solving Systems of Linear Inequalities

Section 4.1 Solving Systems of Linear Inequalities Section 4.1 Solving Systems of Linear Inequalities Question 1 How do you graph a linear inequality? Question 2 How do you graph a system of linear inequalities? Question 1 How do you graph a linear inequality?

More information

UNIT-4 Chapter6 Linear Programming

UNIT-4 Chapter6 Linear Programming UNIT-4 Chapter6 Linear Programming Linear Programming 6.1 Introduction Operations Research is a scientific approach to problem solving for executive management. It came into existence in England during

More information

Solution Cases: 1. Unique Optimal Solution Reddy Mikks Example Diet Problem

Solution Cases: 1. Unique Optimal Solution Reddy Mikks Example Diet Problem Solution Cases: 1. Unique Optimal Solution 2. Alternative Optimal Solutions 3. Infeasible solution Case 4. Unbounded Solution Case 5. Degenerate Optimal Solution Case 1. Unique Optimal Solution Reddy Mikks

More information

MATH 445/545 Homework 1: Due February 11th, 2016

MATH 445/545 Homework 1: Due February 11th, 2016 MATH 445/545 Homework 1: Due February 11th, 2016 Answer the following questions Please type your solutions and include the questions and all graphics if needed with the solution 1 A business executive

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 1 (First Group of Students) Students with first letter of surnames A F Due: February 12, 2013 1. Each student

More information

LEARNING OBJECTIVES. Overview of Lesson. guided practice Teacher: anticipates, monitors, selects, sequences, and connects student work

LEARNING OBJECTIVES. Overview of Lesson. guided practice Teacher: anticipates, monitors, selects, sequences, and connects student work M Functions, Lesson 3, Domain and Range (r. 2018) FUNCTIONS Domain and Range CC Standard F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

More information

Linear Programming II NOT EXAMINED

Linear Programming II NOT EXAMINED Chapter 9 Linear Programming II NOT EXAMINED 9.1 Graphical solutions for two variable problems In last week s lecture we discussed how to formulate a linear programming problem; this week, we consider

More information

Introduction to LP. Types of Linear Programming. There are five common types of decisions in which LP may play a role

Introduction to LP. Types of Linear Programming. There are five common types of decisions in which LP may play a role Linear Programming RK Jana Lecture Outline Introduction to Linear Programming (LP) Historical Perspective Model Formulation Graphical Solution Method Simplex Method Introduction to LP Continued Today many

More information

Algebra 2 Pre AP Chapters 2 & 12 Review Worksheet

Algebra 2 Pre AP Chapters 2 & 12 Review Worksheet Algebra 2 Pre AP Chapters 2 & 12 Review Worksheet Directions: Complete the following problems on the packet. These packets will serve as a review of the entire year. For each equation given: (a) find the

More information

Linear Programming: A Geometric Approach

Linear Programming: A Geometric Approach OpenStax-CNX module: m18903 1 Linear Programming: A Geometric Approach Rupinder Sekhon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract This

More information

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved.

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH Copyright Cengage Learning. All rights reserved. 3.4 Sensitivity Analysis Copyright Cengage Learning. All rights reserved. Sensitivity Analysis In this section,

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION MATHEMATICAL ECONOMICS COMPLEMENTARY COURSE B.Sc. Mathematics II SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION Calicut University P. O. Malappuram, Kerala, India 67 65 40 UNIVERSITY OF CALICUT

More information

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics Dr. Said Bourazza Department of Mathematics Jazan University 1 P a g e Contents: Chapter 0: Modelization 3 Chapter1: Graphical Methods 7 Chapter2: Simplex method 13 Chapter3: Duality 36 Chapter4: Transportation

More information

Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15

Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15 Social Science/Commerce Calculus I: Assignment #10 - Solutions Page 1/15 1. Consider the function f (x) = x - 8x + 3, on the interval 0 x 8. The global (absolute) maximum of f (x) (on the given interval)

More information

Operations Research. Mathematical modeling exercise.

Operations Research. Mathematical modeling exercise. Operations Research Mathematical modeling exercise. The system of linear inequalities problems often leads to a system of linear inequalities (SLI). We will learn to convert the SLI to system of linear

More information

Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities Math 3 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

ALGEBRA UNIT 5 LINEAR SYSTEMS SOLVING SYSTEMS: GRAPHICALLY (Day 1)

ALGEBRA UNIT 5 LINEAR SYSTEMS SOLVING SYSTEMS: GRAPHICALLY (Day 1) ALGEBRA UNIT 5 LINEAR SYSTEMS SOLVING SYSTEMS: GRAPHICALLY (Day 1) System: Solution to Systems: Number Solutions Exactly one Infinite No solution Terminology Consistent and Consistent and Inconsistent

More information

42 Average risk. Profit = (8 5)x 1 é ù. + (14 10)x 3

42 Average risk. Profit = (8 5)x 1 é ù. + (14 10)x 3 CHAPTER 2 1. Let x 1 and x 2 be the output of P and V respectively. The LPP is: Maximise Z = 40x 1 + 30x 2 Profit Subject to 400x 1 + 350x 2 250,000 Steel 85x 1 + 50x 2 26,100 Lathe 55x 1 + 30x 2 43,500

More information

Welcome to CPSC 4850/ OR Algorithms

Welcome to CPSC 4850/ OR Algorithms Welcome to CPSC 4850/5850 - OR Algorithms 1 Course Outline 2 Operations Research definition 3 Modeling Problems Product mix Transportation 4 Using mathematical programming Course Outline Instructor: Robert

More information

f exist? Why or why not? Non-AP Calculus Summer Assignment 1. Use the graph at the right to answer the questions below. a. Find f (0).

f exist? Why or why not? Non-AP Calculus Summer Assignment 1. Use the graph at the right to answer the questions below. a. Find f (0). 1. Use the graph at the right to answer the questions below. 4 1 0 - - -1 0 1 4 5 6 7 8 9 10 11-1 - a. Find f (0). b. On what intervals is f( x) increasing? c. Find x so that f( x). d. Find the zeros of

More information

Linear programming: introduction and examples

Linear programming: introduction and examples Linear programming: introduction and examples G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Industrial Automation Ferrari Trecate (DIS) Linear

More information

UNIT 4 TRANSPORTATION PROBLEM

UNIT 4 TRANSPORTATION PROBLEM UNIT 4 TRANSPORTATION PROLEM Structure 4.1 Introduction Objectives 4.2 Mathematical Formulation of the Transportation Problem 4.3 Methods of Finding Initial asic Feasible Solution North-West orner Rule

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Linear Programming. Businesses seek to maximize their profits while operating under budget, supply, Chapter

Linear Programming. Businesses seek to maximize their profits while operating under budget, supply, Chapter Chapter 4 Linear Programming Businesses seek to maximize their profits while operating under budget, supply, labor, and space constraints. Determining which combination of variables will result in the

More information

Math Applications 544

Math Applications 544 Math Applications The applications that follow are like the ones you will encounter in many workplaces. Use the mathematics you have learned in this chapter to solve the problems. Wherever possible, use

More information

Linear Functions, Equations, and Inequalities

Linear Functions, Equations, and Inequalities CHAPTER Linear Functions, Equations, and Inequalities Inventory is the list of items that businesses stock in stores and warehouses to supply customers. Businesses in the United States keep about.5 trillion

More information

c. Solve the system of two equations to find the speed of the boat in the water (x) and the speed of the current (y). (0.45, 0.05)

c. Solve the system of two equations to find the speed of the boat in the water (x) and the speed of the current (y). (0.45, 0.05) Math Applications The applications that follow are like the ones you will encounter in many workplaces. Use the mathematics you have learned in this chapter to solve the problems. Wherever possible, use

More information

ENM 202 OPERATIONS RESEARCH (I) OR (I) 2 LECTURE NOTES. Solution Cases:

ENM 202 OPERATIONS RESEARCH (I) OR (I) 2 LECTURE NOTES. Solution Cases: ENM 202 OPERATIONS RESEARCH (I) OR (I) 2 LECTURE NOTES Solution Cases: 1. Unique Optimal Solution Case 2. Alternative Optimal Solution Case 3. Infeasible Solution Case 4. Unbounded Solution Case 5. Degenerate

More information

2 Functions and Their

2 Functions and Their CHAPTER Functions and Their Applications Chapter Outline Introduction The Concept of a Function Types of Functions Roots (Zeros) of a Function Some Useful Functions in Business and Economics Equilibrium

More information

Name Class Date. 3. Write an equation for the following description: y is three times the value of x.

Name Class Date. 3. Write an equation for the following description: y is three times the value of x. Name Class Date Practice 5-2 Linear Equations: y = mx 5-2 Linear Equations: y = mx 1. The variable y has a proportional relationship with x as suggested by the graph. Use the graph to write an equation

More information

Introduction to Operations Research Prof G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module 01 Linear Programming Introduction and formulations Lecture - 01 Product

More information

Explain any relationship you see between the length of the diameter and the circumference.

Explain any relationship you see between the length of the diameter and the circumference. Level A π Problem of the Month Circular Reasoning π Janet and Lydia want to learn more about circles. They decide to measure different size circles that they can find. They measure the circles in two ways.

More information

Chapter 3: Systems of Linear Equations and Inequalities. Chapter 3.1: Solving Linear Systems by Graphing. System of Two Linear Equations: Solution:

Chapter 3: Systems of Linear Equations and Inequalities. Chapter 3.1: Solving Linear Systems by Graphing. System of Two Linear Equations: Solution: Chapter 3: Systems of Linear Equations and Inequalities Chapter 3.1: Solving Linear Systems by Graphing System of Two Linear Equations: Solution: x 3y = 5 Example: Check whether the ordered pair on solution

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions 1. What does the Representation Theorem say (in linear programming)? 2. What is the Fundamental Theorem of Linear Programming? 3. What is the main idea

More information

Chapter 8 - Forecasting

Chapter 8 - Forecasting Chapter 8 - Forecasting Operations Management by R. Dan Reid & Nada R. Sanders 4th Edition Wiley 2010 Wiley 2010 1 Learning Objectives Identify Principles of Forecasting Explain the steps in the forecasting

More information

BLITZER LEARNING GUIDE SAMPLE

BLITZER LEARNING GUIDE SAMPLE BLITZER LEARNING GUIDE SAMPLE Section 5.1 Systems of Linear Equations in Two Variables Procrastination makes you sick! Researchers compared college students who were procrastinators and nonprocrastinators.

More information

Name: Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How would you graph the solution set for the linear inequality y + 5x 2? a. Draw a

More information

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1

The Graphical Method & Algebraic Technique for Solving LP s. Métodos Cuantitativos M. En C. Eduardo Bustos Farías 1 The Graphical Method & Algebraic Technique for Solving LP s Métodos Cuantitativos M. En C. Eduardo Bustos Farías The Graphical Method for Solving LP s If LP models have only two variables, they can be

More information

Introduction to Operations Research. Linear Programming

Introduction to Operations Research. Linear Programming Introduction to Operations Research Linear Programming Solving Optimization Problems Linear Problems Non-Linear Problems Combinatorial Problems Linear Problems Special form of mathematical programming

More information

MODELING (Integer Programming Examples)

MODELING (Integer Programming Examples) MODELING (Integer Programming Eamples) IE 400 Principles of Engineering Management Integer Programming: Set 5 Integer Programming: So far, we have considered problems under the following assumptions:

More information

Linear Programming. Formulating and solving large problems. H. R. Alvarez A., Ph. D. 1

Linear Programming. Formulating and solving large problems.   H. R. Alvarez A., Ph. D. 1 Linear Programming Formulating and solving large problems http://academia.utp.ac.pa/humberto-alvarez H. R. Alvarez A., Ph. D. 1 Recalling some concepts As said, LP is concerned with the optimization of

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

Green Chemistry Member Survey April 2014

Green Chemistry Member Survey April 2014 Green Chemistry Member Survey April 2014 www.greenchemistryandcommerce.org Summary In 2014, the Green Chemistry & Commerce Council surveyed its business members to gain a better understanding of their

More information

Solve Linear Systems Algebraically

Solve Linear Systems Algebraically TEKS 3.2 a.5, 2A.3.A, 2A.3.B, 2A.3.C Solve Linear Systems Algebraically Before You solved linear systems graphically. Now You will solve linear systems algebraically. Why? So you can model guitar sales,

More information

Decision Mathematics Module D1

Decision Mathematics Module D1 E Examinations ecision Mathematics Module 1 Advanced Subsidiary / Advanced Level Paper E Time: 1 hour 3 minutes Instructions and Information andidates may use any calculator except those with a facility

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH 309 COURSE TITLE: OPTIMIZATION THEORY

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH 309 COURSE TITLE: OPTIMIZATION THEORY NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH 39 COURSE TITLE: OPTIMIZATION THEORY MTH 39 OPTIMIZATION THEORY Prof. U. A. Osisiogu August 28, 22 CONTENTS I 7 Linear

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MAC 1105 Module Test 3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the coordinates of the point of intersection of the linear equations.

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Introduction to optimization and operations research

Introduction to optimization and operations research Introduction to optimization and operations research David Pisinger, Fall 2002 1 Smoked ham (Chvatal 1.6, adapted from Greene et al. (1957)) A meat packing plant produces 480 hams, 400 pork bellies, and

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Linear Programming Solving Optimization Problems Linear Problems Non-Linear Problems Combinatorial Problems Linear Problems Special form of mathematical programming

More information

3 Development of the Simplex Method Constructing Basic Solution Optimality Conditions The Simplex Method...

3 Development of the Simplex Method Constructing Basic Solution Optimality Conditions The Simplex Method... Contents Introduction to Linear Programming Problem. 2. General Linear Programming problems.............. 2.2 Formulation of LP problems.................... 8.3 Compact form and Standard form of a general

More information

Section 5.3: Linear Inequalities

Section 5.3: Linear Inequalities 336 Section 5.3: Linear Inequalities In the first section, we looked at a company that produces a basic and premium version of its product, and we determined how many of each item they should produce fully

More information

ALGEBRA 1 SEMESTER 1 INSTRUCTIONAL MATERIALS Courses: Algebra 1 S1 (#2201) and Foundations in Algebra 1 S1 (#7769)

ALGEBRA 1 SEMESTER 1 INSTRUCTIONAL MATERIALS Courses: Algebra 1 S1 (#2201) and Foundations in Algebra 1 S1 (#7769) Multiple Choice: Identify the choice that best completes the statement or answers the question. 1. Ramal goes to the grocery store and buys pounds of apples and pounds of bananas. Apples cost dollars per

More information

3.1 NOTES Solving Systems of Linear Equations Graphically

3.1 NOTES Solving Systems of Linear Equations Graphically 3.1 NOTES Solving Systems of Linear Equations Graphically A system of two linear equations in two variables x and y consist of two equations of the following form: Ax + By = C Equation 1 Dx + Ey = F Equation

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

Problem #1. The following matrices are augmented matrices of linear systems. How many solutions has each system? Motivate your answer.

Problem #1. The following matrices are augmented matrices of linear systems. How many solutions has each system? Motivate your answer. Exam #4 covers the material about systems of linear equations and matrices (CH. 4.1-4.4, PART II); systems of linear inequalities in two variables (geometric approach) and linear programming (CH.5.1-5.2,

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

More information

Summary. MATH 1003 Calculus and Linear Algebra (Lecture 24) First Derivative Test. Second Derivative Test

Summary. MATH 1003 Calculus and Linear Algebra (Lecture 24) First Derivative Test. Second Derivative Test Summary MATH 1003 Calculus and Linear Algebra (Lecture 24) Maosheng Xiong Department of Mathematics, HKUST Question For a function y = f (x) in a domain, how do we find the absolute maximum or minimum?

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

Linear Programming Applications. Transportation Problem

Linear Programming Applications. Transportation Problem Linear Programming Applications Transportation Problem 1 Introduction Transportation problem is a special problem of its own structure. Planning model that allocates resources, machines, materials, capital

More information