Manuscript code: BH11160 RECVD: Mon Feb 8 16:14: Resubmission to: Physical Review B Resubmission type: resubmit

Size: px
Start display at page:

Download "Manuscript code: BH11160 RECVD: Mon Feb 8 16:14: Resubmission to: Physical Review B Resubmission type: resubmit"

Transcription

1 1 of 6 05/17/ :32 AM Date: Mon, 8 Feb :14:55 UT From: esub-adm@aps.org To: prbtex@ridge.aps.org CC: wen@dao.mit.edu Subject: [Web] resub BH11160 Gu Subject: BH11160 Manuscript code: BH11160 RECVD: Mon Feb 8 16:14: Resubmission to: Physical Review B Resubmission type: resubmit Replaced files: lqgrv.tex Details of changes: Dear Prof : We would like to thank you for your time and energy to review two of our papers. The main purpose of our appeal is to have some further discussion on the physics accosiated with the emergent quantum gravity. We hope that we still have a chance to discuss the issue further. First, We would like to make a statement: So far, we do not know any 3D lattice Hamiltonian with a continuous time that have the following properties: 1) has gapless excitations 2) all low energy excitations are described by a single helicity +/- 2 mode (and there no other gapless excitations or other low energy modes) 3) the helicity +/- 2 mode has a linear dispersion. Actually, I think that we do not even know any 3D lattice Hamiltonian with a continuous time that have the first two properties (Correct me if I am wrong). If you agree with the above statement, then the significance of our paper can be undertsood as to propose the first lattice model (the L-type model) that have the first two properties (this is reliable result). We also propose a N-type model that may even have the above three properties. But the result on the N-type model is less reliable. Second, We would like to list our practical and minimal definition of quantum gravity as the following (as stated in the paper): Quantum gravity is (a) A quantum theory. (b) Its Hilbert space has a finite dimension. (c) The Hamiltonian is a sum of local operators. (d) A single gapless helicity $\pm 2$ mode is the only type of low energy excitations. (e) The helicity $\pm 2$ excitations have a linear dispersion. (f) The gravitons interact in the way consistent with experimental observations.

2 2 of 6 05/17/ :32 AM We very much like to hear your comments on the above minimal definition of quantum gravity. The main objection to our paper is that the paper is not related to quantum gravity. If our definition make sense, then our paper is related to quantum gravity by addressing (a-d) or (a-e). There are several published papers that proposed other 3D lattice Hamiltonians of gravity. But those papers fail to show the existence of gapless excitation. Compare to those published proposals, our models do have something to do with gravity. We completely agree with you that the property (f) is very important. But here, our main concern is to have a well defined local quantum theory (such as a 3D lattice Hamiltonian) that has gravitons. The property (f) is left for future study. The following is our detailed reply to your comments. We wish that you may reconsider your recommendation on our paper Report of the Divisional Associate Editor -- LH12204/Gu Appeal LH12204 Lattice qubit model as a quantum theory of gravity by Zheng-Cheng Gu and Xiao-Gang Wen BH11160 Emergence of helicity $\pm2$ modes or gravitons from qubit models by Zheng-Cheng Gu and Xiao-Gang Wen Note: this is a joint Editorial Board response to the appeals of two papers, LH12204 (submitted to PRL) and a longer version, BH11160 (submitted to PRB). The basic issues involved are the same for both. If gravity were merely a massless spin 2 field, life would be much easier, albeit less interesting. But gravity is much more: in this language, it is a massless spin 2 field that couples universally to all forms of energy, including its own self-energy. This universality is crucial both theoretically and experimentally. Theoretically, it is what allows us to treat gravity as a geometric phenomenon, by ensuring that all objects respond identically to a gravitational field. Observationally, it is perhaps the best-tested aspect of gravity: tests of the principle of equivalence -- including tests of the self-coupling of gravity, through searches for the Nordtvedt effect -- now typically have accuracies of parts in $10^{12}$. We totally agrees with the Editor's statement on gravity. But here we would like to stress that the Editor also agrees that the quantum gravity at least has "a massless spin 2 field". At moment, we do not have any 3D lattice model that has a helicity +/- 2 mode as the only low energy

3 3 of 6 05/17/ :32 AM modes. Our paper is the first paper that proposed a 3D lattice Hamiltonian that has a helicity +/- 2 mode as the only low energy modes. Only after having a quamtum model that has a helicity +/- 2 mode, can we start to consider the conditions that make gravitons to have a proper form of interaction that is consistant with general equivalence principle. The authors of this paper attempt to derive gravity as an emergent phenomenon on a spatial lattice. Their model seems somewhat artificial, in the sense that they get spin 2 out only by putting spin 2 in (i.e., placing symmetric tensors on the lattice); this is not quite what people usually mean when they talk about emergent gravity. Still, if the result was a good lattice model of gravity, the work would be of some interest. Although, our model is motivated by put symmetric tensors on the lattice, our model is actually a qbit model on lattice. Each site only have some quantum states (ie qbits). Strictly speaking, there is no symmetric tensor in our lattice model. Unfortunately, the authors only consider the linearized level, where the issue of self-coupling is absent, and they do not discuss the coupling to general matter fields at all. Moreover, even at this linear level, they state in the PRB submission that the dispersion relation for the model that most closely resembles linearized gravity "is not a reliable result" because of the possibility of uncontrolled quantum fluctuations at higher orders. (I did not see a similar caveat in the PRL submission.) The authors state explicitly that the higher order terms key to a genuine theory of gravity are nonuniversal in their model. They express a hope that the standard (experimentally tested) result might be obtained by fine-tuning the lattice model, but offer no evidence for this hope, and no reason to expect that Nature would do such fine-tuning. In particular, they offer no reason to believe that such a tuning at one scale would be preserved under renormalization group flow. But without the right universal coupling, this is very clearly not a theory of gravity. Here Editor raised a very important issue about the proper self interaction of gravitons. Our paper only proposed a 3D lattice Hamiltonian with a helicity +/- 2 mode as the only low energy modes. The issue of graviton self interaction is not really addressed in our paper. The graviton self interaction will be a future research direction, after this paper about the emergence of gravition get published. We agree that without the right universal coupling, a theory cannot not be a full theory of gravity. But we like to stress that without gapless helicity +/- 2 modes, a theory is even less a theory of gravity.

4 4 of 6 05/17/ :32 AM There are other basic issues as well. While the authors discuss the idea that "geometry is an emergent phenomenon that appears only at long distances," in practice they assume a fixed, a priori geometry -- their cubic lattice, with fixed edge lengths, gives a flat Euclidean background. There was once a time that one could simply assume Euclidean geometry and proceed from there, but that time has long passed; now that we understand that geometry can be dynamical, a starting assumption of a flat background is no longer self-evident. If the authors want to explain gravity as an emergent phenomenon on a flat lattice, they also need field equations that determine why the lattice is flat. The distance defined by lattice is not the same as the physical distance. The physical distance depends on the fluctuations $h_{ij}$ (the helicity +/- 2 modes at low energies). So the emergent geometry can be curved if the collective mode $h_{ij}$ is excitated. The equation for $h_{ij}$ is the equation for the dynamical geometry. This is not just a philosophical issue. The choice of a flat background makes it very hard to compare the theory to general relativity. As the referees have stressed, diffeomorphism invariance is not a local gauge transformation: diffeomorphisms do not act at a single point, but move points. The metric, for example, transforms under $x^a \rightarrow x^a + \xi^a$ as $$g_{ab} \rightarrow g_{ac}\partial_b\xi^c + g_{bc}\partial_a\xi^c + \xi^c\partial_c g_{ab}$$ The last term is crucial. Unlike an ordinary gauge transformation, an infinitesimal diffeomorphism involves derivatives. Unfortunately, if one linearizes around a flat background, this last term vanishes at lowest order. (This is not the case, even at lowest order, if one expands around a curved background.) But unless this term is present, the symmetry of the model is not the symmetry of general relativity. The fact that diffeomorphisms relate fields at different points is the basic feature that makes it so hard to quantize gravity, implying, for instance, that there are no local observables. If one wants to quantize gravity by simply ignoring this feature, one has a heavy burden: one must prove that the resulting theory really can reproduce the observationally tested results of general relativity. This is again a very good point. But this is about the issue of self interaction of gravitons. Trying to understand under what condition can the self interaction of gravitons naturally take a form that is consistant with general equivalence principle is a future research direction. Our paper is just about how to have massless graviton emerge from a 3D lattice Hamiltonian. The issue of self interaction of gravitons is not really addressed.

5 5 of 6 05/17/ :32 AM This same problem shows up in the authors' constraints. As they point out in the PRB submission (eqn. (26)), their constraints all commute. This is most certainly not the case in conventional gravity, where the constraints form a "surface deformation algebra." One would not write down a theory with three commuting U(1) gauge symmetries and call it an SU(3) theory; why should one claim that a theory with four commuting constraints has anything to do with general relativity? We made the claim because our 3D lattice model has helicity +/- 2 modes as the only low energy excitation. There are several published papers that proposed other 3D lattice Hamiltonians of gravity. But those papers fail to show the existence of gapless excitation. Compare to those published proposals, our model does have something to do with gravity. I also concur with the referees that these papers have a distressing tendency to ignore previous work. The authors write in one of their replies that their approach is different because it uses a spatial lattice but continuous time. But this is not a new idea; I believe it was introduced first by Renteln and Smolin, Class. Quantum Grav. 6 (1989) 275, using Ashtekar variables; continuous time Regge calculus has been studied by Collins and Williams, Khatsymovsky, Brewin, and a number of others. I also agree with one referee's suggestion of Hamber's monograph. There is also a huge literature on emergent gravity; a starting point might be the paper by Barcelo et al. in Living Reviews in Relativity. A greater familiarity with this work would have alerted the authors to the crucial problem of universality and the equivalence principle. Indeed, quantum gravity is not our main research field. But we did try very hard to find papers on quantum gravity that start with a well defined local quantum model (a 3D lattice Hamiltonian). Although, there are may space-time lattice based approach, we find only a few papers which proposed a 3D lattice Hamiltonian with a continuous time. (Those references 33,34,35 are included in the new version.) Non of those paper discussed the low energy excitations of the propose Hamiltonian. We do not even know if the proposed Hamiltonians have gapless excitation or not. Our paper did discuss low energy excitations and show the emergence of gapless helicity +/- 2 mode. So we feel that our paper does have something to do with gravity, and deserve to be published. In summary: the authors have shown, perhaps, a way to give masses to the spin 0 and spin 1 pieces of a symmetric field on a lattice, while keeping the spin 2 piece massless (although they admit that for the most interesting model, their reported low-energy behavior is unreliable).

6 6 of 6 05/17/ :32 AM We agree with Editor's above characterization of our paper. (If we replace "spin-m" by "helicity-m", the above statement will be more accurate.) It is highly highly non-trival to design a 3D lattice Hamiltonian that give energy gap to the helicity-0 and helicity-1 modes while keeping the mode-2 as the only gapless excitation. We believe that our model is the first and only proposal to achieve this. This is the reason why we think our paper deserve to be published. They have not, however, connected the resulting theory to gravity, and I see no sign that such a connection can be made. It is certainly not true that a massless spin 2 field in itself implies gravity, especially with no evidence for a universal coupling to energy. Much more needs to be done to even start to make such a connection. But without such a relationship to gravity, these papers seem to be of very limited interest. We respectfully disagree with Editor's conclusion here. We believe that our model is the first and only 3D lattice Hamiltonian that has helicity +/- 2 modes as the only low energy excitation. Thus, we feel that our paper deserve publication. We agree with the Editor that the self intercation of gravitons and universal coupling to energy are very important, and they are our future research directions. Only after having a quamtum model that has a helicity +/- 2 mode, can we start to consider the conditions that make gravitons to have a proper form of interaction and universal coupling to energy. Here we try to learn how to walk before we run. We feel that the first paper about "how to walk" deserve publication. I concur with the referees' recommendations that these papers should not be published. We sincerely wish the Editor to reconsider. Maybe the key points are (a) does our paper propose the first and only 3D lattice Hamiltonian that has helicity +/- 2 modes as the only low energy excitation. (b) does the emergence of gapless helicity +/- 2 modes have some relation to gravity and deserve publication? Many papers on quantum gravity did not show the presence gapless helicity +/- 2 modes. Without massless gravitons, one cannot even start to discuss the proper self interaction of gravitons at low energies. We feel that stressing the presence gapless helicity +/- 2 modes is important for development of the field of quantum gravity. Only after showing the presence of gapless helicity +/- 2 modes, can we consider the proper self interaction between those modes.

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

MITOCW watch?v=nw4vp_upvme

MITOCW watch?v=nw4vp_upvme MITOCW watch?v=nw4vp_upvme The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018 Gravitational wave memory and gauge invariance David Garfinkle Solvay workshop, Brussels May 18, 2018 Talk outline Gravitational wave memory Gauge invariance in perturbation theory Perturbative and gauge

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

15 Skepticism of quantum computing

15 Skepticism of quantum computing 15 Skepticism of quantum computing Last chapter, we talked about whether quantum states should be thought of as exponentially long vectors, and I brought up class BQP/qpoly and concepts like quantum advice.

More information

Scale invariance on the lattice

Scale invariance on the lattice Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale invariance on the lattice Guifre Vidal Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

Diffeomorphism Invariant Gauge Theories

Diffeomorphism Invariant Gauge Theories Diffeomorphism Invariant Gauge Theories Kirill Krasnov (University of Nottingham) Oxford Geometry and Analysis Seminar 25 Nov 2013 Main message: There exists a large new class of gauge theories in 4 dimensions

More information

Spectral Action from Anomalies

Spectral Action from Anomalies Spectral Action from Anomalies Fedele Lizzi Università di Napoli Federico II and Insitut de Ciencies del Cosmo, Universitat de Barcelona Work in collaboration with A.A. Andrianov & M. Kurkov (St. Petersburg)

More information

One Loop Tests of Higher Spin AdS/CFT

One Loop Tests of Higher Spin AdS/CFT One Loop Tests of Higher Spin AdS/CFT Simone Giombi UNC-Chapel Hill, Jan. 30 2014 Based on 1308.2337 with I. Klebanov and 1401.0825 with I. Klebanov and B. Safdi Massless higher spins Consistent interactions

More information

Quantum Mechanics without Spacetime II

Quantum Mechanics without Spacetime II Quantum Mechanics without Spacetime II - Noncommutative geometry and the free point particle - T. P. Singh Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400 005, India email address:

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Intrinsic time quantum geometrodynamics: The. emergence of General ILQGS: 09/12/17. Eyo Eyo Ita III

Intrinsic time quantum geometrodynamics: The. emergence of General ILQGS: 09/12/17. Eyo Eyo Ita III Intrinsic time quantum geometrodynamics: The Assistant Professor Eyo Ita emergence of General Physics Department Relativity and cosmic time. United States Naval Academy ILQGS: 09/12/17 Annapolis, MD Eyo

More information

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Linear Confinement from AdS/QCD Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Excited Rho Mesons 6 (from PARTICLE DATA BOOK) Experiment 0.933 n 5 m 2 n, GeV

More information

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama Lorentz-covariant spectrum of single-particle states and their field theory Physics 30A, Spring 007, Hitoshi Murayama 1 Poincaré Symmetry In order to understand the number of degrees of freedom we need

More information

Where are we heading?

Where are we heading? Where are we heading? PiTP 2013 Nathan Seiberg IAS Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) What are the problems

More information

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Towards a manifestly diffeomorphism invariant Exact Renormalization Group Towards a manifestly diffeomorphism invariant Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for UK QFT-V, University of Nottingham,

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 Davis, January 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard Werner

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

16. Einstein and General Relativistic Spacetimes

16. Einstein and General Relativistic Spacetimes 16. Einstein and General Relativistic Spacetimes Problem: Special relativity does not account for the gravitational force. To include gravity... Geometricize it! Make it a feature of spacetime geometry.

More information

Generalized Global Symmetries

Generalized Global Symmetries Generalized Global Symmetries Anton Kapustin Simons Center for Geometry and Physics, Stony Brook April 9, 2015 Anton Kapustin (Simons Center for Geometry and Physics, Generalized StonyGlobal Brook) Symmetries

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Multipole Expansion in the Quantum Hall Effect

Multipole Expansion in the Quantum Hall Effect Multipole Expansion in the Quantum Hall Effect Andrea Cappelli (INFN and Physics Dept., Florence) with E. Randellini (Florence) Outline Chern-Simons effective action: bulk and edge Wen-Zee term: shift

More information

TOPIC V BLACK HOLES IN STRING THEORY

TOPIC V BLACK HOLES IN STRING THEORY TOPIC V BLACK HOLES IN STRING THEORY Lecture notes Making black holes How should we make a black hole in string theory? A black hole forms when a large amount of mass is collected together. In classical

More information

Covariance and Quantum Cosmology

Covariance and Quantum Cosmology Covariance and Quantum Cosmology Theodore Halnon, McNair Scholar The Pennsylvania State University McNair Research Advisor: Martin Bojowald, Ph.D Professor of Physics Department of Physics Eberly College

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): The work is very interesting as it presents a way to reduce the ohmic losses in the metals in the finite range of frequencies. In this the work

More information

Chris Verhaaren Joint Theory Seminar 31 October With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme

Chris Verhaaren Joint Theory Seminar 31 October With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme Chris Verhaaren Joint Theory Seminar 31 October 2016 With Zackaria Chacko, Rashmish Mishra, and Simon Riquelme It s Halloween A time for exhibiting what some find frightening And seeing that it s not so

More information

Stress-energy tensor is the most important object in a field theory and have been studied

Stress-energy tensor is the most important object in a field theory and have been studied Chapter 1 Introduction Stress-energy tensor is the most important object in a field theory and have been studied extensively [1-6]. In particular, the finiteness of stress-energy tensor has received great

More information

Some open questions in physics

Some open questions in physics K.A. Meissner, Unsolved problems p. 1/25 Some open questions in physics Krzysztof A. Meissner Instytut Fizyki Teoretycznej UW Instytut Problemów Ja drowych Kraków, 23.10.2009 K.A. Meissner, Unsolved problems

More information

Renormalization Group analysis of 2D Ising model

Renormalization Group analysis of 2D Ising model Renormalization Group analysis of D Ising model Amir Bar January 7, 013 1 Introduction In this tutorial we will see explicitly how RG can be used to probe the phase diagram of d > 1 systems, focusing as

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

The Physics of Neutrinos

The Physics of Neutrinos AAAS Feb. 15, 2004 The Physics of Neutrinos Boris Kayser Neutrinos are Abundant We, and all the everyday objects around us here on earth, are made of electrons, protons, and neutrons. In the universe,

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

Your_manuscript LP9512 Yoshita

Your_manuscript LP9512 Yoshita 1/6 2005/07/21 16:55 Subject: Your_manuscript LP9512 Yoshita From: Physical Review Letters Date: Mon, 28 Feb 2005 22:32:45 UT To: yoshita@issp.u-tokyo.ac.jp Re: LP9512 Evolution of

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity)

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) Andrew J. Tolley Case Western Reserve University Based on: de Rham, Matas, Tolley, ``New Kinetic Terms for Massive Gravity

More information

Higher-Spin Black Holes and Generalised FZZ Duality

Higher-Spin Black Holes and Generalised FZZ Duality Higher-Spin Black Holes and Generalised FZZ Duality Batsheva de Rothschild Seminar on Innovative Aspects of String Theory, Ein Bokek, Israel, 28 February 2006 Based on: Anindya Mukherjee, SM and Ari Pakman,

More information

Non-locality in QFT due to Quantum Effects in Gravity

Non-locality in QFT due to Quantum Effects in Gravity Non-locality in QFT due to Quantum Effects in Gravity Xavier Calmet Physics & Astronomy University of Sussex 1 Effective action for GR How can we describe general relativity quantum mechanically? Well

More information

Off-shell loop quantum gravity

Off-shell loop quantum gravity Off-shell loop quantum gravity p. 1 Off-shell loop quantum gravity Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA Off-shell loop quantum

More information

(January 6, 2006) Paul Garrett garrett/

(January 6, 2006) Paul Garrett  garrett/ (January 6, 2006)! "$# % & '!)( *+,.-0/%&1,3234)5 * (6# Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ To communicate clearly in mathematical writing, it is helpful to clearly express

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

Intrinsic Time Quantum Geometrodynamics (ITQG)

Intrinsic Time Quantum Geometrodynamics (ITQG) Intrinsic Time Quantum Geometrodynamics (ITQG) Assistant Professor Eyo Ita Eyo Eyo Ita Physics Department LQG International Seminar United States Naval Academy Annapolis, MD 27 October, 2015 Outline of

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore

Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore Module - 3 Lecture - 10 First Order Linear Equations (Refer Slide Time: 00:33) Welcome

More information

Select/ Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras

Select/ Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Select/ Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Lecture No. # 06 Angular Momentum in Quantum Mechanics Greetings, we will begin

More information

The Evolving Cosmological Constant (Problem)

The Evolving Cosmological Constant (Problem) The Evolving Cosmological Constant (Problem) N. Itzhaki, (PU) PiPT 2006 Outline The CC problem: then and now (experimental hints). Abbott s model (85). Abbott s model string landscape + anthropic principle.

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 FRG2011, Harvard, May 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard

More information

:-) (-: :-) From Geometry to Algebra (-: :-) (-: :-) From Curved Space to Spin Model (-: :-) (-: Xiao-Gang Wen, MIT.

:-) (-: :-) From Geometry to Algebra (-: :-) (-: :-) From Curved Space to Spin Model (-: :-) (-: Xiao-Gang Wen, MIT. :-) (-: :-) From Geometry to Algebra (-: :-) (-: :-) From Curved Space to Spin Model (-: :-) (-: Xiao-Gang Wen, MIT http://dao.mit.edu/ wen Einstein s theory of gravity Einstein understood the true meaning

More information

A Note On The Chern-Simons And Kodama Wavefunctions

A Note On The Chern-Simons And Kodama Wavefunctions hep-th/0306083 arxiv:gr-qc/0306083v2 19 Jun 2003 A Note On The Chern-Simons And Kodama Wavefunctions Edward Witten Institute For Advanced Study, Princeton NJ 08540 USA Yang-Mills theory in four dimensions

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

The full Graviton propagator from LQG

The full Graviton propagator from LQG The full Graviton propagator from LQG Emanuele Alesci University of Rome 3 and Université de la Mediterranée Loop 2007 Morelia 1 Tensorial Structure Try to extend the results of Bianchi, Modesto, Rovelli,

More information

Universal Dynamics from the Conformal Bootstrap

Universal Dynamics from the Conformal Bootstrap Universal Dynamics from the Conformal Bootstrap Liam Fitzpatrick Stanford University! in collaboration with Kaplan, Poland, Simmons-Duffin, and Walters Conformal Symmetry Conformal = coordinate transformations

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

An origin of light and electrons a unification of gauge interaction and Fermi statistics

An origin of light and electrons a unification of gauge interaction and Fermi statistics An origin of light and electrons a unification of gauge interaction and Fermi statistics Michael Levin and Xiao-Gang Wen http://dao.mit.edu/ wen Artificial light and quantum orders... PRB 68 115413 (2003)

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet 1 A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet A. Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model, Yin- Chen He, Michael P. Zaletel, Masaki Oshikawa, and

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

III. Particle Physics and Isospin

III. Particle Physics and Isospin . Particle Physics and sospin Up to now we have concentrated exclusively on actual, physical rotations, either of coordinates or of spin states, or both. n this chapter we will be concentrating on internal

More information

The Klein Gordon Equation

The Klein Gordon Equation December 30, 2016 7:35 PM 1. Derivation Let s try to write down the correct relativistic equation of motion for a single particle and then quantize as usual. a. So take (canonical momentum) The Schrödinger

More information

Flow equations on quantum circuits

Flow equations on quantum circuits Flow equations on quantum circuits Unified variational methods for quantum many-body systems Chris Dawson Jens Eisert and Tobias Osborne Flow equations on quantum circuits Unified variational methods for

More information

19 Entanglement Entropy in Quantum Field Theory

19 Entanglement Entropy in Quantum Field Theory 19 Entanglement Entropy in Quantum Field Theory So far we have discussed entanglement in ordinary quantum mechanics, where the Hilbert space of a finite region is finite dimensional. Now we will discuss

More information

Emergent Spacetime. Udit Gupta. May 14, 2018

Emergent Spacetime. Udit Gupta. May 14, 2018 Emergent Spacetime Udit Gupta May 14, 2018 Abstract There have been recent theoretical hints that spacetime should not be thought of as a fundamental concept but rather as an emergent property of an underlying

More information

Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum

Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the

More information

Sklar s Maneuver. Bradford Skow ABSTRACT

Sklar s Maneuver. Bradford Skow ABSTRACT Brit. J. Phil. Sci. 58 (2007), 777 786 Sklar s Maneuver Bradford Skow ABSTRACT Sklar ([1974]) claimed that relationalism about ontology the doctrine that space and time do not exist is compatible with

More information

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY a general-covariant lattice gauge theory UNIVERSITY OF THE BASQUE COUNTRY Bad Honnef - August 2 nd, 2018 THE GRAVITATIONAL FIELD GENERAL RELATIVITY: background independence! U(1) SU(2) SU(3) SL(2,C) l

More information

Chapter 3: Duality Toolbox

Chapter 3: Duality Toolbox 3.: GENEAL ASPECTS 3..: I/UV CONNECTION Chapter 3: Duality Toolbox MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 8 As seen before, equipped with holographic principle, we can deduce N = 4

More information

Hardy s Paradox. Chapter Introduction

Hardy s Paradox. Chapter Introduction Chapter 25 Hardy s Paradox 25.1 Introduction Hardy s paradox resembles the Bohm version of the Einstein-Podolsky-Rosen paradox, discussed in Chs. 23 and 24, in that it involves two correlated particles,

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

arxiv:hep-ph/ v1 23 Jun 1999

arxiv:hep-ph/ v1 23 Jun 1999 Why do we have parity violation? GUTPA/99/05/2 arxiv:hep-ph/9906466v1 23 Jun 1999 C.D. Froggatt Department of Physics and Astronomy Glasgow University, Glasgow G12 8QQ, Scotland and H. B. Nielsen Niels

More information

Lorentz Invariance and Second Quantization

Lorentz Invariance and Second Quantization Lorentz Invariance and Second Quantization By treating electromagnetic modes in a cavity as a simple harmonic oscillator, with the oscillator level corresponding to the number of photons in the system

More information

Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay

Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 6 Length Contraction and Time Dilation (Refer Slide Time: 00:29) In our last lecture,

More information

Quantum gravity, probabilities and general boundaries

Quantum gravity, probabilities and general boundaries Quantum gravity, probabilities and general boundaries Robert Oeckl Instituto de Matemáticas UNAM, Morelia International Loop Quantum Gravity Seminar 17 October 2006 Outline 1 Interpretational problems

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

A Way of Getting Rid of Things:

A Way of Getting Rid of Things: A Way of Getting Rid of Things: Higher-order Langauges, Priorian Nominalism, and Nihilism: Cian Dorr Rutgers Workshop on Structural Realism and the Metaphysics of Science 1. Higher-order quantification

More information

Quantum Gravity from the point of view of covariant relativistic quantum theory.

Quantum Gravity from the point of view of covariant relativistic quantum theory. Quantum Gravity from the point of view of covariant relativistic quantum theory. Johan Noldus August 6, 2016 Abstract In the light of a recent novel definition of a relativistic quantum theory [1, 3, 4],

More information

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 15 Momentum Energy Four Vector We had started discussing the concept of four vectors.

More information

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local RG, Quantum RG, and Holographic RG Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local renormalization group The main idea dates back to Osborn NPB 363 (1991) See also my recent review

More information

Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity

Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity Madhavan Varadarajan (Raman Research Institute) Canonical Gravity: Spacetime Covariance, Quantization and a New Classical

More information

1 Unitary representations of the Virasoro algebra

1 Unitary representations of the Virasoro algebra Week 5 Reading material from the books Polchinski, Chapter 2, 15 Becker, Becker, Schwartz, Chapter 3 Ginspargs lectures, Chapters 3, 4 1 Unitary representations of the Virasoro algebra Now that we have

More information

Where are we heading? Nathan Seiberg IAS 2014

Where are we heading? Nathan Seiberg IAS 2014 Where are we heading? Nathan Seiberg IAS 2014 Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) Problems and challenges

More information

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 9 Introducing Quantum Optics

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 9 Introducing Quantum Optics Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 9 Introducing Quantum Optics (Refer Slide Time: 00:07) In the last lecture I gave

More information

HOW TO THINK ABOUT POINTS AND VECTORS WITHOUT COORDINATES. Math 225

HOW TO THINK ABOUT POINTS AND VECTORS WITHOUT COORDINATES. Math 225 HOW TO THINK ABOUT POINTS AND VECTORS WITHOUT COORDINATES Math 225 Points Look around. What do you see? You see objects: a chair here, a table there, a book on the table. These objects occupy locations,

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Coupled Dark Energy and Dark Matter from dilatation symmetry

Coupled Dark Energy and Dark Matter from dilatation symmetry Coupled Dark Energy and Dark Matter from dilatation symmetry Cosmological Constant - Einstein - Constant λ compatible with all symmetries Constant λ compatible with all observations No time variation in

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Recovering General Relativity from Hořava Theory

Recovering General Relativity from Hořava Theory Recovering General Relativity from Hořava Theory Jorge Bellorín Department of Physics, Universidad Simón Bolívar, Venezuela Quantum Gravity at the Southern Cone Sao Paulo, Sep 10-14th, 2013 In collaboration

More information

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060 with Rob Leigh and Djordje Minic

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

2. The electrochemical potential and Schottky barrier height should be quantified in the schematic of Figure 1.

2. The electrochemical potential and Schottky barrier height should be quantified in the schematic of Figure 1. Reviewers' comments: Reviewer #1 (Remarks to the Author): The paper reports a photon enhanced thermionic effect (termed the photo thermionic effect) in graphene WSe2 graphene heterostructures. The work

More information

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1 Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1 Ofer Aharony Weizmann Institute of Science 8 th Crete Regional Meeting on String Theory, Nafplion, July 9, 2015 OA, Berkooz, Rey, 1501.02904 Outline

More information

EMERGENT GEOMETRY FROM QUANTISED SPACETIME

EMERGENT GEOMETRY FROM QUANTISED SPACETIME EMERGENT GEOMETRY FROM QUANTISED SPACETIME M.SIVAKUMAR UNIVERSITY OF HYDERABAD February 24, 2011 H.S.Yang and MS - (Phys Rev D 82-2010) Quantum Field Theory -IISER-Pune Organisation Quantised space time

More information

Initial Value and Evolution Structure of

Initial Value and Evolution Structure of Present State and Future Directions of Initial Value and Evolution Structure of Regge Calculus Warner A. Miller Florida Atlantic University & LANL In Regge calculus the principles of GR are applied directly

More information

Quasi-classical analysis of nonlinear integrable systems

Quasi-classical analysis of nonlinear integrable systems æ Quasi-classical analysis of nonlinear integrable systems Kanehisa TAKASAKI Department of Fundamental Sciences Faculty of Integrated Human Studies, Kyoto University Mathematical methods of quasi-classical

More information