Traffic Games Econ / CS166b Feb 28, 2012

Size: px
Start display at page:

Download "Traffic Games Econ / CS166b Feb 28, 2012"

Transcription

1 Traffic Games Econ / CS166b Feb 28, 2012 John Musacchio Associate Professor Technology and Information Management University of California, Santa Cruz johnm@soe.ucsc.edu

2 Traffic Games l Basics l Braess paradox l Pricing to improve social welfare l Selfish pricing

3 Traffic Routing Games -- Intro l Which route would you choose? The one with the lower delay of course!

4 Traffic Routing Games -- Intro delay traffic delay traffic l Which route would you choose? Depends on what routes the other cars choose! This is a game.

5 Traffic Routing Games -- Intro delay traffic l In this game There are many small players l assume that each player has negligible effect on total traffic Payoff functions are the same l - Delay delay traffic

6 Traffic Routing Games -- Intro delay traffic delay traffic l What is the strategy space of each player? The path taken, i.e. (up, down) l What is a Strategy Profile? An assignment of route to each car But since, utility functions identical l just specify fraction that goes on each route. l Call this a traffic assignment

7 Traffic Routing Games -- Intro delay traffic delay traffic l What is a Nash Equilibrium of this type of game? A traffic assignment such that no car has an incentive to switch paths. This is known as a Wardrop Equilbirum l For this game: the rates (½, ½) specify the Wardrop Equilbrium

8 Traffic Routing Games -- Intro l For a traffic assignment to be a Wardrop Equilbirum Traffic on used paths must encounter the same delay l Otherwise cars would switch paths Any unused path must have a delay greater than the used paths delay traffic delay traffic delay traffic

9 Example 1/2 Delay proportional to traffic Delay fixed x x 2 1/2 l What is the Wardrop equilibrium? (½, ½) l What is the delay the cars face? 1.5

10 Example x x 2 A new road l What is the Wardrop equilibrium?

11 Example 1/2 x x 2 1/2 l Is this the Wardrop equilbirium? No Cars can do better

12 Example 1/3 x /3 1 x 2 l Is this a Wardrop equilibrium? 1/3 No Cars can do better Red paths have a delay 5/3, green only 4/3 Cars want to switch to green

13 Example x x 2 l Is this a Wardrop equilbirium? Yes The delay is 2. One car switching to red path still finds a delay of 2.

14 Braess s Paradox 1/2 x x 2 1/2 l But this network had less delay in Wardrop Equilibriumum! l Delay: 1.5 x 1 l This network has an additional road l Delay: 2 l If a social planner could re-route traffic we could achieve a delay of 1.5 x 2

15 Generalizations of Example l We looked at one particular network With affine latency functions l And found that the social cost with Selfish routing is 2 Social optimal routing is 3/2 l The ratio: Is sometimes referred to as the price of anarchy

16 Generalizations of Example l It turns out With affine latency functions And arbitrary network topology The maximum price of anarchy is 4/3 l The Braess paradox example is the worst case. l With arbitrary latency functions The price of anarchy can be arbitrarily bad!

17 Selfishness vs. Social Planner l Why is it that selfish traffic has higher delay than optimally routed traffic? l Notation Let l i (x i ) be the latency (delay) on link I l i (x i ) = a i x i + b i l In our example For the asphalt roads: a i = 1, b i = 0 For the dirt roads: a i = 0, b i = 1

18 Selfishness vs. Social Planner l Social Planner Problem: Delay on a link Amount of traffic that Suffers that delay

19 Selfishness vs. Social Planner l When a social planner considers adding a small amount, ε, of flow to link i, The additional (marginal) cost is proportional to the derivative (2 a i x i + b i ) ε l In contrast, a driver sees the added cost as l i (x i ) ε = ( a i x i + b i ) ε

20 Pricing to achieve optimality l Suppose we can charge a price on each link l What price should we charge to get users to route optimally? l Drivers already see cost as ( a i x i + b i ) ε l Social planner sees cost as (2 a i x i + b i ) ε l Add some cost to drivers so their costs match social cost Charge a i x i per unit traffic

21 Pricing to achieve optimality l What does charging a i x i mean? l It s in units of time l But of course time is money l Figure out how many dollars a unit of time is worth, and multiply by that l For simplicity, suppose people s time is worth a dollar per time unit

22 Braess Paradox Network with Pricing Delay: X 1 Price: X Delay: X 2 Price: X 2 l Is it a Wardrop Equilibrium for all traffic to take the green path? Cost to driver of Green path: 4 Cost to driver of upper or lower path: 3 No traffic switches.

23 Braess Paradox Network with Pricing Delay: X 1 Price: X 1 1 1/2 0 l Is this the Wardrop Equilbirum? Yes Cost to driver of red path(s): 2 Cannot improve by switching 1 1/2 Delay: X 2 Price: X 2

24 Braess Paradox Network with Pricing Delay: X 1 Price: X 1 1 1/ /2 l The Delay along each path is now 1.5 Reduced from 2 before we installed pricing. Delay: X 2 Price: X 2

25 What about selfish pricing? l What if link owners are selfish, and try to maximize profit? Path 1 p 1 Path 2 p 2

26 Overview l Model Single source-destination pair Competing providers Non-atomic users Traffic dependent latency Elastic user demand l Model due to Acemoglu and Ozdaglar (2007) l Elastic user demand extension: Hayrapetyan, Tardos, Wexler (2007) John Musacchio

27 Overview l Parallel-Serial topologies without elastic demand studied by Acemoglu and Ozdaglar (06) John Musacchio

28 Wardrop Equilibrium for given prices Non-Atomic Users Path 1 p 1 + l 1 (f 1 ) Path 2 p 2 + l 2 (f 2 ) Choose lowest disutility : p i + l(f i ) Path 1 Path 2 Delay+Price Delay+Price Delay p 2 Delay p 1 Traffic 80% 100% Traffic 100% 20% John Musacchio

29 Elastic Demand? Demand or Disutility Curve Disutility User Surplus Key assumption: Concave Decreasing Total Flow (#of non-atomic users that connect) John Musacchio

30 Overview l Acemoglu and Ozdaglar show that for competing providers in parallel l Musacchio and Wu (07) Show same result using circuit Analogy l Present work Same technique, more complex topologies Presented at ITA 09 and OptimA09 John Musacchio

31 Compare Social Optimum Path 1 p 1 Path 2 Nash Path 1 p 2 p 1 Path 2 p 2 John Musacchio

32 Arbitrary Parallel-Serial Topology Source Disutility Flow Price: p 111 Latency: a 111 f 111 Price: p 31 Latency: a 31 f 31 Latency: b 1 Latency: b 3 Destination

33 Simple Parallel-Serial Topology Source Disutility Flow Price: p 11 Latency: a 11 f 11 Latency: b 1 Latency: b 3 Destination

34 Very Inefficient equilibria U max Flow P 1 = U max P 2 = U max l Each price is a best response to the other l Social Welfare 0 l PoA infinite John Musacchio

35 Class of Equilibria l Strict Equilibria Every player plays strict best response May not be possible some branches have too high a fixed latency l Zero-Flow Zero-Price Equilibria Providers that carry zero flow reduce their prices to zero in attempt to get some flow. John Musacchio

36 Circuit Analogy for Wardrop Equilibrium Source Voltage Current p 31 p 111 a 31 f 31 a 111 f 111 b 1 b 3 Destination

37 Thévenin Equivalent Source Voltage Slope: s Current V s Thévenin Equivalent p 111 V th a 111 ± 1111 a 111 b 1 b 3 Destination

38 Nash Equilibrium Condition: l Consider profit from ² price change John Musacchio

39 Nash Circuit Source Voltage Current δ a 1111 a 1111 δ 31 + a 31 a 31 b 1 b 3 Destination

40 Almost on branches V=1 s=1 But then, 2 nd branch undercut p 1 d=3/4 1+1 d< 5/7 1+1/2 p 2 For provider 1, a small increase in price may see a different Thévenin equivalent than a small decrease a 1 f Can show : Thévenin resistance with branches that would carry pos. flow with small price increase. Thévenin resistance with branches carrying positive flow

41 Existence l Theorem: A zero-flow, zero-price equilibrium exists. Proof sketch l δ i (S) = Thévenin equivalent with braches in set S on. l For each fixed set S, Nash circuit has unique solution for resistors {δ i (S) } l As S increases, voltage across branches decreases witch reduces set ON = branches actually on either fixed point S = On find almost on branches reduce δ s in other branches so that flow in almost on branches is 0. John Musacchio

42 Nash Circuit Source Voltage Slope: s Current d 1111 δ a 1111 a 1111 d 31 δ 31 + a 31 a 31 b 1 b 3 Destination

43 Social optimum pricing l Price so that users see the cost they impose on society. l Latency cost on link i: (a i f i * + b i )f i * l Marginal cost: 2a i f i * + b i l Latency seen by user: a i f i* + b i l Difference: a i f i * l Conclusion: p i* = a i f i * achieves social optimum

44 Social Optimum Circuit Source a 31 a 1111 a 31 a 1111 b 1 b 3 Destination

45 Nash vs. Social Opt. Original Game Nash Equilibrium: Social Optimum: -s d d* John Musacchio

46 Nash vs. Social Opt. Modification 1 Nash Equilibrium: Social Optimum: -s d d* Flow & Social Welfare Unchanged Flow & Social Welfare Not Reduced Price of Anarchy Not Reduced John Musacchio

47 V Nash vs. Social Opt. Modification 2 V Nash Equilibrium: Social Optimum: -s d d* Flow Unchanged Social Welfare reduced by light green area Flow Unchanged Social Welfare reduced by light green area Price of Anarchy Not Reduced

48 Notation l Primary Branches i = = a 11 a 1 a δ 12 1 a 2 a 3 a 4 s a 13 l Group 11 in branch 1 sees Thévenin resistance δ 11 δ 1 a 12 a 13 l If group 12 consists of providers in parallel: δ 121 = a 122 a 123 δ 21

49 Notation l For simple Parallel-Serial, let m i = #providers on each branch i

50 Nash Welfare simple-parallel serial V s l Welfare truncated disutility d 11 δ 11 + a 11 a 11 l Becomes l Kirchoff V. L.: b 1 John Musacchio

51 Soc. Opt. Welfare Simple-Parallel Serial V s a 11 a 11 (Relax positivity constraint on social optimum flow. Gives upper bound on true social optimum.) b 1 John Musacchio

52 Finding Bounds l z times Nash welfare minus social opt welfare l Algebra, Matrix Inversion Lemma l Off diagonal elements positive, focus on diagonal John Musacchio

53 Finding Bounds l Diagonal elements of form Where N i are polynomials in z and ta i - monotone increasing in z l Find sufficiently high z to make them all positive. John Musacchio

54 PoA Bound Simple Parallel-Serial l For zero-flow zero-price equilibria l Where m is max number of players connected serially John Musacchio

55 m=1, Parallel competition 1.5 m=1 player connected serialy PoA Conductance Ratio

56 m=3,5 serially, N in parallel 2.5 m=3 player connected serialy 2 PoA Conductance Ratio m=5 player connected serialy PoA Conductance Ratio

57 General Parallel-Serial l Consider a parallel grouping within network: a 11 +δ 1 1 a 12 +δ 1 2 a 11 a 12 a 13 +δ 13 a 13 < = a 1 +δ 1 a 1 +d 1 δ 11 a 1 f 1 d 1 <1 l Profit at least l But for simple parallel-serial it was l Consequence: - General parallel-serial requires X 2

58 Conclusion l Circuit analogy to prove existence of Nash Eq. and find POA bounds l Future work: Tighten bound on general parallel-serial. John Musacchio

59 References D. Acemoglu and A. Ozdaglar, Competition and Efficiency in Congested Markets, Math. of OR, Feb D, Acemoglu and A. Ozdaglar, Competition in Parallel-Serial Networks, JSAC, 2006 A. Hayrapetyan, E. Tardos and T. Wexler, A Network Pricing Game for Selfish Traffic, Distributed Computing, March A. Ozdaglar, ``Price Competition with Elastic Traffic,' Networks, J. Musacchio, S. Wu, The price of Anarchy in a Network Pricing Game, Allerton John Musacchio

The Price of Anarchy in Parallel - Serial Competition with Elastic Demand

The Price of Anarchy in Parallel - Serial Competition with Elastic Demand The Price of Anarchy in Parallel - Serial Competition with Elastic Demand John Musacchio University of California, Santa Cruz, Technology and Information Management Program, 1156 High Street, Santa Cruz,

More information

The Price of Anarchy in Parallel - Serial Competition with Elastic Demand

The Price of Anarchy in Parallel - Serial Competition with Elastic Demand The Price of Anarchy in Parallel - Serial Competition with Elastic Demand John Musacchio University of California, Santa Cruz, Technology and Information Management Program, 56 High Street, Santa Cruz,

More information

Efficiency and Braess Paradox under Pricing

Efficiency and Braess Paradox under Pricing Efficiency and Braess Paradox under Pricing Asuman Ozdaglar Joint work with Xin Huang, [EECS, MIT], Daron Acemoglu [Economics, MIT] October, 2004 Electrical Engineering and Computer Science Dept. Massachusetts

More information

Strategic Games: Social Optima and Nash Equilibria

Strategic Games: Social Optima and Nash Equilibria Strategic Games: Social Optima and Nash Equilibria Krzysztof R. Apt CWI & University of Amsterdam Strategic Games:Social Optima and Nash Equilibria p. 1/2 Basic Concepts Strategic games. Nash equilibrium.

More information

Price Competition with Elastic Traffic

Price Competition with Elastic Traffic Price Competition with Elastic Traffic Asuman Ozdaglar Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology August 7, 2006 Abstract In this paper, we present

More information

MS&E 246: Lecture 18 Network routing. Ramesh Johari

MS&E 246: Lecture 18 Network routing. Ramesh Johari MS&E 246: Lecture 18 Network routing Ramesh Johari Network routing Last lecture: a model where N is finite Now: assume N is very large Formally: Represent the set of users as a continuous interval, [0,

More information

MS&E 246: Lecture 17 Network routing. Ramesh Johari

MS&E 246: Lecture 17 Network routing. Ramesh Johari MS&E 246: Lecture 17 Network routing Ramesh Johari Network routing Basic definitions Wardrop equilibrium Braess paradox Implications Network routing N users travel across a network Transportation Internet

More information

AGlimpseofAGT: Selfish Routing

AGlimpseofAGT: Selfish Routing AGlimpseofAGT: Selfish Routing Guido Schäfer CWI Amsterdam / VU University Amsterdam g.schaefer@cwi.nl Course: Combinatorial Optimization VU University Amsterdam March 12 & 14, 2013 Motivation Situations

More information

News. Good news. Bad news. Ugly news

News. Good news. Bad news. Ugly news News Good news I probably won t use 1:3 hours. The talk is supposed to be easy and has many examples. After the talk you will at least remember how to prove one nice theorem. Bad news Concerning algorithmic

More information

The price of anarchy of finite congestion games

The price of anarchy of finite congestion games The price of anarchy of finite congestion games George Christodoulou Elias Koutsoupias Abstract We consider the price of anarchy of pure Nash equilibria in congestion games with linear latency functions.

More information

On the Price of Anarchy in Unbounded Delay Networks

On the Price of Anarchy in Unbounded Delay Networks On the Price of Anarchy in Unbounded Delay Networks Tao Wu Nokia Research Center Cambridge, Massachusetts, USA tao.a.wu@nokia.com David Starobinski Boston University Boston, Massachusetts, USA staro@bu.edu

More information

Flow Control, Routing, and Performance with a For-profit Service Provider

Flow Control, Routing, and Performance with a For-profit Service Provider November 2004 Flow Control, Routing, and Performance with a For-profit Service Provider by Daron Acemoglu 1 and Asuman Ozdaglar 2 Abstract We consider a game theoretic framework to analyze traffic in a

More information

Network Pricing: How to Induce Optimal Flows Under Strategic Link Operators

Network Pricing: How to Induce Optimal Flows Under Strategic Link Operators Network Pricing: How to Induce Optimal Flows Under Strategic Link Operators JOSÉ CORREA, Universidad de Chile CRISTÓBAL GUZMÁN, Pontificia Universidad Católica de Chile THANASIS LIANEAS, National Technical

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory Project Group DynaSearch November 5th, 2013 Maximilian Drees Source: Fotolia, Jürgen Priewe Introduction to Game Theory Maximilian Drees 1 Game Theory In many situations, the

More information

Price and Capacity Competition

Price and Capacity Competition Price and Capacity Competition Daron Acemoglu, Kostas Bimpikis, and Asuman Ozdaglar October 9, 2007 Abstract We study the efficiency of oligopoly equilibria in a model where firms compete over capacities

More information

Selfish Routing. Simon Fischer. December 17, Selfish Routing in the Wardrop Model. l(x) = x. via both edes. Then,

Selfish Routing. Simon Fischer. December 17, Selfish Routing in the Wardrop Model. l(x) = x. via both edes. Then, Selfish Routing Simon Fischer December 17, 2007 1 Selfish Routing in the Wardrop Model This section is basically a summery of [7] and [3]. 1.1 Some Examples 1.1.1 Pigou s Example l(x) = 1 Optimal solution:

More information

Price and Capacity Competition

Price and Capacity Competition Price and Capacity Competition Daron Acemoglu a, Kostas Bimpikis b Asuman Ozdaglar c a Department of Economics, MIT, Cambridge, MA b Operations Research Center, MIT, Cambridge, MA c Department of Electrical

More information

NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION. Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar

NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION. Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar Working Paper 12804 http://www.nber.org/papers/w12804 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts

More information

SINCE the passage of the Telecommunications Act in 1996,

SINCE the passage of the Telecommunications Act in 1996, JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, MONTH 20XX 1 Partially Optimal Routing Daron Acemoglu, Ramesh Johari, Member, IEEE, Asuman Ozdaglar, Member, IEEE Abstract Most large-scale

More information

Efficiency Loss in a Network Resource Allocation Game

Efficiency Loss in a Network Resource Allocation Game Efficiency Loss in a Network Resource Allocation Game Ashish Khisti October 27, 2004 Efficiency Loss in a Network Resource Allocation Game p. 1/2 Resource Allocation in Networks Basic Question: How should

More information

Network Games with Friends and Foes

Network Games with Friends and Foes Network Games with Friends and Foes Stefan Schmid T-Labs / TU Berlin Who are the participants in the Internet? Stefan Schmid @ Tel Aviv Uni, 200 2 How to Model the Internet? Normal participants : - e.g.,

More information

Efficient Mechanism Design

Efficient Mechanism Design Efficient Mechanism Design Bandwidth Allocation in Computer Network Presenter: Hao MA Game Theory Course Presentation April 1st, 2014 Efficient Mechanism Design Efficient Mechanism Design focus on the

More information

Partially Optimal Routing

Partially Optimal Routing Partially Optimal Routing Daron Acemoglu, Ramesh Johari, and Asuman Ozdaglar May 27, 2006 Abstract Most large-scale communication networks, such as the Internet, consist of interconnected administrative

More information

Potential Games. Krzysztof R. Apt. CWI, Amsterdam, the Netherlands, University of Amsterdam. Potential Games p. 1/3

Potential Games. Krzysztof R. Apt. CWI, Amsterdam, the Netherlands, University of Amsterdam. Potential Games p. 1/3 Potential Games p. 1/3 Potential Games Krzysztof R. Apt CWI, Amsterdam, the Netherlands, University of Amsterdam Potential Games p. 2/3 Overview Best response dynamics. Potential games. Congestion games.

More information

Dynamic Atomic Congestion Games with Seasonal Flows

Dynamic Atomic Congestion Games with Seasonal Flows Dynamic Atomic Congestion Games with Seasonal Flows Marc Schröder Marco Scarsini, Tristan Tomala Maastricht University Department of Quantitative Economics Scarsini, Schröder, Tomala Dynamic Atomic Congestion

More information

Algorithmic Game Theory. Alexander Skopalik

Algorithmic Game Theory. Alexander Skopalik Algorithmic Game Theory Alexander Skopalik Today Course Mechanics & Overview Introduction into game theory and some examples Chapter 1: Selfish routing Alexander Skopalik Skopalik@mail.uni-paderborn.de

More information

Reducing Congestion Through Information Design

Reducing Congestion Through Information Design Reducing Congestion Through Information Design Sanmay Das, Emir Kamenica 2, and Renee Mirka,3 Abstract We consider the problem of designing information in games of uncertain congestion, such as traffic

More information

Game Theory: Spring 2017

Game Theory: Spring 2017 Game Theory: Spring 207 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss Plan for Today We have seen that every normal-form game has a Nash equilibrium, although

More information

A Paradox on Traffic Networks

A Paradox on Traffic Networks A Paradox on Traffic Networks Dietrich Braess Bochum Historical remarks. The detection of the paradox is also counterintuitive Is the mathematical paradox consistent with the psychological behavior of

More information

SINCE the passage of the Telecommunications Act in 1996,

SINCE the passage of the Telecommunications Act in 1996, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 5, NO. 6, AUGUST 007 1 Partially Optimal Routing Daron Acemoglu, Ramesh Johari, Member, IEEE, Asuman Ozdaglar, Member, IEEE Abstract Most large-scale

More information

RANDOM SIMULATIONS OF BRAESS S PARADOX

RANDOM SIMULATIONS OF BRAESS S PARADOX RANDOM SIMULATIONS OF BRAESS S PARADOX PETER CHOTRAS APPROVED: Dr. Dieter Armbruster, Director........................................................ Dr. Nicolas Lanchier, Second Committee Member......................................

More information

Routing Games : From Altruism to Egoism

Routing Games : From Altruism to Egoism : From Altruism to Egoism Amar Prakash Azad INRIA Sophia Antipolis/LIA University of Avignon. Joint work with Eitan Altman, Rachid El-Azouzi October 9, 2009 1 / 36 Outline 1 2 3 4 5 6 7 2 / 36 General

More information

Differentiated Network Platforms in a Two-Sided Market February 5, 2010 ITA Workshop

Differentiated Network Platforms in a Two-Sided Market February 5, 2010 ITA Workshop Differentiated Network Platforms in a Two-Sided Market February 5, 2010 ITA Workshop John Musacchio Assistant Professor Technology and Information Management University of California, Santa Cruz johnm@soe.ucsc.edu

More information

ALGORITHMIC GAME THEORY. Incentive and Computation

ALGORITHMIC GAME THEORY. Incentive and Computation ALGORITHMIC GAME THEORY Incentive and Computation Basic Parameters When: Monday/Wednesday, 3:00-4:20 Where: Here! Who: Professor Aaron Roth TA: Steven Wu How: 3-4 problem sets (40%), 2 exams (50%), Participation

More information

Game Theory and Control

Game Theory and Control Game Theory and Control Lecture 4: Potential games Saverio Bolognani, Ashish Hota, Maryam Kamgarpour Automatic Control Laboratory ETH Zürich 1 / 40 Course Outline 1 Introduction 22.02 Lecture 1: Introduction

More information

Discrete Optimization 2010 Lecture 12 TSP, SAT & Outlook

Discrete Optimization 2010 Lecture 12 TSP, SAT & Outlook TSP Randomization Outlook Discrete Optimization 2010 Lecture 12 TSP, SAT & Outlook Marc Uetz University of Twente m.uetz@utwente.nl Lecture 12: sheet 1 / 29 Marc Uetz Discrete Optimization Outline TSP

More information

On the Smoothed Price of Anarchy of the Traffic Assignment Problem

On the Smoothed Price of Anarchy of the Traffic Assignment Problem On the Smoothed Price of Anarchy of the Traffic Assignment Problem Luciana Buriol 1, Marcus Ritt 1, Félix Rodrigues 1, and Guido Schäfer 2 1 Universidade Federal do Rio Grande do Sul, Informatics Institute,

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Leonardo Felli EC441: Room D.106, Z.332, D.109 Lecture 8 bis: 24 November 2004 Monopoly Consider now the pricing behavior of a profit maximizing monopolist: a firm that is the only

More information

On the Existence of Optimal Taxes for Network Congestion Games with Heterogeneous Users

On the Existence of Optimal Taxes for Network Congestion Games with Heterogeneous Users On the Existence of Optimal Taxes for Network Congestion Games with Heterogeneous Users Dimitris Fotakis, George Karakostas, and Stavros G. Kolliopoulos No Institute Given Abstract. We consider network

More information

Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions

Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions Martin Gairing, Burkhard Monien, and Karsten Tiemann Faculty of Computer Science, Electrical Engineering and Mathematics,

More information

Mechanism Design for Network Decongestion: Rebates and Time-of-Day Pricing

Mechanism Design for Network Decongestion: Rebates and Time-of-Day Pricing Mechanism Design for Network Decongestion: Rebates and Time-of-Day Pricing Galina Schwartz1 (with Saurabh Amin2, Patrick Loiseau3 and John Musacchio3 ) 1 University of California, Berkeley 2 MIT 3 University

More information

On the Hardness of Network Design for Bottleneck Routing Games

On the Hardness of Network Design for Bottleneck Routing Games On the Hardness of Network Design for Bottleneck Routing Games Dimitris Fotakis 1, Alexis C. Kaporis 2, Thanasis Lianeas 1, and Paul G. Spirakis 3,4 1 School of Electrical and Computer Engineering, National

More information

Algorithmic Game Theory

Algorithmic Game Theory Bachelor course 64331010, Caput Operations Research, HC Caput OR 3.5 (3 ects) Lecture Notes Algorithmic Game Theory Department of Econometrics and Operations Research Faculty of Economics and Business

More information

CS 573: Algorithmic Game Theory Lecture date: Feb 6, 2008

CS 573: Algorithmic Game Theory Lecture date: Feb 6, 2008 CS 573: Algorithmic Game Theory Lecture date: Feb 6, 2008 Instructor: Chandra Chekuri Scribe: Omid Fatemieh Contents 1 Network Formation/Design Games 1 1.1 Game Definition and Properties..............................

More information

Strategic Properties of Heterogeneous Serial Cost Sharing

Strategic Properties of Heterogeneous Serial Cost Sharing Strategic Properties of Heterogeneous Serial Cost Sharing Eric J. Friedman Department of Economics, Rutgers University New Brunswick, NJ 08903. January 27, 2000 Abstract We show that serial cost sharing

More information

Stackelberg thresholds in network routing games or The value of altruism

Stackelberg thresholds in network routing games or The value of altruism Stackelberg thresholds in network routing games or The value of altruism Yogeshwer Sharma David P. Williamson 2006-08-22 14:38 Abstract We study the problem of determining the minimum amount of flow required

More information

Doing Good with Spam is Hard

Doing Good with Spam is Hard Doing Good with Spam is Hard Martin Hoefer, Lars Olbrich, and Aleander Skopalik Department of Computer Science, RWTH Aachen University, Germany Abstract. We study economic means to improve network performance

More information

Game Theory: introduction and applications to computer networks

Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Introduction Giovanni Neglia INRIA EPI Maestro 27 January 2014 Part of the slides are based on a previous course with D. Figueiredo (UFRJ)

More information

arxiv: v1 [math.oc] 29 Mar 2012

arxiv: v1 [math.oc] 29 Mar 2012 Efficiency Loss in a Cournot Oligopoly with Convex Market Demand arxiv:123.6675v1 [math.oc] 29 Mar 212 John N. Tsitsiklis and Yunjian Xu Laboratory or Information and Decision Systems, MIT, Cambridge,

More information

CS364A: Algorithmic Game Theory Lecture #13: Potential Games; A Hierarchy of Equilibria

CS364A: Algorithmic Game Theory Lecture #13: Potential Games; A Hierarchy of Equilibria CS364A: Algorithmic Game Theory Lecture #13: Potential Games; A Hierarchy of Equilibria Tim Roughgarden November 4, 2013 Last lecture we proved that every pure Nash equilibrium of an atomic selfish routing

More information

Decision, Risk & Operations Working Papers Series

Decision, Risk & Operations Working Papers Series The Impact of Oligopolistic Competition in Networks R. Cominetti, J. R. Correa and N. E. Stier-Moses February 2006; revised April 2006, August 2006, January 2008 DRO-2006-03 Decision, Risk & Operations

More information

Lecture 19: Common property resources

Lecture 19: Common property resources Lecture 19: Common property resources Economics 336 Economics 336 (Toronto) Lecture 19: Common property resources 1 / 19 Introduction Common property resource: A resource for which no agent has full property

More information

Using Reputation in Repeated Selfish Routing with Incomplete Information

Using Reputation in Repeated Selfish Routing with Incomplete Information Using Reputation in Repeated Selfish Routing with Incomplete Information Using Reputation in Repeated Selfish Routing with Incomplete Information By Kun Hu, B.E. A Thesis Submitted to the School of Graduate

More information

Informational Braess Paradox: The Effect of Information on Traffic Congestion

Informational Braess Paradox: The Effect of Information on Traffic Congestion Informational Braess Paradox: The Effect of Information on Traffic Congestion Daron Acemoglu Ali Makhdoumi Azarakhsh Malekian Asuman Ozdaglar Abstract To systematically study the implications of additional

More information

Internalization of Social Cost in Congestion Games

Internalization of Social Cost in Congestion Games Internalization of Social Cost in Congestion Games Igal Milchtaich * November 2017 Congestion models may be studied from either the users point of view or the social one. The first perspective examines

More information

Price and capacity competition

Price and capacity competition Games and Economic Behavior 66 2009) 1 26 www.elsevier.com/locate/geb Price and capacity competition Daron Acemoglu a,, Kostas Bimpikis b, Asuman Ozdaglar c a Department of Economics, MIT, Cambridge, MA,

More information

New Perspectives and Challenges in Routing Games: Query models & Signaling. Chaitanya Swamy University of Waterloo

New Perspectives and Challenges in Routing Games: Query models & Signaling. Chaitanya Swamy University of Waterloo New Perspectives and Challenges in Routing Games: Query models & Signaling Chaitanya Swamy University of Waterloo New Perspectives and Challenges in Routing Games: Query models & Signaling Chaitanya Swamy

More information

Routing Games 1. Sandip Chakraborty. Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR.

Routing Games 1. Sandip Chakraborty. Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Routing Games 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR November 5, 2015 1 Source: Routing Games by Tim Roughgarden Sandip Chakraborty

More information

Network Congestion Games are Robust to Variable Demand

Network Congestion Games are Robust to Variable Demand Network Congestion Games are Robust to Variable Demand José Correa Ruben Hoeksma Marc Schröder Abstract Network congestion games have provided a fertile ground for the algorithmic game theory community.

More information

Oligopoly Theory 2 Bertrand Market Games

Oligopoly Theory 2 Bertrand Market Games 1/10 Oligopoly Theory 2 Bertrand Market Games May 4, 2014 2/10 Outline 1 Bertrand Market Game 2 Bertrand Paradox 3 Asymmetric Firms 3/10 Bertrand Duopoly Market Game Discontinuous Payoff Functions (1 p

More information

Lagrangian road pricing

Lagrangian road pricing Lagrangian road pricing Vianney Boeuf 1, Sébastien Blandin 2 1 École polytechnique Paristech, France 2 IBM Research Collaboratory, Singapore vianney.boeuf@polytechnique.edu, sblandin@sg.ibm.com Keywords:

More information

Power-Law Congestion Costs: Minimal Revenue (MR) Pricing and the Braess Paradox

Power-Law Congestion Costs: Minimal Revenue (MR) Pricing and the Braess Paradox The Open Transportation Journal, 2008, 2, 47-52 47 Power-Law Congestion Costs: Minimal Revenue (MR) Pricing and the Braess Paradox Claude M. Penchina * Department of Physics, Hasbrouck Laboratory, University

More information

Informational Braess Paradox: The Effect of Information on Traffic Congestion

Informational Braess Paradox: The Effect of Information on Traffic Congestion Informational Braess Paradox: The Effect of Information on Traffic Congestion Daron Acemoglu Ali Makhdoumi Azarakhsh Malekian Asu Ozdaglar Abstract To systematically study the implications of additional

More information

Outline for today. Stat155 Game Theory Lecture 17: Correlated equilibria and the price of anarchy. Correlated equilibrium. A driving example.

Outline for today. Stat155 Game Theory Lecture 17: Correlated equilibria and the price of anarchy. Correlated equilibrium. A driving example. Outline for today Stat55 Game Theory Lecture 7: Correlated equilibria and the price of anarchy Peter Bartlett s Example: October 5, 06 A driving example / 7 / 7 Payoff Go (-00,-00) (,-) (-,) (-,-) Nash

More information

Worst-Case Efficiency Analysis of Queueing Disciplines

Worst-Case Efficiency Analysis of Queueing Disciplines Worst-Case Efficiency Analysis of Queueing Disciplines Damon Mosk-Aoyama and Tim Roughgarden Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305 Introduction Consider

More information

Nash Equilibria in Discrete Routing Games with Convex Latency Functions

Nash Equilibria in Discrete Routing Games with Convex Latency Functions Nash Equilibria in Discrete Routing Games with Convex Latency Functions Martin Gairing 1, Thomas Lücking 1, Marios Mavronicolas 2, Burkhard Monien 1, and Manuel Rode 1 1 Faculty of Computer Science, Electrical

More information

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions CS 598RM: Algorithmic Game Theory, Spring 2017 1. Answer the following. Practice Exam Solutions Agents 1 and 2 are bargaining over how to split a dollar. Each agent simultaneously demands share he would

More information

Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma

Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma School of Computing National University of Singapore Allerton Conference 2011 Outline Characterize Congestion Equilibrium Modeling

More information

Congestion Games with Load-Dependent Failures: Identical Resources

Congestion Games with Load-Dependent Failures: Identical Resources Congestion Games with Load-Dependent Failures: Identical Resources Michal Penn Technion - IIT Haifa, Israel mpenn@ie.technion.ac.il Maria Polukarov Technion - IIT Haifa, Israel pmasha@tx.technion.ac.il

More information

Two-Player Kidney Exchange Game

Two-Player Kidney Exchange Game Two-Player Kidney Exchange Game Margarida Carvalho INESC TEC and Faculdade de Ciências da Universidade do Porto, Portugal margarida.carvalho@dcc.fc.up.pt Andrea Lodi DEI, University of Bologna, Italy andrea.lodi@unibo.it

More information

Game Theory: introduction and applications to computer networks

Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Introduction Giovanni Neglia INRIA EPI Maestro February 04 Part of the slides are based on a previous course with D. Figueiredo (UFRJ) and

More information

The Paradox Severity Linear Latency General Latency Extensions Conclusion. Braess Paradox. Julian Romero. January 22, 2008.

The Paradox Severity Linear Latency General Latency Extensions Conclusion. Braess Paradox. Julian Romero. January 22, 2008. Julian Romero January 22, 2008 Romero 1 / 20 Outline The Paradox Severity Linear Latency General Latency Extensions Conclusion Romero 2 / 20 Introduced by Dietrich Braess in 1968. Adding costless edges

More information

Tight Bounds for Cost-Sharing in Weighted Congestion Games

Tight Bounds for Cost-Sharing in Weighted Congestion Games Tight Bounds for Cost-Sharing in Weighted Congestion Games Martin Gairing 1, Konstantinos Kollias 2, and Grammateia Kotsialou 1 1 University of Liverpool, Liverpool, Merseyside L69 3BX, UK 2 Stanford University,

More information

On the Packing of Selfish Items

On the Packing of Selfish Items On the Packing of Selfish Items Vittorio Bilò 1, 1 Dipartimento di Matematica Dipartimento di Informatica Università di Lecce Università di L Aquila Provinciale Lecce-Arnesano, P.O. Box 19 Via Vetoio,

More information

The Effect of Collusion in Congestion Games

The Effect of Collusion in Congestion Games The Effect of Collusion in Congestion Games Extended Abstract Ara Hayrapetyan Cornell University Dept. of Computer Science 4106 Upson Hall Ithaca, NY 14853, USA ara@cs.cornell.edu Éva Tardos Cornell University

More information

The Multi-Commodity Source Location Problems and the Price of Greed

The Multi-Commodity Source Location Problems and the Price of Greed Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 3, no., pp. 55 73 (29) The Multi-Commodity Source Location Problems and the Price of Greed Hiro Ito Mike Paterson 2 Kenya Sugihara Graduate

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Game Theory Lecture 2

Game Theory Lecture 2 Game Theory Lecture 2 March 7, 2015 2 Cournot Competition Game and Transportation Game Nash equilibrium does not always occur in practice, due the imperfect information, bargaining, cooperation, sequential

More information

General-sum games. I.e., pretend that the opponent is only trying to hurt you. If Column was trying to hurt Row, Column would play Left, so

General-sum games. I.e., pretend that the opponent is only trying to hurt you. If Column was trying to hurt Row, Column would play Left, so General-sum games You could still play a minimax strategy in general- sum games I.e., pretend that the opponent is only trying to hurt you But this is not rational: 0, 0 3, 1 1, 0 2, 1 If Column was trying

More information

EconS Oligopoly - Part 2

EconS Oligopoly - Part 2 EconS 305 - Oligopoly - Part 2 Eric Dunaway Washington State University eric.dunaway@wsu.edu November 29, 2015 Eric Dunaway (WSU) EconS 305 - Lecture 32 November 29, 2015 1 / 28 Introduction Last time,

More information

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October 23 2011 1 Scores The exam was long. I know this. Final grades will definitely be curved. Here is a rough

More information

Atomic Routing Games on Maximum Congestion

Atomic Routing Games on Maximum Congestion Atomic Routing Games on Maximum Congestion Costas Busch and Malik Magdon-Ismail Rensselaer Polytechnic Institute, Dept. of Computer Science, Troy, NY 12180, USA. {buschc,magdon}@cs.rpi.edu Abstract. We

More information

CSC304 Lecture 5. Game Theory : Zero-Sum Games, The Minimax Theorem. CSC304 - Nisarg Shah 1

CSC304 Lecture 5. Game Theory : Zero-Sum Games, The Minimax Theorem. CSC304 - Nisarg Shah 1 CSC304 Lecture 5 Game Theory : Zero-Sum Games, The Minimax Theorem CSC304 - Nisarg Shah 1 Recap Last lecture Cost-sharing games o Price of anarchy (PoA) can be n o Price of stability (PoS) is O(log n)

More information

CS364A: Algorithmic Game Theory Lecture #15: Best-Case and Strong Nash Equilibria

CS364A: Algorithmic Game Theory Lecture #15: Best-Case and Strong Nash Equilibria CS364A: Algorithmic Game Theory Lecture #15: Best-Case and Strong Nash Equilibria Tim Roughgarden November 11, 2013 1 Network Cost-Sharing Games 1.1 Lecture Themes The externality caused by a player in

More information

arxiv: v4 [cs.gt] 22 Oct 2018

arxiv: v4 [cs.gt] 22 Oct 2018 Toll Caps in Privatized Road Networks Tobias Harks Marc Schröder Dries Vermeulen October 23, 208 arxiv:802.054v4 [cs.gt] 22 Oct 208 Abstract We consider a nonatomic routing game on a parallel link network

More information

How Much Can Taxes Help Selfish Routing?

How Much Can Taxes Help Selfish Routing? How Much Can Taxes Help Selfish Routing? Richard Cole Yevgeniy Dodis Tim Roughgarden July 28, 25 Abstract We study economic incentives for influencing selfish behavior in networks. We consider a model

More information

Reconciling Selfish Routing with Social Good

Reconciling Selfish Routing with Social Good Reconciling Selfish Routing with Social Good Soumya Basu (B), Ger Yang, Thanasis Lianeas, Evdokia Nikolova, and Yitao Chen The University of Teas at Austin, Austin, USA basusoumya@uteas.edu Abstract. Selfish

More information

Recap Social Choice Functions Fun Game Mechanism Design. Mechanism Design. Lecture 13. Mechanism Design Lecture 13, Slide 1

Recap Social Choice Functions Fun Game Mechanism Design. Mechanism Design. Lecture 13. Mechanism Design Lecture 13, Slide 1 Mechanism Design Lecture 13 Mechanism Design Lecture 13, Slide 1 Lecture Overview 1 Recap 2 Social Choice Functions 3 Fun Game 4 Mechanism Design Mechanism Design Lecture 13, Slide 2 Notation N is the

More information

Bertrand Model of Price Competition. Advanced Microeconomic Theory 1

Bertrand Model of Price Competition. Advanced Microeconomic Theory 1 Bertrand Model of Price Competition Advanced Microeconomic Theory 1 ҧ Bertrand Model of Price Competition Consider: An industry with two firms, 1 and 2, selling a homogeneous product Firms face market

More information

A GEOMETRIC APPROACH TO THE PRICE OF ANARCHY IN NONATOMIC CONGESTION GAMES

A GEOMETRIC APPROACH TO THE PRICE OF ANARCHY IN NONATOMIC CONGESTION GAMES A GEOMETRIC APPROACH TO THE PRICE OF ANARCHY IN NONATOMIC CONGESTION GAMES JOSÉ R. CORREA, ANDREAS S. SCHULZ, AND NICOLÁS E. STIER-MOSES School of Business, Universidad Adolfo Ibáñez Av. Presidente Errázuriz

More information

Improving Selfish Routing for Risk-Averse Players

Improving Selfish Routing for Risk-Averse Players Improving Selfish Routing for Risk-Averse Players Dimitris Fotakis 1, Dimitris Kalimeris 2, and Thanasis Lianeas 3 1 School of Electrical and Computer Engineering, National Technical University of Athens,

More information

OD-Matrix Estimation using Stable Dynamic Model

OD-Matrix Estimation using Stable Dynamic Model OD-Matrix Estimation using Stable Dynamic Model Yuriy Dorn (Junior researcher) State University Higher School of Economics and PreMoLab MIPT Alexander Gasnikov State University Higher School of Economics

More information

Exact and Approximate Equilibria for Optimal Group Network Formation

Exact and Approximate Equilibria for Optimal Group Network Formation Exact and Approximate Equilibria for Optimal Group Network Formation Elliot Anshelevich and Bugra Caskurlu Computer Science Department, RPI, 110 8th Street, Troy, NY 12180 {eanshel,caskub}@cs.rpi.edu Abstract.

More information

TWO-PERSON KNAPSACK GAME. Zhenbo Wang and Wenxun Xing. Shu-Cherng Fang. (Communicated by Kok Lay Teo)

TWO-PERSON KNAPSACK GAME. Zhenbo Wang and Wenxun Xing. Shu-Cherng Fang. (Communicated by Kok Lay Teo) JOURNAL OF INDUSTRIAL AND doi:10.3934/jimo.2010.6.847 MANAGEMENT OPTIMIZATION Volume 6, Number 4, November 2010 pp. 847 860 TWO-PERSON KNAPSACK GAME Zhenbo Wang and Wenxun Xing Department of Mathematical

More information

Mixed duopolies with advance production

Mixed duopolies with advance production Mixed duopolies with advance production Tamás László Balogh Department of Economic Analysis and Business Informatics, University of Debrecen and Attila Tasnádi MTA-BCE Lendület Strategic Interactions Research

More information

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples February 24, 2011 Summary: We introduce the Nash Equilibrium: an outcome (action profile) which is stable in the sense that no player

More information

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games 6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Asu Ozdaglar MIT March 2, 2010 1 Introduction Outline Review of Supermodular Games Reading: Fudenberg and Tirole, Section 12.3.

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

1 Equilibrium Comparisons

1 Equilibrium Comparisons CS/SS 241a Assignment 3 Guru: Jason Marden Assigned: 1/31/08 Due: 2/14/08 2:30pm We encourage you to discuss these problems with others, but you need to write up the actual homework alone. At the top of

More information

Non-clairvoyant Scheduling Games

Non-clairvoyant Scheduling Games Non-clairvoyant Scheduling Games Christoph Dürr Nguyen Kim Thang Abstract In a scheduling game, each player owns a job and chooses a machine to execute it. While the social cost is the maximal load over

More information