4-6 ROTATIONAL MOTION

Size: px
Start display at page:

Download "4-6 ROTATIONAL MOTION"

Transcription

1 Chpter 4 Motions in Spce 51 Reinforce the ide tht net force is needed for orbitl motion Content We discuss the trnsition from projectile motion to orbitl motion when bll is thrown horizontlly with eer incresing speed. Teching Tips Students re often surprised to lern tht projectile motion nd orbitl motion re similr. We lso conert km/s to 1,000 mph to impress the students with the gret speed required. Flwed Resoning Exmines the concepts of centripetl nd centrifugl forces for stellite motion. 4-6 ROTATIONAL MOTION Gols Introduce the notion of center of mss. Argue tht rottionl nd trnsltionl motions re independent. Content When n object moes through spce, its motion cn be thought of s combintion of rottion bout its center of mss nd trnsltion of its center of mss. Teching Tips This section llows instructors to skip Chpter on Rottions without lter consequences. Physics on Your Own A ping-pong or styrofom bll is weighted off-center nd used in gme of ctch. The chnge in the bll's center of mss mkes the rottionl motion quite obious. Video Encyclopedi 4 #1 Center of Mss Disc #7 Air Tble Center of Mss Computer Animtions Actie Figure Animtions re ilble on the Multimedi Mnger Instructor s Resource CD. They re orgnized by textbook chpter, nd ech nimtion comes within shell tht proides informtion on how to use the nimtion, explortion ctiities, nd short quiz. Answers to the Conceptul Questions 1... The cr would trel in the direction of its elocity becuse there would be no net force cting on it. 3. The grittionl force proides the necessry centripetl force.

2 5 Chpter 4 Motions in Spce 4. The friction force with the ground proides the necessry centripetl force. If the frictionl force is not strong enough, the skter will skid to the outside of the corner. 5. The elocity points to the left, which is stright hed to the drier. The chnge in elocity nd therefore the ccelertion point stright down becuse the speed is not chnging but the direction is. The net force must point in the direction of the ccelertion, which is down. 6. ) The elocity is tngent to the pth. b-d) The chnge in elocity, the ccelertion, nd the net force ll point rdilly inwrd. 7. The elocity ectors point in opposite directions but he the sme size.. The ccelertions ectors point in opposite directions, but they he the sme size nd both point towrd the center of the circulr pth. 9. The speed chnges: If the force hs component in the direction of the motion, the speed increses, nd if the force hs component in the direction opposite the motion, the speed decreses. 10. As long s the force stys perpendiculr to the elocity there will only be chnge in the direction of the object, its speed does not chnge. Your sketch should show pth which continully spirls inwrd. 11. The ccelertion is in the sme direction s the chnge in elocity. ) b) 1. The ccelertion is in the sme direction s the chnge in elocity. ) b) 13. ) Speeding up in stright line. b) Speeding up nd turning left. 14. ) Slowing down in stright line. b) Slowing down nd turning right. 15. ) Exmples of objects moing down nd speeding up would include flling object nd downwrd moing eletor s it begins to moe. b) Exmples of objects moing up nd slowing down would include ny object thrown upwrd nd n upwrd moing eletor s it reches its destintion. 16. As you strt moing, you re moing down nd speeding up. Therefore your ccelertion must be downwrd. As you pproch the lobby, you re moing down but slowing down. Your ccelertion ector must be directed up. 17. The friction force with the ground proides the necessry centripetl force. 1. The friction force with the ground proides the necessry centripetl force. 19.The tension force upwrd must be greter thn the weight of the monkey to yield net force upwrd, towrd the center of the circle. 0. The horizontl prt of the norml force exerted by the rod on the cr proides the mjority of the centripetl force. The horizontl prt of the friction force cn either increse or decrese the centripetl force, depending on the speed of the cr. 1. You must exert extr force t the bottom to counterct the force of grity pointing wy from the center of the circle. Remember tht the net force must be equl to the centripetl force.. In ddition to supporting Trzn's weight the ine must exert extr force to mke Trzn moe in circle. 3. Erth s speed must be nerly uniform. The net force on erth must be perpendiculr to its elocity, so it does not chnge speed. 4. The Sun does follow circulr pth, but becuse the mss of the Sun is so much greter thn the mss of Erth, it hs much smller orbit bout their common center of mss. This slight wobble could indicte plnets orbiting distnt strs.

3 Chpter 4 Motions in Spce 53 5.Doubling your speed would qudruple your centripetl ccelertion while reducing your rdius to hlf would only double your centripetl ccelertion. 6. Doubling the speed qudruples the centripetl ccelertion while doubling the rdius cuts it by hlf. The net effect is tht the centripetl ccelertion on the lrge circle is twice wht it is on the smll one. 7. The only force is the force of grity cting erticlly downwrd.. 9. The bll's elocity is horizontl towrd home plte. The net force nd the ccelertion point erticlly downwrd. 30. A B C 31. You get the sme ccelertion ech time. Becuse the horizontl nd erticl motions re independent, the sidewrd motion hs no effect on the downwrd ccelertion. 3. The independence of the erticl nd horizontl motions mens tht they will hit t the sme time. 33. Since both blls he the sme erticl speed t the beginning, they will hit the floor t the sme time. The horizontl motions do not mtter. 34. Since free-fll ccelertion is independent of mss, both blls will hit t the sme time. 35. The demonstrtion works becuse both the freely flling gorill nd the incoming projectile fll t the sme rte nd thus meet t some point long the gorill's downwrd pth. 36. If the two sides of the cnyon re t the sme height, he fils becuse he flls during the time required to cross the cnyon. 37. Assuming tht the initil speed of the bll doesn't chnge, kicking the bll t lrger ngle reltie to the ground results in more hng time. 3. As the ngle of the fce of the iron increses, the bll strts off with lrger ngle reltie to the ground nd therefore goes higher nd shorter. 39. The pple exerts grittionl force of 5 newtons on Erth, by Newton s 3 rd lw. 40. The forces re equl in mgnitude nd opposite in direction by Newton s 3 rd lw. 41. There would only be one force, the grittionl force exerted by the Sun, which points towrd the Sun. 4. There would only be one force, the grittionl force exerted by Erth, which points towrd the center of Erth. 43. The object s center of mss is the only point tht will follow simple prbolic pth. Point C is most likely nerest the object s center of mss.

4 54 Chpter 4 Motions in Spce 44. Since the softbll hs more mss thn the tennis bll, the center of mss will be locted nerer the softbll. Therefore, point A is the most likely to follow prbolic pth. Answers to the Exercises 1. ) 5 m/s west b) 5 m/s est 10 m/s west 5 m/s west -5 m/s west 5 m/s est 5 m/s west -10 m/s west c) 15 m/s est -5 m/s west 10 m/s est 15 m/s est. ) 5 km/h right b) 175 km/h left 5 km/h 100 km/h right -75 km/h right -75 km/h 100 km/h left 175 km/h 3. = ( 40 m/s ) + ( 30 m/s ) = 50 m/s t 37 north of west 4. = ( 10 m/s ) + ( 50 m/s ) = 130 m/s t 3 est of north 550 m/s m/s 50 km/h west m/s m/s ssouth km/h north km/h 404 m/s west

5 Chpter 4 Motions in Spce m/s - m/s south 53 o 6 m/s est = = t = 5m s ( m s) + ( 6m s) s ( 53 north of est) 1 m/s est 4 m/s west 5 m/s west = = t = ( 4ms) ( 1ms) ( ) 10 m s west 0.5 s ( 10 m/s ) 7. ) = m/s = = b) F = m = ( 10 kg ) ( m/ s ) = 40 N r 50 m ( m/s ) 4. ) = = = 3 m/s = 1.3 m/s r 3 m b) F = m = ( 60 kg ) ( m/ s ) = 0 N ; smller. 9. ) b) c) 10. ) C T h 3600 s = = 1dy 1h dys s ( ) = π = π = r m m 11 C m = = = 7 T s ( m s) m s = = = 11 r m m s d) F m ( ) ( ) = = = kg m s N πr π ( m ) = = = 10 T 4 h 3600 s 7 dys 1 dy 1 h ( m s) m/s = = = m s r m b) F m ( )( ) 3 = = = kg m s N 11. The horizontl speed remins 45 m/s; the erticl speed decreses by 10 m/s to m/s. 1. The horizontl speed remins 45 m/s; the erticl speed decreses by (10 m/s) to m/s (tht is, downwrd t m/s). 13. d = t = ( 40 m/s ) ( 5 s ) = 00 m (constnt )

6 56 Chpter 4 Motions in Spce ( )( ) ( 1 1 d = t = 10 m s 5 s = 15 m free fll) d 50 m 14. = = = 3.57 m s t 14 s 10 m/s 15. tup = = = 1s t = s 10 m/s ( )( ) R = t = 30 m s s = 60 m 30 m/s 16. tup = = = 3s t =6s R = t = ( 6m s) ( 6s) = 36m 10 m/s ( kg) 6 ( ) 1 11 N m m s F M = = G = = M r kg m ( 10 3 m s) = = = m s r m 3 Answers to the Problems in Problem Soling 1. ) 3 m/s west b) 3 m/s est c) 9 m/s est. ) 60 km/h forwrd b) 140 km/h bckwrd 3. = ( 100 mph ) + ( 100 mph ) = 141 mph southest 4. = ( ) ( ) 10 mph + 10 mph = 170 mph southwest

7 Chpter 4 Motions in Spce = ( ) ( ) 3 m/ s + 6 m/ s = 6.71 m/ s 3 m/s tn θ= = 0.5 θ= 6.6 north of west 6 m/s θ 6. = ( ) ( ) 50 km/h km/h = 11 km/h 100 km/h tn θ= = θ= 63.4 north of west 50 km/h 7. ν t ( )( ) = = 4 m/s west s = m s west ) = + = 3 m/s west + m/s west = 11 m/s west f i b) = + = 6 m/s est + m/s west = m/s west f i. ν t ( )( ) 9. = = 3 m/s est s = 6 m s est ) = = m/s est 6 m/s est = m/s est i f b) = = 4 m/s west 6 m/s est = 10 m/s west i f ( ) π r π m 1h = 17,300 m/s 4.5 h 3600 s = = T ( 17,300 m s) = = = 0.71 m s r m 10. ) r = r + h = 6370 km km = 690 km erth ( ) 6 πr π m 1min b) ν = = 7630 m/s T 95 min = 60 s c) ( 7630 m s) = = = 6 r m 11. ( ) ( ).41 m s 1 m/s Fc = m = 0 kg = 115 N r 10 m F = F F = F mg = 115 N 0 kg 9. m/s = 36 N set c g c 1. ( ) ( ) ( )( ) 50 m/s Fc = m = 70 kg = 75 N r 00 m F = F + F = F + mg = 75 N + 70 kg 9. m/s = 1560 N set c g c ( )( ) θ

8 5 Chpter 4 Motions in Spce 13. The horizontl speed remins t 15 m/s becuse there is no force in this direction s long s ir resistnce is neglected. f = i + t = 1 m/s + ( 9. m/s ) ( 1 s ) =. m/s (upwrd) 14. h = 15 m/s; t ( ) ( ) 15. ) h t = = g = + = 1 m s + 9. m s s = 7.6 m s (down) f i (. ) 196m = 4 s 9. m/s b) x = t = ( 0 m/s )( s ) = 40 m = s R 45 m 16. ) R = ht = t = = 3s 15 m s 1 b) d t h 1 = i + 0 ( )( ) 9.m s 3s 17. t ( )( ) = + = 44.1 m = + = 0+ 9.m/s 3s = 9.4m f i f h ( ) ( ) 1. t 0 ( 9.m/s )( s) 19.6m/ = + = 9.4 m s + 40 m s = 49.6 m s = + = + = s f i ( ) 19.6 m/s + ( 30 m/s ) = 35. m/s = f + h = 19. It tkes 1 s for the footbll to rech the top of its pth nd 1s dditionl for it to return to its originl height. Therefore, x = t = ( 15 m s)( s) = 30 m 0. ) 1 s b) x = h t = ( 9. m/s )( s ) = 19.6 m

SECTION B Circular Motion

SECTION B Circular Motion SECTION B Circulr Motion 1. When person stnds on rotting merry-go-round, the frictionl force exerted on the person by the merry-go-round is (A) greter in mgnitude thn the frictionl force exerted on the

More information

Answers to the Conceptual Questions

Answers to the Conceptual Questions Chpter 3 Explining Motion 41 Physics on Your Own If the clss is not too lrge, tke them into freight elevtor to perform this exercise. This simple exercise is importnt if you re going to cover inertil forces

More information

PHYSICS 211 MIDTERM I 21 April 2004

PHYSICS 211 MIDTERM I 21 April 2004 PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of

More information

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM) Slide 1 / 71 Slide 2 / 71 P Physics 1 irculr Motion 2015-12-02 www.njctl.org Topics of Uniform irculr Motion (UM) Slide 3 / 71 Kinemtics of UM lick on the topic to go to tht section Period, Frequency,

More information

Physics 105 Exam 2 10/31/2008 Name A

Physics 105 Exam 2 10/31/2008 Name A Physics 105 Exm 2 10/31/2008 Nme_ A As student t NJIT I will conduct myself in professionl mnner nd will comply with the proisions of the NJIT Acdemic Honor Code. I lso understnd tht I must subscribe to

More information

Motion. Acceleration. Part 2: Constant Acceleration. October Lab Phyiscs. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Acceleration. Part 2: Constant Acceleration. October Lab Phyiscs. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Motion ccelertion Prt : Constnt ccelertion ccelertion ccelertion ccelertion is the rte of chnge of elocity. = - o t = Δ Δt ccelertion = = - o t chnge of elocity elpsed time ccelertion is ector, lthough

More information

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion Lecture 5 Physics 2A Olg Dudko UCSD Physics Tody: Motion in mny dimensions: Circulr motion. Newton s Lws of Motion. Lws tht nswer why questions bout motion. Forces. Inerti. Momentum. Uniform Circulr Motion

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/20/ :21 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //15 11:1 M Chpter 11 Kinemtics of Prticles 1 //15 11:1 M Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion of bodies under the ction of forces It is

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 7 Chpter 4 Physics I 09.25.2013 Dynmics: Newton s Lws of Motion Solving Problems using Newton s lws Course website: http://fculty.uml.edu/andriy_dnylov/teching/physicsi Lecture Cpture: http://echo360.uml.edu/dnylov2013/physics1fll.html

More information

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

2/2/ :36 AM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. //16 1:36 AM Chpter 11 Kinemtics of Prticles 1 //16 1:36 AM First Em Wednesdy 4//16 3 //16 1:36 AM Introduction Mechnics Mechnics = science which describes nd predicts the conditions of rest or motion

More information

Introduction to Mechanics Practice using the Kinematics Equations

Introduction to Mechanics Practice using the Kinematics Equations Introduction to Mechnics Prctice using the Kinemtics Equtions Ln Sheridn De Anz College Jn 24, 2018 Lst time finished deriing the kinemtics equtions some problem soling prctice Oeriew using kinemtics equtions

More information

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E.

1/31/ :33 PM. Chapter 11. Kinematics of Particles. Mohammad Suliman Abuhaiba,Ph.D., P.E. 1/31/18 1:33 PM Chpter 11 Kinemtics of Prticles 1 1/31/18 1:33 PM First Em Sturdy 1//18 3 1/31/18 1:33 PM Introduction Mechnics Mechnics = science which describes nd predicts conditions of rest or motion

More information

Kepler's Three LAWS. Universal Gravitation Chapter 12. Heliocentric Model. Geocentric Model. Other Models. Johannes Kepler

Kepler's Three LAWS. Universal Gravitation Chapter 12. Heliocentric Model. Geocentric Model. Other Models. Johannes Kepler Universl Grvittion Chpter 1 Johnnes Kepler Johnnes Kepler ws Germn mthemticin, stronomer nd strologer, nd key figure in the 17th century Scientific revolution. He is best known for his lws of plnetry motion,

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION

More information

DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO.

DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO. PHYSICS 1 Fll 017 EXAM 1: October 3rd, 017 8:15pm 10:15pm Nme (printed): Recittion Instructor: Section #: DO NOT OPEN THIS EXAM BOOKLET UNTIL INSTRUCTED TO DO SO. This exm contins 5 multiple-choice questions,

More information

Physics 207 Lecture 5

Physics 207 Lecture 5 Phsics 07 Lecture 5 Agend Phsics 07, Lecture 5, Sept. 0 Chpter 4 Kinemtics in or 3 dimensions Independence of, nd/or z components Circulr motion Cured pths nd projectile motion Frmes of reference dil nd

More information

FULL MECHANICS SOLUTION

FULL MECHANICS SOLUTION FULL MECHANICS SOLUION. m 3 3 3 f For long the tngentil direction m 3g cos 3 sin 3 f N m 3g sin 3 cos3 from soling 3. ( N 4) ( N 8) N gsin 3. = ut + t = ut g sin cos t u t = gsin cos = 4 5 5 = s] 3 4 o

More information

Linear Motion. Kinematics Quantities

Linear Motion. Kinematics Quantities Liner Motion Physics 101 Eyres Kinemtics Quntities Time Instnt t Fundmentl Time Interl Defined Position x Fundmentl Displcement Defined Aerge Velocity g Defined Aerge Accelertion g Defined 1 Kinemtics

More information

Answers to selected problems from Essential Physics, Chapter 3

Answers to selected problems from Essential Physics, Chapter 3 Answers to selected problems from Essentil Physics, Chpter 3 1. FBD 1 is the correct free-body dirm in ll five cses. As fr s forces re concerned, t rest nd constnt velocity situtions re equivlent. 3. ()

More information

JURONG JUNIOR COLLEGE

JURONG JUNIOR COLLEGE JURONG JUNIOR COLLEGE 2010 JC1 H1 8866 hysics utoril : Dynmics Lerning Outcomes Sub-topic utoril Questions Newton's lws of motion 1 1 st Lw, b, e f 2 nd Lw, including drwing FBDs nd solving problems by

More information

Model Solutions to Assignment 4

Model Solutions to Assignment 4 Oberlin College Physics 110, Fll 2011 Model Solutions to Assignment 4 Additionl problem 56: A girl, sled, nd n ice-covered lke geometry digrm: girl shore rope sled ice free body digrms: force on girl by

More information

Dynamics Applying Newton s Laws Accelerated Frames

Dynamics Applying Newton s Laws Accelerated Frames Dynmics Applying Newton s Lws Accelerted Frmes Ln heridn De Anz College Oct 18, 2017 Lst time Circulr motion nd force Centripetl force Exmples Non-uniform circulr motion Overview one lst circulr motion

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

NOT TO SCALE. We can make use of the small angle approximations: if θ á 1 (and is expressed in RADIANS), then

NOT TO SCALE. We can make use of the small angle approximations: if θ á 1 (and is expressed in RADIANS), then 3. Stellr Prllx y terrestril stndrds, the strs re extremely distnt: the nerest, Proxim Centuri, is 4.24 light yers (~ 10 13 km) wy. This mens tht their prllx is extremely smll. Prllx is the pprent shifting

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Multiple Choice ( 6 Points Ech ): F pp = 40 N 20 kg Q = 60 O m s,k = 0 1. A 20 kg box is pulled long frictionless floor with n pplied force of 40 N. The pplied force mkes n ngle of 60 degrees with the

More information

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1 Version 001 HW#6 - Circulr & ottionl Motion rts (00223) 1 This print-out should hve 14 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Circling

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings Chpter 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings When, in the cse of tilted coordinte system, you brek up the

More information

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deprtment of Physics Physics 8T Fll Term 4 In-Clss Problems nd 3: Projectile Motion Solutions We would like ech group to pply the problem solving strtegy with the

More information

Magnetic Fields! Ch 29 - Magnetic Fields & Sources! Magnets...! Earth s Magnetic Field!

Magnetic Fields! Ch 29 - Magnetic Fields & Sources! Magnets...! Earth s Magnetic Field! Mgnetic Fields Ch 29 - Mgnetic Fields & ources 1. The mgnetic field line hs the direction of the mgnetic field s its tngent t tht point. 2. The number of lines per unit re is proportionl to the mgnitude

More information

(3.2.3) r x x x y y y. 2. Average Velocity and Instantaneous Velocity 2 1, (3.2.2)

(3.2.3) r x x x y y y. 2. Average Velocity and Instantaneous Velocity 2 1, (3.2.2) Lecture 3- Kinemtics in Two Dimensions Durin our preious discussions we he been tlkin bout objects moin lon the striht line. In relity, howeer, it rrely hppens when somethin moes lon the striht pth. For

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

A wire. 100 kg. Fig. 1.1

A wire. 100 kg. Fig. 1.1 1 Fig. 1.1 shows circulr cylinder of mss 100 kg being rised by light, inextensible verticl wire. There is negligible ir resistnce. wire 100 kg Fig. 1.1 (i) lculte the ccelertion of the cylinder when the

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

Homework: 5, 9, 19, 25, 31, 34, 39 (p )

Homework: 5, 9, 19, 25, 31, 34, 39 (p ) Hoework: 5, 9, 19, 5, 31, 34, 39 (p 130-134) 5. A 3.0 kg block is initilly t rest on horizontl surfce. A force of gnitude 6.0 nd erticl force P re then pplied to the block. The coefficients of friction

More information

Mathematics of Motion II Projectiles

Mathematics of Motion II Projectiles Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16 CHAPTER 16 1. The number of electrons is N = Q/e = ( 30.0 10 6 C)/( 1.60 10 19 C/electrons) = 1.88 10 14 electrons.. The mgnitude of the Coulomb force is Q /r. If we divide the epressions for the two forces,

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION Responses to Questions. A cr speedometer mesures only speed. It does not give ny informtion bout the direction, so it does not mesure velocity.. If the velocity

More information

_3-----"/- ~StudI_G u_id_e_-..,...-~~_~

_3-----/- ~StudI_G u_id_e_-..,...-~~_~ e- / Dte Period Nme CHAPTR 3-----"/- StudIG uide-..,...- [-------------------- Accelerted Motion Vocbulry Review Write the term tht correctly completes the sttement. Use ech term once. ccelertion verge

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions re of equl vlue

More information

PHYSICS 211 MIDTERM I 22 October 2003

PHYSICS 211 MIDTERM I 22 October 2003 PHYSICS MIDTERM I October 3 Exm i cloed book, cloed note. Ue onl our formul heet. Write ll work nd nwer in exm booklet. The bck of pge will not be grded unle ou o requet on the front of the pge. Show ll

More information

PHYSICS ASSIGNMENT-9

PHYSICS ASSIGNMENT-9 MPS/PHY-XII-11/A9 PHYSICS ASSIGNMENT-9 *********************************************************************************************************** 1. A wire kept long the north-south direction is llowed

More information

What determines where a batted baseball lands? How do you describe

What determines where a batted baseball lands? How do you describe MTIN IN TW R THREE DIMENIN 3 LEARNING GAL studing this chpter, ou will lern:?if cr is going round cure t constnt speed, is it ccelerting? If so, in wht direction is it ccelerting? Wht determines where

More information

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane.

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane. Plne curiliner motion is the motion of prticle long cured pth which lies in single plne. Before the description of plne curiliner motion in n specific set of coordintes, we will use ector nlsis to describe

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

3. Vectors. Vectors: quantities which indicate both magnitude and direction. Examples: displacemement, velocity, acceleration

3. Vectors. Vectors: quantities which indicate both magnitude and direction. Examples: displacemement, velocity, acceleration Rutgers University Deprtment of Physics & Astronomy 01:750:271 Honors Physics I Lecture 3 Pge 1 of 57 3. Vectors Vectors: quntities which indicte both mgnitude nd direction. Exmples: displcemement, velocity,

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

MEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย )

MEE 214 (Dynamics) Tuesday Dr. Soratos Tantideeravit (สรทศ ต นต ธ รว ทย ) MEE 14 (Dynmics) Tuesdy 8.30-11.0 Dr. Sortos Tntideerit (สรทศ ต นต ธ รว ทย ) sortos@oep.go.th Lecture Notes, Course updtes, Extr problems, etc No Homework Finl Exm (Dte & Time TBD) 1/03/58 MEE14 Dynmics

More information

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane.

Plane curvilinear motion is the motion of a particle along a curved path which lies in a single plane. Plne curiliner motion is the motion of prticle long cured pth which lies in single plne. Before the description of plne curiliner motion in n specific set of coordintes, we will use ector nlsis to describe

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information

Your Thoughts. Mechanics Lecture 16, Slide 1

Your Thoughts. Mechanics Lecture 16, Slide 1 Your Thoughts I get dizzy with ll the equtions being shifted, spun nd switched so much in the pre-lectures. If the pre-lectures for, 3 nd 4 re like tht, I m pretty worried. Are we going to be rcing spheres,

More information

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law ME 141 Engineering Mechnics Lecture 10: Kinetics of prticles: Newton s nd Lw Ahmd Shhedi Shkil Lecturer, Dept. of Mechnicl Engg, BUET E-mil: sshkil@me.buet.c.bd, shkil6791@gmil.com Website: techer.buet.c.bd/sshkil

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

Version 001 Review 1: Mechanics tubman (IBII ) During each of the three intervals correct

Version 001 Review 1: Mechanics tubman (IBII ) During each of the three intervals correct Version 001 Review 1: Mechnics tubmn (IBII20142015) 1 This print-out should hve 72 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Displcement

More information

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T

Version 001 HW#6 - Electromagnetic Induction arts (00224) 1 3 T Version 001 HW#6 - lectromgnetic Induction rts (00224) 1 This print-out should hve 12 questions. Multiple-choice questions my continue on the next column or pge find ll choices efore nswering. AP 1998

More information

General Relativity 05/12/2008. Lecture 15 1

General Relativity 05/12/2008. Lecture 15 1 So Fr, We Hve Generl Reltivity Einstein Upsets the Applecrt Decided tht constnt velocity is the nturl stte of things Devised nturl philosophy in which ccelertion is the result of forces Unified terrestril

More information

Section 7.2 Velocity. Solution

Section 7.2 Velocity. Solution Section 7.2 Velocity In the previous chpter, we showed tht velocity is vector becuse it hd both mgnitude (speed) nd direction. In this section, we will demonstrte how two velocities cn be combined to determine

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

a) mass inversely proportional b) force directly proportional

a) mass inversely proportional b) force directly proportional 1. Wht produces ccelertion? A orce 2. Wht is the reltionship between ccelertion nd ) mss inersely proportionl b) orce directly proportionl 3. I you he orce o riction, 30N, on n object, how much orce is

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

SOLUTIONS TO CONCEPTS CHAPTER

SOLUTIONS TO CONCEPTS CHAPTER 1. m = kg S = 10m Let, ccelertion =, Initil velocity u = 0. S= ut + 1/ t 10 = ½ ( ) 10 = = 5 m/s orce: = = 5 = 10N (ns) SOLUIONS O CONCEPS CHPE 5 40000. u = 40 km/hr = = 11.11 m/s. 3600 m = 000 kg ; v

More information

Kinematics in Two-Dimensions

Kinematics in Two-Dimensions Slide 1 / 92 Slide 2 / 92 Kinemtics in Two-imensions www.njctl.org Slide 3 / 92 How to Use this File ch topic is composed of brief direct instruction There re formtie ssessment questions fter eer topic

More information

Mathematics Extension 1

Mathematics Extension 1 04 Bored of Studies Tril Emintions Mthemtics Etension Written by Crrotsticks & Trebl. Generl Instructions Totl Mrks 70 Reding time 5 minutes. Working time hours. Write using blck or blue pen. Blck pen

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A uniform circulr disc hs mss m, centre O nd rdius. It is free to rotte bout fixed smooth horizontl xis L which lies in the sme plne s the disc nd which is tngentil to the disc t the point A. The disc

More information

Page 1. Motion in a Circle... Dynamics of Circular Motion. Motion in a Circle... Motion in a Circle... Discussion Problem 21: Motion in a Circle

Page 1. Motion in a Circle... Dynamics of Circular Motion. Motion in a Circle... Motion in a Circle... Discussion Problem 21: Motion in a Circle Dynics of Circulr Motion A boy ties rock of ss to the end of strin nd twirls it in the erticl plne. he distnce fro his hnd to the rock is. he speed of the rock t the top of its trectory is. Wht is the

More information

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16)

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16) AP Physics 1 Prctice Exm #3 (/11/16) Directions: Ech questions or incomplete sttements below is followed by four suggested nswers or completions. Select one tht is best in ech cse nd n enter pproprite

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects;

1. A 4.00-kg stone is whirled at the end of a 2.00-m rope in a horizontal circle at a speed of 15.0 m/s. Ignoring the gravitational effects; Honors Physics Centripetl Pcket 1. 4.00-kg sne whirled t end 2.00-m rope in horizontl circle t speed 15.0 m/s. Ignoring grvittionl effects;. Clculte centripetl ccelertion B. Clculte centripetl force. 2.

More information

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES 1. TRANSLATION Figure shows rigid body trnslting in three-dimensionl spce. Any two points in the body, such s A nd B, will move long prllel stright lines if

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Problems Blinn Collee - Physic425 - Terry Honn Problem E.1 () Wht is the centripetl (rdil) ccelertion of point on the erth's equtor? (b) Give n expression for the centripetl ccelertion s function

More information

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A Time : hours 0 - Mthemtics - Mrch 007 Mrks : 100 Pg - 1 Instructions : 1. Answer ll questions.. Write your nswers ccording to the instructions given below with the questions.. Begin ech section on new

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

Sample Exam 5 - Skip Problems 1-3

Sample Exam 5 - Skip Problems 1-3 Smple Exm 5 - Skip Problems 1-3 Physics 121 Common Exm 2: Fll 2010 Nme (Print): 4 igit I: Section: Honors Code Pledge: As n NJIT student I, pledge to comply with the provisions of the NJIT Acdemic Honor

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

8A Review Solutions. Roger Mong. February 24, 2007

8A Review Solutions. Roger Mong. February 24, 2007 8A Review Solutions Roer Mon Ferury 24, 2007 Question We ein y doin Free Body Dirm on the mss m. Since the rope runs throuh the lock 3 times, the upwrd force on the lock is 3T. (Not ecuse there re 3 pulleys!)

More information

Trigonometric Functions

Trigonometric Functions Exercise. Degrees nd Rdins Chpter Trigonometric Functions EXERCISE. Degrees nd Rdins 4. Since 45 corresponds to rdin mesure of π/4 rd, we hve: 90 = 45 corresponds to π/4 or π/ rd. 5 = 7 45 corresponds

More information

Physics Honors. Final Exam Review Free Response Problems

Physics Honors. Final Exam Review Free Response Problems Physics Honors inl Exm Review ree Response Problems m t m h 1. A 40 kg mss is pulled cross frictionless tble by string which goes over the pulley nd is connected to 20 kg mss.. Drw free body digrm, indicting

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

Physics 207 Lecture 7

Physics 207 Lecture 7 Phsics 07 Lecture 7 Agend: Phsics 07, Lecture 7, Sept. 6 hpter 6: Motion in (nd 3) dimensions, Dnmics II Recll instntneous velocit nd ccelertion hpter 6 (Dnmics II) Motion in two (or three dimensions)

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy.

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy. HW Solutions # 5-8.01 MIT - Prof. Kowlski Friction, circulr dynmics, nd Work-Kinetic Energy. 1) 5.80 If the block were to remin t rest reltive to the truck, the friction force would need to cuse n ccelertion

More information

A B= ( ) because from A to B is 3 right, 2 down.

A B= ( ) because from A to B is 3 right, 2 down. 8. Vectors nd vector nottion Questions re trgeted t the grdes indicted Remember: mgnitude mens size. The vector ( ) mens move left nd up. On Resource sheet 8. drw ccurtely nd lbel the following vectors.

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

Chapter 5 Exercise 5A

Chapter 5 Exercise 5A Chpter Exercise Q. 1. (i) 00 N,00 N F =,00 00 =,000 F = m,000 = 1,000 = m/s (ii) =, u = 0, t = 0, s =? s = ut + 1 t = 0(0) + 1 ()(00) = 00 m Q.. 0 N 100 N F = 100 0 = 60 F = m 60 = 10 = 1 m/s F = m 60

More information

Problems (Motion Relative to Rotating Axes)

Problems (Motion Relative to Rotating Axes) 1. The disk rolls without slipping on the roblems (Motion Reltie to Rotting xes) horizontl surfce, nd t the instnt represented, the center O hs the elocity nd ccelertion shown in the figure. For this instnt,

More information

On the diagram below the displacement is represented by the directed line segment OA.

On the diagram below the displacement is represented by the directed line segment OA. Vectors Sclrs nd Vectors A vector is quntity tht hs mgnitude nd direction. One exmple of vector is velocity. The velocity of n oject is determined y the mgnitude(speed) nd direction of trvel. Other exmples

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015 Instructor(s): Acost/Woodrd PHYSICS DEPATMENT PHY 049, Fll 015 Midterm 1 September 9, 015 Nme (print): Signture: On m honor, I hve neither given nor received unuthorized id on this emintion. YOU TEST NUMBE

More information

Electric Potential. Concepts and Principles. An Alternative Approach. A Gravitational Analogy

Electric Potential. Concepts and Principles. An Alternative Approach. A Gravitational Analogy . Electric Potentil Concepts nd Principles An Alterntive Approch The electric field surrounding electric chrges nd the mgnetic field surrounding moving electric chrges cn both be conceptulized s informtion

More information

3 x x x 1 3 x a a a 2 7 a Ba 1 NOW TRY EXERCISES 89 AND a 2/ Evaluate each expression.

3 x x x 1 3 x a a a 2 7 a Ba 1 NOW TRY EXERCISES 89 AND a 2/ Evaluate each expression. SECTION. Eponents nd Rdicls 7 B 7 7 7 7 7 7 7 NOW TRY EXERCISES 89 AND 9 7. EXERCISES CONCEPTS. () Using eponentil nottion, we cn write the product s. In the epression 3 4,the numer 3 is clled the, nd

More information

Unique Solutions R. All about Electromagnetism. C h a p t e r. G l a n c e

Unique Solutions R. All about Electromagnetism. C h a p t e r. G l a n c e 5. C h p t e r t G l n c e When electric current is pssed through conductor, it produces mgnetic field round it. The first discovery of the connection between electricity nd mgnetism ws mde by H. C. Oersted.

More information

Answers to Exercises. c 2 2ab b 2 2ab a 2 c 2 a 2 b 2

Answers to Exercises. c 2 2ab b 2 2ab a 2 c 2 a 2 b 2 Answers to Eercises CHAPTER 9 CHAPTER LESSON 9. CHAPTER 9 CHAPTER. c 9. cm. cm. b 5. cm. d 0 cm 5. s cm. c 8.5 cm 7. b cm 8.. cm 9. 0 cm 0. s.5 cm. r cm. 7 ft. 5 m.. cm 5.,, 5. 8 m 7. The re of the lrge

More information