Solutions for Homework #4

Size: px
Start display at page:

Download "Solutions for Homework #4"

Transcription

1 Econ 50a (second half) Prof: Tony Smith TA: Theodore Papageorgiou Fall 2004 Yale University Dept. of Economics Solutions for Homework #4 Question (a) A Recursive Competitive Equilibrium for the economy is a set of functions: price function : r k,w k policy function : k g k, k value function : transition function : k H k such that: () k g k, k and solves consumer s problem: max uc v k, k c,k s.t. c k r k k k w k k H k (2) Price is competitively determined: r k F k,, k A k w k F 2 k,, k A k (3) Consistency: H k g k, k Solve for consumer s problem in the normal way, we get the Euler equation:

2 u c t u c t u c t u c t r k t A k t Aggregate production is equal to G k,l F k,l, k A k a l a (which we get if we impose the equilibrium condition k k and thus aggregate consumption in every period is equal to: c t G k t,l k t k t Since all agents are identical, in equilibrium it will be the case that c t c t for every t (you can think of this as each individual s consumption will equal per capita consumption). If we substitute this in the individual s Euler equation we derived above, we get: u c u c u G k,l k k A k u G k,l k k A k u G k,l k k A k u G k,l k k which is a second-order difference equation that governs the evolution of the economy s aggregates. (b) The recursive formulation of the planning problem is The Euler equation is v k max uc v k c,k s.t. c k A k k u c u c A k If we compare the above Euler equation to the one we found in the competitive equilibrium case we can see that they are different. Since planner s problem gives us the Pareto optimal allocation, the equilibrium in the competitive case cannot be Pareto optimal. The intuition behind this result is that the firms in the competitive equilibrium do not internalize the externality in the production, whereas the planner is able to do so. (c) A Recursive Competitive Equilibrium for the economy with taxation is a set of

3 functions: price function : r k,w k policy function : k g k, k value function : taxation function : T k transition function : k H k such that: () k g k, k and solves consumer s problem: max uc v k, k c,k s.t. c k k r k k w k T k k H k (2) Price is competitively determined: R k F k,, k A k w k F 2 k,, k A k (3) Government balances budget in each period: T k k k (3) Consistency of transition function: H k g k, k (d) We can solve for F.O.C. in the normal way as u c v k, k Envelope condition gives us v k, k u c r k The Euler equation is u c t u c t u c t u c t r k A k

4 In steady state, we have A k A k k A where k represents the steady-state aggregate capital stock in economy with taxation. From the Euler equation of the planner s problem we can find the steady state: A k o k o A where k o represents the optimal steady-state aggregate capital stock. Now set k k o,wehave k k o A A Therefore, for the competitive equilibrium steady-state aggregate capital stock the same as the steady-state aggregate capital stock in the planning problem. Question 2 (a) Given the equivalence of competitive equilibrium and central planning problem here, we can conjecture the transition function of aggregate state as k sa k. Now we can define a recursive competitive equilibrium for this economy explicitly. A Recursive Competitive Equilibrium for this economy is a set of functions:

5 price function : r k,w k policy function : k g k, k value function : transition function : k sa k such that: () k g k, k and solves consumer s problem: max lnc v k, k c,k s.t. c k r k k w k k sa k (2) Price is competitively determined: r k F k, A k w k F 2 k, A k (3) Consistency: sa k g k, k We solve for the recursive competitive equilibrium by the guess and verify method. We conjecture that the value function is of the following form: a blnk d k eln k Now we start to solve for the solution by plugging in our conjecture. Bellman equation becomes max ln A k k A k k k a blnk d k eln k s.t. k sa k or max ln A k k A k k k a blnk dsa k elnsa k Take F.O.C. with respect to k,wehave

6 A k k A k k b k dsa k k dsa k b A k k A k k k b b A k k Plug back into Bellman equation, we have ln b A k k a bln ds b b b A k k b ds b A k b ds b A k A k elnsa k bln A a blnb elnsa b ds bln k k b eln k Since the LHS a blnk d k eln k, we have the following equations: a bln A b a blnb elnsa 2 b b ds 3 d 4 e b e Solve for these four equations, we get the solutions a 2 b d s e lna ln lnsa This gives us the form of value function. Plug these coefficients into F.O.C., we get k b b A k k A k k b ds b s s A k Therefore, we have our value function and policy function as A k

7 a blnk d k eln k gk, k A k k with coefficients as defined above. s s A k (b) Imposing consistency condition, we have G k g k, k sa k A k s k s A k ss s s s 2 s 0 s and s 2 Consider the context of this economic problem, obviously only s will be a solution to this problem. Consequently the resulting recursive competitive equilibrium is a blnk d k eln k gk, k A k k G k A k with coefficients as a 2 b d e lna ln lna Now let s check whether G k solves the central planning problem. The recursive formulation of central planning problem is v k max ln A k k v k k Guess that v k a bln k. Plug into Bellman equation, we have F.O.C. is v k max ln A k k a bln k k

8 Plug back into Bellman equation, we have b A k k k k b b A k v k max ln A k k a bln k k a bln k ln A k b b A k a bln a bln k blna ln b a bln b b A k b bln k b Again since this is an identity, we have a blna ln b a bln b b and b b Solve for this, we get a b lna ln ln Therefore, the solution for central planning problem is v k k A k lna ln ln ln k This is the same aggregate state evolution law as in the recursive competitive equilibrium. (c) Take derivative with respect to k,wehave and g k, k A k k g 2 k, k A k 2 k 0

9 a blnk d k eln k v 2 k, k bd k d k e k v 2 k, k k k k k k v 2 k, k 0 if k k 0 if k k 0 if k k Note that here we do not consider equilibrium behavior, therefore the sign is ambiguous. (d) Take derivative with respect to k,wehave v k, k a bln d b eln k dv d k b e k dv d k k 0 Question 3 (a) Given the transition matrix P we can calculate the stationary distribution according to the formula P The solution to this equation is 2 2 Imposing the condition that 2, the solution is

10 2 3 Correspondingly, the long run expected value is 2 3 Ez z (b) Form the dynamic programming problem as v k i,z i max ln z i k i k k k,k 2 p i v k,z p i2 v k,z 2 Since k i,z i takes on only 4 values, we assume that the policy function takes the following form. gk,z k gk 2,z k gk,z 2 k 2 gk 2,z 2 k 2 We need to prove that this is true. The way we are going to proceed is that we are going to calculate the value function values associated with this policy function and then verify that they are indeed maximum. Using the parameter values given in the problem we get: k ss 0.79 k k Let s try out all 4 cases and substitute in for the assumed policy function. For k i,z i k,z we have: v k, z ln z k k p v k,z p 2 v k,z 2 v k, z ln v k, z 0.05v k, z 2 v k, z v k, z 0.045v k, z 2 v k, z v k, z 2 Similarly we get:

11 v k, z v k 2, z 0.045v k 2, z 2 v k 2, z v k, z 0.045v k, z 2 v k 2, z v k 2, z 0.045v k 2, z 2 v k 2, z v k 2, z Essentially we have a system of 4 equations with 4 unknowns. Plugging in the first equation into the third we get: v k 2, z v k, z 2 Similarly, plugging in the last equation into the second one we get: v k, z v k 2, z Solving out the above system of 2 equations and 2 unknowns, we get: v k 2, z v k, z ubstituting into equations and 4 from above we get: v k, z v k 2, z We now need to check that this decision rule is optimal. We will go about checking this changing the decision rule in each of the 4 cases and then calculating the resulting value function. For example, when we have k, z we will assume that the planner chooses k 2 instead of k. In that case we would get: v alt k, z ln z k k 2 p v k 2,z p 2 v k 2,z 2 v alt k, z ln v alt k, z v k, z Similarly we get: v alt k, z v k, z 2 v alt k 2, z v k 2, z v alt k 2, z v k 2, z 2 and we see that in each case the original decision rule performs better. The rational we use to conclude that our decision rule is indeed optimal is the following: our guess about the decision rule implies a certain value for our value function. On the other hand changing the decision rule with the only other possible alternative for each case would imply a different value

12 function. If this alternative value function was actually closer to the true value function (which is the optimal) then it would give a higher value than our guess. But that is not the case. Therefore our guess is closer to the optimal. You can think of this procedure as a value function iteration. Given however that for each decision rule there is only one other alternative, this implies that out value function is indeed optimal and that our guess is indeed the correct decision rule. (c) Based on policy function gk i,z i and transition matrix of z, the pair k,z follows a Markov process with the transition matrix z,k z,k 2 z 2,k z 2,k 2 z,k z,k z 2,k z 2,k Now we can calculate the stationary distribution either on the computer or by hand. The result is pk,z pk 2,z pk,z pk 2,z Using the stationary distribution, the long-run (or unconditional) expected values of the capital stock and of output are Ek pk,z k pk,z 2 k pk 2,z k 2 pk 2,z 2 k k 3 k Ey pk,z z k a pk 2,z z k 2 a pk,z 2 z 2 k a pk 2,z 2 z 2 k 2 a (d) Depending on the realization of each simulation, the result will differ a little bit. For example, one possible result based on T 0000 is T T T k t t T y t t

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox.

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox. Econ 50a second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK #3 This homework assignment is due at NOON on Friday, November 7 in Marnix Amand s mailbox.. This problem introduces wealth inequality

More information

1. Using the model and notations covered in class, the expected returns are:

1. Using the model and notations covered in class, the expected returns are: Econ 510a second half Yale University Fall 2006 Prof. Tony Smith HOMEWORK #5 This homework assignment is due at 5PM on Friday, December 8 in Marnix Amand s mailbox. Solution 1. a In the Mehra-Prescott

More information

Suggested Solutions to Homework #3 Econ 511b (Part I), Spring 2004

Suggested Solutions to Homework #3 Econ 511b (Part I), Spring 2004 Suggested Solutions to Homework #3 Econ 5b (Part I), Spring 2004. Consider an exchange economy with two (types of) consumers. Type-A consumers comprise fraction λ of the economy s population and type-b

More information

Competitive Equilibrium and the Welfare Theorems

Competitive Equilibrium and the Welfare Theorems Competitive Equilibrium and the Welfare Theorems Craig Burnside Duke University September 2010 Craig Burnside (Duke University) Competitive Equilibrium September 2010 1 / 32 Competitive Equilibrium and

More information

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 ECON607 Fall 200 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 The due date for this assignment is Tuesday, October 2. ( Total points = 50). (Two-sector growth model) Consider the

More information

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and Economics 210B Due: September 16, 2010 Problem 1: Constant returns to saving Consider the following problem. c0,k1,c1,k2,... β t Problem Set 10 1 α c1 α t s.t. k t+1 = R(k t c t ) for all t 0, and k 0

More information

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox. Econ 50a (second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK # This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.. Consider a growth model with capital

More information

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Endogenous Growth with Human Capital Consider the following endogenous growth model with both physical capital (k (t)) and human capital (h (t)) in continuous time. The representative household solves

More information

1 The Basic RBC Model

1 The Basic RBC Model IHS 2016, Macroeconomics III Michael Reiter Ch. 1: Notes on RBC Model 1 1 The Basic RBC Model 1.1 Description of Model Variables y z k L c I w r output level of technology (exogenous) capital at end of

More information

Macroeconomics Theory II

Macroeconomics Theory II Macroeconomics Theory II Francesco Franco FEUNL February 2016 Francesco Franco (FEUNL) Macroeconomics Theory II February 2016 1 / 18 Road Map Research question: we want to understand businesses cycles.

More information

The economy is populated by a unit mass of infinitely lived households with preferences given by. β t u(c Mt, c Ht ) t=0

The economy is populated by a unit mass of infinitely lived households with preferences given by. β t u(c Mt, c Ht ) t=0 Review Questions: Two Sector Models Econ720. Fall 207. Prof. Lutz Hendricks A Planning Problem The economy is populated by a unit mass of infinitely lived households with preferences given by β t uc Mt,

More information

Comprehensive Exam. Macro Spring 2014 Retake. August 22, 2014

Comprehensive Exam. Macro Spring 2014 Retake. August 22, 2014 Comprehensive Exam Macro Spring 2014 Retake August 22, 2014 You have a total of 180 minutes to complete the exam. If a question seems ambiguous, state why, sharpen it up and answer the sharpened-up question.

More information

Lecture 15. Dynamic Stochastic General Equilibrium Model. Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017

Lecture 15. Dynamic Stochastic General Equilibrium Model. Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017 Lecture 15 Dynamic Stochastic General Equilibrium Model Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017 Universidad de Costa Rica EC3201 - Teoría Macroeconómica 2 Table of contents

More information

A simple macro dynamic model with endogenous saving rate: the representative agent model

A simple macro dynamic model with endogenous saving rate: the representative agent model A simple macro dynamic model with endogenous saving rate: the representative agent model Virginia Sánchez-Marcos Macroeconomics, MIE-UNICAN Macroeconomics (MIE-UNICAN) A simple macro dynamic model with

More information

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 1 Suggested Solutions

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 1 Suggested Solutions ECON607 Fall 200 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment Suggested Solutions The due date for this assignment is Thursday, Sep. 23.. Consider an stochastic optimal growth model

More information

TOBB-ETU - Econ 532 Practice Problems II (Solutions)

TOBB-ETU - Econ 532 Practice Problems II (Solutions) TOBB-ETU - Econ 532 Practice Problems II (Solutions) Q: Ramsey Model: Exponential Utility Assume that in nite-horizon households maximize a utility function of the exponential form 1R max U = e (n )t (1=)e

More information

Macroeconomic Theory and Analysis Suggested Solution for Midterm 1

Macroeconomic Theory and Analysis Suggested Solution for Midterm 1 Macroeconomic Theory and Analysis Suggested Solution for Midterm February 25, 2007 Problem : Pareto Optimality The planner solves the following problem: u(c ) + u(c 2 ) + v(l ) + v(l 2 ) () {c,c 2,l,l

More information

Homework 3 - Partial Answers

Homework 3 - Partial Answers Homework 3 - Partial Answers Jonathan Heathcote Due in Class on Tuesday February 28th In class we outlined two versions of the stochastic growth model: a planner s problem, and an Arrow-Debreu competitive

More information

Markov Perfect Equilibria in the Ramsey Model

Markov Perfect Equilibria in the Ramsey Model Markov Perfect Equilibria in the Ramsey Model Paul Pichler and Gerhard Sorger This Version: February 2006 Abstract We study the Ramsey (1928) model under the assumption that households act strategically.

More information

Macro I - Practice Problems - Growth Models

Macro I - Practice Problems - Growth Models Macro I - Practice Problems - Growth Models. Consider the infinitely-lived agent version of the growth model with valued leisure. Suppose that the government uses proportional taxes (τ c, τ n, τ k ) on

More information

1 Bewley Economies with Aggregate Uncertainty

1 Bewley Economies with Aggregate Uncertainty 1 Bewley Economies with Aggregate Uncertainty Sofarwehaveassumedawayaggregatefluctuations (i.e., business cycles) in our description of the incomplete-markets economies with uninsurable idiosyncratic risk

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

1 Recursive Competitive Equilibrium

1 Recursive Competitive Equilibrium Feb 5th, 2007 Let s write the SPP problem in sequence representation: max {c t,k t+1 } t=0 β t u(f(k t ) k t+1 ) t=0 k 0 given Because of the INADA conditions we know that the solution is interior. So

More information

Advanced Macroeconomics

Advanced Macroeconomics Advanced Macroeconomics The Ramsey Model Marcin Kolasa Warsaw School of Economics Marcin Kolasa (WSE) Ad. Macro - Ramsey model 1 / 30 Introduction Authors: Frank Ramsey (1928), David Cass (1965) and Tjalling

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

Suggested Solutions to Homework #6 Econ 511b (Part I), Spring 2004

Suggested Solutions to Homework #6 Econ 511b (Part I), Spring 2004 Suggested Solutions to Homework #6 Econ 511b (Part I), Spring 2004 1. (a) Find the planner s optimal decision rule in the stochastic one-sector growth model without valued leisure by linearizing the Euler

More information

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Government Purchases and Endogenous Growth Consider the following endogenous growth model with government purchases (G) in continuous time. Government purchases enhance production, and the production

More information

Solving Heterogeneous Agent Models with Dynare

Solving Heterogeneous Agent Models with Dynare Solving Heterogeneous Agent Models with Dynare Wouter J. Den Haan University of Amsterdam March 12, 2009 Individual agent Subject to employment, i.e., labor supply shocks: e i,t = ρ e e i,t 1 + ε i,t ε

More information

Macroeconomics Qualifying Examination

Macroeconomics Qualifying Examination Macroeconomics Qualifying Examination August 2015 Department of Economics UNC Chapel Hill Instructions: This examination consists of 4 questions. Answer all questions. If you believe a question is ambiguously

More information

Neoclassical Business Cycle Model

Neoclassical Business Cycle Model Neoclassical Business Cycle Model Prof. Eric Sims University of Notre Dame Fall 2015 1 / 36 Production Economy Last time: studied equilibrium in an endowment economy Now: study equilibrium in an economy

More information

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6 1 Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6 1 A Two-Period Example Suppose the economy lasts only two periods, t =0, 1. The uncertainty arises in the income (wage) of period 1. Not that

More information

Macroeconomic Theory and Analysis V Suggested Solutions for the First Midterm. max

Macroeconomic Theory and Analysis V Suggested Solutions for the First Midterm. max Macroeconomic Theory and Analysis V31.0013 Suggested Solutions for the First Midterm Question 1. Welfare Theorems (a) There are two households that maximize max i,g 1 + g 2 ) {c i,l i} (1) st : c i w(1

More information

UNIVERSITY OF WISCONSIN DEPARTMENT OF ECONOMICS MACROECONOMICS THEORY Preliminary Exam August 1, :00 am - 2:00 pm

UNIVERSITY OF WISCONSIN DEPARTMENT OF ECONOMICS MACROECONOMICS THEORY Preliminary Exam August 1, :00 am - 2:00 pm UNIVERSITY OF WISCONSIN DEPARTMENT OF ECONOMICS MACROECONOMICS THEORY Preliminary Exam August 1, 2017 9:00 am - 2:00 pm INSTRUCTIONS Please place a completed label (from the label sheet provided) on the

More information

Endogenous Growth: AK Model

Endogenous Growth: AK Model Endogenous Growth: AK Model Prof. Lutz Hendricks Econ720 October 24, 2017 1 / 35 Endogenous Growth Why do countries grow? A question with large welfare consequences. We need models where growth is endogenous.

More information

Population growth and technological progress in the optimal growth model

Population growth and technological progress in the optimal growth model Quantitative Methods in Economics Econ 600 Fall 2016 Handout # 5 Readings: SLP Sections 3.3 4.2, pages 55-87; A Ch 6 Population growth and technological progress in the optimal growth model In the optimal

More information

Dynamic Optimization: An Introduction

Dynamic Optimization: An Introduction Dynamic Optimization An Introduction M. C. Sunny Wong University of San Francisco University of Houston, June 20, 2014 Outline 1 Background What is Optimization? EITM: The Importance of Optimization 2

More information

Development Economics (PhD) Intertemporal Utility Maximiza

Development Economics (PhD) Intertemporal Utility Maximiza Development Economics (PhD) Intertemporal Utility Maximization Department of Economics University of Gothenburg October 7, 2015 1/14 Two Period Utility Maximization Lagrange Multiplier Method Consider

More information

Suggested Solutions to Problem Set 2

Suggested Solutions to Problem Set 2 Macroeconomic Theory, Fall 03 SEF, HKU Instructor: Dr. Yulei Luo October 03 Suggested Solutions to Problem Set. 0 points] Consider the following Ramsey-Cass-Koopmans model with fiscal policy. First, we

More information

Advanced Macroeconomics

Advanced Macroeconomics Advanced Macroeconomics The Ramsey Model Micha l Brzoza-Brzezina/Marcin Kolasa Warsaw School of Economics Micha l Brzoza-Brzezina/Marcin Kolasa (WSE) Ad. Macro - Ramsey model 1 / 47 Introduction Authors:

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a Chris Edmond hcpedmond@unimelb.edu.aui Dynamic programming and the growth model Dynamic programming and closely related recursive methods provide an important

More information

Macroeconomics Qualifying Examination

Macroeconomics Qualifying Examination Macroeconomics Qualifying Examination January 2016 Department of Economics UNC Chapel Hill Instructions: This examination consists of 3 questions. Answer all questions. If you believe a question is ambiguously

More information

Introduction to Numerical Methods

Introduction to Numerical Methods Introduction to Numerical Methods Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan "D", "S", & "GE" Dynamic Stochastic General Equilibrium What is missing in the abbreviation? DSGE

More information

Slides II - Dynamic Programming

Slides II - Dynamic Programming Slides II - Dynamic Programming Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides II - Dynamic Programming Spring 2017 1 / 32 Outline 1. Lagrangian

More information

u(c t, x t+1 ) = c α t + x α t+1

u(c t, x t+1 ) = c α t + x α t+1 Review Questions: Overlapping Generations Econ720. Fall 2017. Prof. Lutz Hendricks 1 A Savings Function Consider the standard two-period household problem. The household receives a wage w t when young

More information

SGZ Macro Week 3, Lecture 2: Suboptimal Equilibria. SGZ 2008 Macro Week 3, Day 1 Lecture 2

SGZ Macro Week 3, Lecture 2: Suboptimal Equilibria. SGZ 2008 Macro Week 3, Day 1 Lecture 2 SGZ Macro Week 3, : Suboptimal Equilibria 1 Basic Points Effects of shocks can be magnified (damped) in suboptimal economies Multiple equilibria (stationary states, dynamic paths) in suboptimal economies

More information

1 Jan 28: Overview and Review of Equilibrium

1 Jan 28: Overview and Review of Equilibrium 1 Jan 28: Overview and Review of Equilibrium 1.1 Introduction What is an equilibrium (EQM)? Loosely speaking, an equilibrium is a mapping from environments (preference, technology, information, market

More information

Economic Growth: Lecture 13, Stochastic Growth

Economic Growth: Lecture 13, Stochastic Growth 14.452 Economic Growth: Lecture 13, Stochastic Growth Daron Acemoglu MIT December 10, 2013. Daron Acemoglu (MIT) Economic Growth Lecture 13 December 10, 2013. 1 / 52 Stochastic Growth Models Stochastic

More information

ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER

ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER Hiroyuki Ozaki Keio University, Faculty of Economics June 2, 2015 Important Remarks: You must write all your answers

More information

University of Pittsburgh Department of Economics Econ 1720: Advanced Macroeconomics Handout 3

University of Pittsburgh Department of Economics Econ 1720: Advanced Macroeconomics Handout 3 University of Pittsburgh Department of Economics Econ 1720: Advanced Macroeconomics Handout 3 This handout presents how we can use all the results obtained in handouts 1 and 2 in order to characterize

More information

Lecture 4: Dynamic Programming

Lecture 4: Dynamic Programming Lecture 4: Dynamic Programming Fatih Guvenen January 10, 2016 Fatih Guvenen Lecture 4: Dynamic Programming January 10, 2016 1 / 30 Goal Solve V (k, z) =max c,k 0 u(c)+ E(V (k 0, z 0 ) z) c + k 0 =(1 +

More information

Linear and Loglinear Approximations (Started: July 7, 2005; Revised: February 6, 2009)

Linear and Loglinear Approximations (Started: July 7, 2005; Revised: February 6, 2009) Dave Backus / NYU Linear and Loglinear Approximations (Started: July 7, 2005; Revised: February 6, 2009) Campbell s Inspecting the mechanism (JME, 1994) added some useful intuition to the stochastic growth

More information

Session 4: Money. Jean Imbs. November 2010

Session 4: Money. Jean Imbs. November 2010 Session 4: Jean November 2010 I So far, focused on real economy. Real quantities consumed, produced, invested. No money, no nominal in uences. I Now, introduce nominal dimension in the economy. First and

More information

Dynamic Problem Set 1 Solutions

Dynamic Problem Set 1 Solutions Dynamic Problem Set 1 Solutions Jonathan Kreamer July 15, 2011 Question 1 Consider the following multi-period optimal storage problem: An economic agent imizes: c t} T β t u(c t ) (1) subject to the period-by-period

More information

Problem 1 (30 points)

Problem 1 (30 points) Problem (30 points) Prof. Robert King Consider an economy in which there is one period and there are many, identical households. Each household derives utility from consumption (c), leisure (l) and a public

More information

Heterogeneous Agent Models: I

Heterogeneous Agent Models: I Heterogeneous Agent Models: I Mark Huggett 2 2 Georgetown September, 2017 Introduction Early heterogeneous-agent models integrated the income-fluctuation problem into general equilibrium models. A key

More information

Lecture 1: Dynamic Programming

Lecture 1: Dynamic Programming Lecture 1: Dynamic Programming Fatih Guvenen November 2, 2016 Fatih Guvenen Lecture 1: Dynamic Programming November 2, 2016 1 / 32 Goal Solve V (k, z) =max c,k 0 u(c)+ E(V (k 0, z 0 ) z) c + k 0 =(1 +

More information

ECON 581: Growth with Overlapping Generations. Instructor: Dmytro Hryshko

ECON 581: Growth with Overlapping Generations. Instructor: Dmytro Hryshko ECON 581: Growth with Overlapping Generations Instructor: Dmytro Hryshko Readings Acemoglu, Chapter 9. Motivation Neoclassical growth model relies on the representative household. OLG models allow for

More information

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ryoji Ohdoi Dept. of Industrial Engineering and Economics, Tokyo Tech This lecture note is mainly based on Ch. 8 of Acemoglu

More information

Practice Questions for Mid-Term I. Question 1: Consider the Cobb-Douglas production function in intensive form:

Practice Questions for Mid-Term I. Question 1: Consider the Cobb-Douglas production function in intensive form: Practice Questions for Mid-Term I Question 1: Consider the Cobb-Douglas production function in intensive form: y f(k) = k α ; α (0, 1) (1) where y and k are output per worker and capital per worker respectively.

More information

Part A: Answer question A1 (required), plus either question A2 or A3.

Part A: Answer question A1 (required), plus either question A2 or A3. Ph.D. Core Exam -- Macroeconomics 5 January 2015 -- 8:00 am to 3:00 pm Part A: Answer question A1 (required), plus either question A2 or A3. A1 (required): Ending Quantitative Easing Now that the U.S.

More information

Neoclassical Growth Model / Cake Eating Problem

Neoclassical Growth Model / Cake Eating Problem Dynamic Optimization Institute for Advanced Studies Vienna, Austria by Gabriel S. Lee February 1-4, 2008 An Overview and Introduction to Dynamic Programming using the Neoclassical Growth Model and Cake

More information

Suggested Solutions to Homework #4 Econ 511b (Part I), Spring 2004

Suggested Solutions to Homework #4 Econ 511b (Part I), Spring 2004 Suggested Solutions to Homewok #4 Econ 5b (Pat I), Sping 2004. Conside a neoclassical gowth model with valued leisue. The (epesentative) consume values steams of consumption and leisue accoding to P t=0

More information

Econ 204A: Section 3

Econ 204A: Section 3 Econ 204A: Section 3 Ryan Sherrard University of California, Santa Barbara 18 October 2016 Sherrard (UCSB) Section 3 18 October 2016 1 / 19 Notes on Problem Set 2 Total Derivative Review sf (k ) = (δ +

More information

Real Business Cycle Model (RBC)

Real Business Cycle Model (RBC) Real Business Cycle Model (RBC) Seyed Ali Madanizadeh November 2013 RBC Model Lucas 1980: One of the functions of theoretical economics is to provide fully articulated, artificial economic systems that

More information

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013)

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013) The Ramsey Model (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 213) 1 Introduction The Ramsey model (or neoclassical growth model) is one of the prototype models in dynamic macroeconomics.

More information

Neoclassical Growth Model: I

Neoclassical Growth Model: I Neoclassical Growth Model: I Mark Huggett 2 2 Georgetown October, 2017 Growth Model: Introduction Neoclassical Growth Model is the workhorse model in macroeconomics. It comes in two main varieties: infinitely-lived

More information

Graduate Macroeconomics 2 Problem set Solutions

Graduate Macroeconomics 2 Problem set Solutions Graduate Macroeconomics 2 Problem set 10. - Solutions Question 1 1. AUTARKY Autarky implies that the agents do not have access to credit or insurance markets. This implies that you cannot trade across

More information

1 Two elementary results on aggregation of technologies and preferences

1 Two elementary results on aggregation of technologies and preferences 1 Two elementary results on aggregation of technologies and preferences In what follows we ll discuss aggregation. What do we mean with this term? We say that an economy admits aggregation if the behavior

More information

The Hansen Singleton analysis

The Hansen Singleton analysis The Hansen Singleton analysis November 15, 2018 1 Estimation of macroeconomic rational expectations model. The Hansen Singleton (1982) paper. We start by looking at the application of GMM that first showed

More information

Dynamic Optimization Problem. April 2, Graduate School of Economics, University of Tokyo. Math Camp Day 4. Daiki Kishishita.

Dynamic Optimization Problem. April 2, Graduate School of Economics, University of Tokyo. Math Camp Day 4. Daiki Kishishita. Discrete Math Camp Optimization Problem Graduate School of Economics, University of Tokyo April 2, 2016 Goal of day 4 Discrete We discuss methods both in discrete and continuous : Discrete : condition

More information

Solving Models with Heterogeneous Agents Xpa algorithm

Solving Models with Heterogeneous Agents Xpa algorithm Solving Models with Heterogeneous Agents Xpa algorithm Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Individual agent Subject to employment shocks ε i,t {0, 1} or ε i,t {u, e} Incomplete

More information

Macroeconomic Topics Homework 1

Macroeconomic Topics Homework 1 March 25, 2004 Kjetil Storesletten. Macroeconomic Topics Homework 1 Due: April 23 1 Theory 1.1 Aggregation Consider an economy consisting of a continuum of agents of measure 1 who solve max P t=0 βt c

More information

Economic Principles II : Math Memo

Economic Principles II : Math Memo Economic Principles II : Math Memo Prof. Séverine Toussaert - Section 2.002 July 8, 2013 Computing a Rate of Change Suppose we wanted to know by how much a variable increased relative to some reference

More information

Notes on Alvarez and Jermann, "Efficiency, Equilibrium, and Asset Pricing with Risk of Default," Econometrica 2000

Notes on Alvarez and Jermann, Efficiency, Equilibrium, and Asset Pricing with Risk of Default, Econometrica 2000 Notes on Alvarez Jermann, "Efficiency, Equilibrium, Asset Pricing with Risk of Default," Econometrica 2000 Jonathan Heathcote November 1st 2005 1 Model Consider a pure exchange economy with I agents one

More information

FEDERAL RESERVE BANK of ATLANTA

FEDERAL RESERVE BANK of ATLANTA FEDERAL RESERVE BANK of ATLANTA On the Solution of the Growth Model with Investment-Specific Technological Change Jesús Fernández-Villaverde and Juan Francisco Rubio-Ramírez Working Paper 2004-39 December

More information

Government The government faces an exogenous sequence {g t } t=0

Government The government faces an exogenous sequence {g t } t=0 Part 6 1. Borrowing Constraints II 1.1. Borrowing Constraints and the Ricardian Equivalence Equivalence between current taxes and current deficits? Basic paper on the Ricardian Equivalence: Barro, JPE,

More information

Economic Growth: Lecture 8, Overlapping Generations

Economic Growth: Lecture 8, Overlapping Generations 14.452 Economic Growth: Lecture 8, Overlapping Generations Daron Acemoglu MIT November 20, 2018 Daron Acemoglu (MIT) Economic Growth Lecture 8 November 20, 2018 1 / 46 Growth with Overlapping Generations

More information

Macroeconomics I. University of Tokyo. Lecture 12. The Neo-Classical Growth Model: Prelude to LS Chapter 11.

Macroeconomics I. University of Tokyo. Lecture 12. The Neo-Classical Growth Model: Prelude to LS Chapter 11. Macroeconomics I University of Tokyo Lecture 12 The Neo-Classical Growth Model: Prelude to LS Chapter 11. Julen Esteban-Pretel National Graduate Institute for Policy Studies The Cass-Koopmans Model: Environment

More information

Organizational Equilibrium with Capital

Organizational Equilibrium with Capital Organizational Equilibrium with Capital Marco Bassetto, Zhen Huo, and José-Víctor Ríos-Rull FRB of Chicago, Yale University, University of Pennsylvania, UCL, CAERP Fiscal Policy Conference Mar 20, 2018

More information

Dynamic stochastic game and macroeconomic equilibrium

Dynamic stochastic game and macroeconomic equilibrium Dynamic stochastic game and macroeconomic equilibrium Tianxiao Zheng SAIF 1. Introduction We have studied single agent problems. However, macro-economy consists of a large number of agents including individuals/households,

More information

The Real Business Cycle Model

The Real Business Cycle Model The Real Business Cycle Model Macroeconomics II 2 The real business cycle model. Introduction This model explains the comovements in the fluctuations of aggregate economic variables around their trend.

More information

Dynamic optimization: a recursive approach. 1 A recursive (dynamic programming) approach to solving multi-period optimization problems:

Dynamic optimization: a recursive approach. 1 A recursive (dynamic programming) approach to solving multi-period optimization problems: E 600 F 206 H # Dynamic optimization: a recursive approach A recursive (dynamic programming) approach to solving multi-period optimization problems: An example A T + period lived agent s value of life

More information

Lecture 2. (1) Aggregation (2) Permanent Income Hypothesis. Erick Sager. September 14, 2015

Lecture 2. (1) Aggregation (2) Permanent Income Hypothesis. Erick Sager. September 14, 2015 Lecture 2 (1) Aggregation (2) Permanent Income Hypothesis Erick Sager September 14, 2015 Econ 605: Adv. Topics in Macroeconomics Johns Hopkins University, Fall 2015 Erick Sager Lecture 2 (9/14/15) 1 /

More information

The representative agent model

The representative agent model Chapter 3 The representative agent model 3.1 Optimal growth In this course we re looking at three types of model: 1. Descriptive growth model (Solow model): mechanical, shows the implications of a given

More information

Notes for ECON 970 and ECON 973 Loris Rubini University of New Hampshire

Notes for ECON 970 and ECON 973 Loris Rubini University of New Hampshire Notes for ECON 970 and ECON 973 Loris Rubini University of New Hampshire 1 Introduction Economics studies resource allocation problems. In macroeconomics, we study economywide resource allocation problems.

More information

Competitive Equilibrium

Competitive Equilibrium Competitive Equilibrium Econ 2100 Fall 2017 Lecture 16, October 26 Outline 1 Pareto Effi ciency 2 The Core 3 Planner s Problem(s) 4 Competitive (Walrasian) Equilibrium Decentralized vs. Centralized Economic

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework

Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework Dongpeng Liu Nanjing University Sept 2016 D. Liu (NJU) Solving D(S)GE 09/16 1 / 63 Introduction Targets of the

More information

Equilibrium in a Production Economy

Equilibrium in a Production Economy Equilibrium in a Production Economy Prof. Eric Sims University of Notre Dame Fall 2012 Sims (ND) Equilibrium in a Production Economy Fall 2012 1 / 23 Production Economy Last time: studied equilibrium in

More information

Solution Methods. Jesús Fernández-Villaverde. University of Pennsylvania. March 16, 2016

Solution Methods. Jesús Fernández-Villaverde. University of Pennsylvania. March 16, 2016 Solution Methods Jesús Fernández-Villaverde University of Pennsylvania March 16, 2016 Jesús Fernández-Villaverde (PENN) Solution Methods March 16, 2016 1 / 36 Functional equations A large class of problems

More information

Problem Set #2: Overlapping Generations Models Suggested Solutions - Q2 revised

Problem Set #2: Overlapping Generations Models Suggested Solutions - Q2 revised University of Warwick EC9A Advanced Macroeconomic Analysis Problem Set #: Overlapping Generations Models Suggested Solutions - Q revised Jorge F. Chavez December 6, 0 Question Consider the following production

More information

The Ohio State University Department of Economics. Homework Set Questions and Answers

The Ohio State University Department of Economics. Homework Set Questions and Answers The Ohio State University Department of Economics Econ. 805 Winter 00 Prof. James Peck Homework Set Questions and Answers. Consider the following pure exchange economy with two consumers and two goods.

More information

The Solow Model. Prof. Lutz Hendricks. January 26, Econ520

The Solow Model. Prof. Lutz Hendricks. January 26, Econ520 The Solow Model Prof. Lutz Hendricks Econ520 January 26, 2017 1 / 28 Issues The production model measures the proximate causes of income gaps. Now we start to look at deep causes. The Solow model answers

More information

Lecture 5: Some Informal Notes on Dynamic Programming

Lecture 5: Some Informal Notes on Dynamic Programming Lecture 5: Some Informal Notes on Dynamic Programming The purpose of these class notes is to give an informal introduction to dynamic programming by working out some cases by h. We want to solve subject

More information

4- Current Method of Explaining Business Cycles: DSGE Models. Basic Economic Models

4- Current Method of Explaining Business Cycles: DSGE Models. Basic Economic Models 4- Current Method of Explaining Business Cycles: DSGE Models Basic Economic Models In Economics, we use theoretical models to explain the economic processes in the real world. These models de ne a relation

More information

Handout: Competitive Equilibrium

Handout: Competitive Equilibrium 1 Competitive equilibrium Handout: Competitive Equilibrium Definition 1. A competitive equilibrium is a set of endogenous variables (Ĉ, N s, N d, T, π, ŵ), such that given the exogenous variables (G, z,

More information

Projection. Wouter J. Den Haan London School of Economics. c by Wouter J. Den Haan

Projection. Wouter J. Den Haan London School of Economics. c by Wouter J. Den Haan Projection Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Model [ ] ct ν = E t βct+1 ν αz t+1kt+1 α 1 c t + k t+1 = z t k α t ln(z t+1 ) = ρ ln (z t ) + ε t+1 ε t+1 N(0, σ 2 ) k

More information

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice Olivier Blanchard April 2002 14.452. Spring 2002. Topic 2. 14.452. Spring, 2002 2 Want to start with a model with two ingredients: ²

More information

In the Name of God. Sharif University of Technology. Microeconomics 1. Graduate School of Management and Economics. Dr. S.

In the Name of God. Sharif University of Technology. Microeconomics 1. Graduate School of Management and Economics. Dr. S. In the Name of God Sharif University of Technology Graduate School of Management and Economics Microeconomics 1 44715 (1396-97 1 st term) - Group 1 Dr. S. Farshad Fatemi Chapter 10: Competitive Markets

More information

High-dimensional Problems in Finance and Economics. Thomas M. Mertens

High-dimensional Problems in Finance and Economics. Thomas M. Mertens High-dimensional Problems in Finance and Economics Thomas M. Mertens NYU Stern Risk Economics Lab April 17, 2012 1 / 78 Motivation Many problems in finance and economics are high dimensional. Dynamic Optimization:

More information