Chaos induced by coupled-expanding maps

Size: px
Start display at page:

Download "Chaos induced by coupled-expanding maps"

Transcription

1 First Prev Next Last Seminar on CCCN, Jan. 26, 2006 Chaos induced by coupled-expanding maps Page 1 of 35 Yuming Shi Department of Mathematics Shandong University, China ymshi@sdu.edu.cn Collaborators: G. Chen, P. Yu, and H. Ju

2 First Prev Next Last Outline 1. Introduction Page 2 of Concept of coupled-expanding map 3. Relationships with subshifts of finite type 4. Chaos induced by coupled-expanding maps 5. Some applications 6. Examples with simulations

3 First Prev Next Last 1. Introduction A general discrete system x n+1 = f(x n ), n 0, Page 3 of 35 where f : D X X is a map and (X, d) is a metric space. Orbit: x 0, x 1 = f(x 0 ), x 2 = f(x 1 ),... What is chaos? No general definition of chaos Li and Yorke [1975], Devaney [1987], Wiggins [1990]

4 First Prev Next Last 1. Li-Yorke chaos The system has an uncountable scrambled set. Page 4 of 35 Scrambled set: Let S D, containing at least two distinct points. Then, S is called a scrambled set if x 0, y 0 S, x 0 y 0, (i) lim inf n d(x n, y n ) = 0; (ii) lim sup n d(x n, y n ) > 0.

5 First Prev Next Last 2. Devaney chaos [1987]: f : V D V satisfies (i) dense periodic points in V ; (ii) topologically transitive in V ; (iii) sensitive dependence on initial conditions in V. Page 5 of Wiggins chaos [1990]: (ii) + (iii)

6 First Prev Next Last Relationships: they are not equivalent in general. 1. Devaney chaos = Wiggins chaos. Page 6 of Let V be a compact set of X, containing infinitely many points, and let f : V V be continuous and surjective. (i) Devaney chaos = Li-Yorke chaos. (ii) Wiggins chaos + one periodic point in V = Li-Yorke chaos. 3. The converses are not true in general.

7 First Prev Next Last How to determine whether a given system is chaotic? 1. One-dimensional systems: period k 2 n, positive entropy, turbulence 2. Higher-dimensional systems: snap-back repeller Page 7 of Infinite-dimensional systems?

8 First Prev Next Last 2. Concept of coupled-expanding map Block LS and Coppel WA [1992] Lecture Notes in Mathematics, Vol Page 8 of 35 A C 0 map f : I I is said to be turbulent if closed and bounded subintervals J and K, with at most one common point, s.t. f(j) J K, f(k) J K. Further, it is said to be strictly turbulent if J K = φ. * J and K are compact and connected.

9 First Prev Next Last A turbulent map f is chaotic in the sense of Li-Yorke. Example 1. The logistic map: f(x) = µx(1 x), µ 4. Example 2. The tent map Page 9 of 35

10 First Prev Next Last Extended to maps in metric spaces, Turbulent map = Coupled-expanding map DEFINITION f : D X X. Assume that m ( 2) subsets V i D, 1 i m, s.t. Page 10 of 35 V i V j = D V i D V j, 1 i j m m f(v i ) V j, 1 i m. j=1 Then f is said to be coupled-expanding in V i, 1 i m. Strictly coupled-expanding: d(v i, V j ) > 0 for all 1 i j m. coupled-expanding CE strictly coupled-expanding SCE

11 First Prev Next Last DEFINITION [Shi, Ju and Chen, 2006] Let f : D X X and A = ((A) ij ) be an m m transitive matrix (m 2). Assume that m subsets V i D s.t. V i V j = D V i D V j, 1 i j m, Page 11 of 35 f(v i ) j (A) ij =1 V j, 1 i m Then f is said to be CE for matrix A in V i, 1 i m. SCE for matrix A: d(v i, V j ) > 0 for all 1 i j m. * A transitive matrix A = ((A) ij ) m m (m 2) (A) ij = 0 or 1 for all i, j; m j=1 (A) ij 1 for all i; m i=1 (A) ij 1 for all j.

12 First Prev Next Last 3. SCE maps and subshifts of finite type 3.1. One-sided symbolic dynamical systems Page 12 of 35 S := {1, 2,..., m}, m 2, + m := {α = (a 0, a 1, a 2,...) : a i S, i 0} ρ(α, β) := i=0 d(a i, b i ) 2 i, d(a i, b i ) := 0 if a i = b i, d(a i, b i ) := 1 if a i b i, where α = (a 0, a 1, a 2,...) and β = (b 0, b 1, b 2,...). ( + m, ρ) is a complete metric space and a Cantor set (compact, perfect, and totally disconnected).

13 First Prev Next Last The shift map σ : + m + m, σ(a 0, a 1, a 2,...) = (a 1, a 2, a 3,...). ( + m, σ) is called the one-sided symbolic dynamical system on m symbols. Page 13 of 35 It is chaotic in the sense of both Devaney and Li-Yorke.

14 First Prev Next Last 3.2 Subshift of finite type Page 14 of 35 Let A be an m m transitive matrix. + m (A) := {α = (a 0, a 1,...) + is a compact invariant set under σ. The subshift of finite type m : (A) a i a i+1 = 1, i 0} σ A := σ + m (A) : + m (A) + m (A). Q: Under what conditions the subshifts are chaotic in the sense of Li-Yorke or Devaney?

15 First Prev Next Last THEOREM [Shi, Ju and Chen, 2006] Assume that A is irreducible. Then the following statements are equivalent: (i) σ A is chaotic in the sense of Devaney on the infinite set + m (A); (ii) σ A is chaotic in the sense of Li-Yorke; Page 15 of 35 (iii) + m (A) is infinite; (iv) + m (A) is a Cantor set; (v) m j=1 (A) i 0 j 2 for some i 0 ; (vi) m i=1 (A) ij 0 2 for some j 0. * Irreducible transitive matrix: (i, j), 1 i, j m, k 1 s.t. (A k ) ij > 0.

16 First Prev Next Last 3.3. Relationships THEOREM [Shi, Ju and Chen, 2006] f : D X X is C 0. Page 16 of 35 f is topologically conjugate to σ A if and only if m disjoint compact subsets V i D, 1 i m, s.t. (i) f is SCE for A in V i, 1 i m; (ii) α = (a 0, a 1,...) + m (A), f n (V an ) is a singleton. n=0

17 First Prev Next Last THEOREM [Shi, Ju and Chen, 2006] f : D X X. Assume that m( 2) nonempty bounded and closed subsets V i D with d(v i, V j ) > 0 s.t. f is C 0 in m i=1 V i and satisfies Page 17 of 35 (i) f is SCE for some A in V i, 1 i m; (ii) α = (a 0, a 1,...) + m (A), n d( f i (V ai )) 0 as n. i=0 Then f in some invariant set V m i=1 V i is topologically conjugate to σ A.

18 First Prev Next Last 4. Chaos induced by coupled-expanding maps Page 18 of SCE maps in compact sets 4.2. SCE maps in bounded and closed sets

19 First Prev Next Last 4.1. SCE maps in compact sets THEOREM [Shi and Chen, 2004] Let V j, 1 j m, be disjoint compact sets of X, and f : m j=1 V j X be C 0. If Page 19 of 35 (i) f is SCE in V j, 1 j m; (ii) λ > 1 s.t. d(f(x), f(y)) λ d(x, y), x, y V j, 1 j m; then a Cantor set Λ m j=1 V j s.t. f : Λ Λ is topologically conjugate to σ : + m + m. = Chaotic on Λ in the sense of Devaney as well as Li-Yorke.

20 First Prev Next Last THEOREM [Shi and Yu, 2005] If f satisfies (i) and Page 20 of 35 (ii ) a j 0, and λ > 1 s.t. d(f(x), f(y)) λ d(x, y) x, y V j0 ; and f is injective in the other sets V j, j j 0 ; then f is chaotic in the sense of both Wiggins and Li-Yorke on a perfect and compact invariant set.

21 First Prev Next Last THEOREM [Shi, Ju and Chen, 2006] Assume that an m m irreducible transitive matrix A with m j=1 (A) i 0 j 2 for some i 0 ; m disjoint compact subsets V i of D, 1 i m, and f is C 0 in m i=1 V i. If f satisfies that Page 21 of 35 (i ) f is SCE for A in V i, 1 i m; (ii) λ > 1 s.t. d(f(x), f(y)) λ d(x, y) x, y V i, 1 i m. Then, f in a Cantor set V is topologically conjugate to σ A. = f is chaotic on V in the sense of Devaney as well as Li-Yorke.

22 First Prev Next Last 4.2. SCE maps in bounded and closed sets In the following, (X, d) is a complete metric space. THEOREM [Shi and Chen, 2004] Let V j X, 1 j m, be bounded and closed subsets of X with d(v i, V j ) > 0, and f : m i=1 V i X be C 0. If Page 22 of 35 (i) f is SCE in V j, 1 j m; (ii) µ λ > 1 s.t. λ d(x, y) d(f(x), f(y)) µ d(x, y) x, y V j, 1 j m; then a Cantor set Λ m i=1 V i s.t. f : Λ Λ is topologically conjugate to σ : + m + m. = f is chaotic on Λ in the sense of Devaney as well as Li-Yorke. * Similarly, these two conditions can be weakened as we have done before.

23 First Prev Next Last 5. Some applications 1. Anti-control of chaos (or chaotification) The original system x n+1 = f(x n ), n 0. Page 23 of 35 Objective: Design a control input sequence {u n } s.t. x n+1 = f(x n ) + u n, n 0 is chaotic. u n = µ g(x n ) or u n = g(µ x n ). * Shi Y and Chen G [2005] Int J Bifur Chaos, 15, (R n ) * Lu J [2005] Chinese Physics 14, ; (R n ) * Shi Y, Yu P and Chen G [2006] Int J Bifur Chaos, 16, (Banach spaces)

24 First Prev Next Last 2. Snap-back repeller theory Marotto FR [1978] J. Math. Anal. Appl. 63, f : R n R n is C 1, f(z) = z. Page 24 of 35 A snap-back repeller implies Li-Yorke chaos.

25 First Prev Next Last Recent developments: (1) The concept is extended to maps in metric spaces in 2004: Regular and singular; nondegenerate and degenerate. * In the Marotto paper, a snap-back repeller is regular and nondegenerate. Page 25 of 35 (2) C 1 maps in R n : Improvement of the Marotto theorem: A snap-back repeller in the Marotto paper implies Devaney chaos as well as Li-Yorke chaos. The assumptions of the Marotto theorem were weakened: A regular snap-back repeller implies Li-Yorke chaos. (3) Snap-back repellers in Banach spaces and in general complete metric spaces.

26 First Prev Next Last 3. Partial difference equations [Y Shi, 2006] Page 26 of Time-varying discrete systems [Y Shi and G Chen, 2005] 5. PDEs, FDEs?

27 First Prev Next Last 6. Examples with simulations Example 1. Page 27 of 35 The origin is a regular and nondegenerate snap-back repeller. = f is chaotic in the sense of both Devaney and Li-Yorke.

28 First Prev Next Last Page 28 of 35 Figure 1a: Simulation result in the (x, y) space in the rectangular box [ 8, 8] [ 8, 8].

29 First Prev Next Last Page 29 of 35 Figure 1b: Simulation result in the (x, y) space in the rectangular box [ 4, 4] [ 4, 4].

30 First Prev Next Last Page 30 of 35 Figure 1c: Simulation result in the (x, y) space in the rectangular box [ 1, 1] [ 1, 1].

31 First Prev Next Last Example 2. Page 31 of 35 The origin is a regular and degenerate snap-back repeller. = f is chaotic in the sense of both Wiggins and Li-Yorke.

32 First Prev Next Last 8 4 y(n) 0 JJ II J I -4 Page 32 of x(n) Figure 2a. Simulation result in the rectangular box [ 8, 8] [ 8, 8]

33 First Prev Next Last 4 2 y(n) 0 JJ II J I -2 Page 33 of x(n) Figure 2b. Zoom area of the rectangular box [ 4, 4] [ 4, 4]

34 First Prev Next Last Thanks for your attention! Page 34 of 35

35 First Prev Next Last DEFINITION [Shi and Chen, 2004] f : X X, f(z) = z. Expanding fixed point (EFP): λ > 1 s.t. d(f(x), f(y)) λ d(x, y), x, y B r (z). Page 35 of 35 Snap-back repeller (SBR): z is an EFP in B r (z). x 0 B r (z), x 0 z, s.t. f m (x 0 ) = z for some m 2. Nondegenerate SBR: µ > 0 s.t. d(f m (x), f m (y)) µ d(x, y), x, y B r0 (x 0 ) B r (z). Regular SBR: f(b r (z)) is open, and δ 0 > 0 s.t. z is an interior point of f m (B δ (x 0 )) for any δ δ 0. * In the Marotto paper, a SBR is regular and nondegenerate.

Applying Snapback Repellers in Ecology

Applying Snapback Repellers in Ecology Applying Snapback Repellers in Ecology Shu-Ming Chang 張書銘 Department of Applied Mathematics National Chiao Tung University December 11, 2010 Outline Model Generalized Resource Budget Model A Satake and

More information

Turbulence and Devaney s Chaos in Interval

Turbulence and Devaney s Chaos in Interval Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 2 (2017), pp. 713-717 Research India Publications http://www.ripublication.com Turbulence and Devaney s Chaos in Interval

More information

Topological conjugacy between induced non-autonomous set-valued systems and subshifts of finite type

Topological conjugacy between induced non-autonomous set-valued systems and subshifts of finite type Topological conjugacy between induced non-autonomous set-valued systems and subshifts of finite type Hua Shao, Guanrong Chen, Yuming Shi Department of Electronic Engineering, City University of Hong Kong,

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

ON DEVANEY S DEFINITION OF CHAOS AND DENSE PERIODIC POINTS

ON DEVANEY S DEFINITION OF CHAOS AND DENSE PERIODIC POINTS ON DEVANEY S DEFINITION OF CHAOS AND DENSE PERIODIC POINTS SYAHIDA CHE DZUL-KIFLI AND CHRIS GOOD Abstract. We look again at density of periodic points and Devaney Chaos. We prove that if f is Devaney Chaotic

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

DYNAMICAL PROPERTIES OF MONOTONE DENDRITE MAPS

DYNAMICAL PROPERTIES OF MONOTONE DENDRITE MAPS DYNAMICAL PROPERTIES OF MONOTONE DENDRITE MAPS Issam Naghmouchi To cite this version: Issam Naghmouchi. DYNAMICAL PROPERTIES OF MONOTONE DENDRITE MAPS. 2010. HAL Id: hal-00593321 https://hal.archives-ouvertes.fr/hal-00593321v2

More information

Math 354 Transition graphs and subshifts November 26, 2014

Math 354 Transition graphs and subshifts November 26, 2014 Math 54 Transition graphs and subshifts November 6, 04. Transition graphs Let I be a closed interval in the real line. Suppose F : I I is function. Let I 0, I,..., I N be N closed subintervals in I with

More information

ω-limit Sets of Discrete Dynamical Systems

ω-limit Sets of Discrete Dynamical Systems ω-limit Sets of Discrete Dynamical Systems by Andrew David Barwell A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy School of Mathematics College of Engineering

More information

Li- Yorke Chaos in Product Dynamical Systems

Li- Yorke Chaos in Product Dynamical Systems Advances in Dynamical Systems and Applications. ISSN 0973-5321, Volume 12, Number 1, (2017) pp. 81-88 Research India Publications http://www.ripublication.com Li- Yorke Chaos in Product Dynamical Systems

More information

CHAOS ON THE INTERVAL a survey of relationship between the various kinds of chaos for continuous interval maps. Sylvie Ruette

CHAOS ON THE INTERVAL a survey of relationship between the various kinds of chaos for continuous interval maps. Sylvie Ruette CHAOS ON THE INTERVAL a survey of relationship between the various kinds of chaos for continuous interval maps Sylvie Ruette...... f f... f Author Sylvie Ruette Laboratoire de Mathématiques d Orsay Université

More information

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Prof. Wickerhauser Due Friday, February 5th, 2016 Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*. Exercises marked

More information

Problemas abiertos en dinámica de operadores

Problemas abiertos en dinámica de operadores Problemas abiertos en dinámica de operadores XIII Encuentro de la red de Análisis Funcional y Aplicaciones Cáceres, 6-11 de Marzo de 2017 Wikipedia Old version: In mathematics and physics, chaos theory

More information

Exercises from other sources REAL NUMBERS 2,...,

Exercises from other sources REAL NUMBERS 2,..., Exercises from other sources REAL NUMBERS 1. Find the supremum and infimum of the following sets: a) {1, b) c) 12, 13, 14, }, { 1 3, 4 9, 13 27, 40 } 81,, { 2, 2 + 2, 2 + 2 + } 2,..., d) {n N : n 2 < 10},

More information

PERIODIC POINTS OF THE FAMILY OF TENT MAPS

PERIODIC POINTS OF THE FAMILY OF TENT MAPS PERIODIC POINTS OF THE FAMILY OF TENT MAPS ROBERTO HASFURA-B. AND PHILLIP LYNCH 1. INTRODUCTION. Of interest in this article is the dynamical behavior of the one-parameter family of maps T (x) = (1/2 x

More information

Uniform Convergence, Mixing and Chaos

Uniform Convergence, Mixing and Chaos Studies in Mathematical Sciences Vol. 2, No. 1, 2011, pp. 73-79 www.cscanada.org ISSN 1923-8444 [Print] ISSN 1923-8452 [Online] www.cscanada.net Uniform Convergence, Mixing and Chaos Lidong WANG 1,2 Lingling

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

INVESTIGATION OF CHAOTICITY OF THE GENERALIZED SHIFT MAP UNDER A NEW DEFINITION OF CHAOS AND COMPARE WITH SHIFT MAP

INVESTIGATION OF CHAOTICITY OF THE GENERALIZED SHIFT MAP UNDER A NEW DEFINITION OF CHAOS AND COMPARE WITH SHIFT MAP ISSN 2411-247X INVESTIGATION OF CHAOTICITY OF THE GENERALIZED SHIFT MAP UNDER A NEW DEFINITION OF CHAOS AND COMPARE WITH SHIFT MAP Hena Rani Biswas * Department of Mathematics, University of Barisal, Barisal

More information

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

Selçuk Demir WS 2017 Functional Analysis Homework Sheet Selçuk Demir WS 2017 Functional Analysis Homework Sheet 1. Let M be a metric space. If A M is non-empty, we say that A is bounded iff diam(a) = sup{d(x, y) : x.y A} exists. Show that A is bounded iff there

More information

The Structure of Hyperbolic Sets

The Structure of Hyperbolic Sets The Structure of Hyperbolic Sets p. 1/35 The Structure of Hyperbolic Sets Todd Fisher tfisher@math.umd.edu Department of Mathematics University of Maryland, College Park The Structure of Hyperbolic Sets

More information

A quantitative approach to syndetic transitivity and topological ergodicity

A quantitative approach to syndetic transitivity and topological ergodicity Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (2017), 4680 4686 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa A quantitative approach

More information

Solve EACH of the exercises 1-3

Solve EACH of the exercises 1-3 Topology Ph.D. Entrance Exam, August 2011 Write a solution of each exercise on a separate page. Solve EACH of the exercises 1-3 Ex. 1. Let X and Y be Hausdorff topological spaces and let f: X Y be continuous.

More information

A Note on the Generalized Shift Map

A Note on the Generalized Shift Map Gen. Math. Notes, Vol. 1, No. 2, December 2010, pp. 159-165 ISSN 2219-7184; Copyright c ICSRS Publication, 2010 www.i-csrs.org Available free online at http://www.geman.in A Note on the Generalized Shift

More information

Differential equations: Dynamics and Chaos. Pierre Berger

Differential equations: Dynamics and Chaos. Pierre Berger Differential equations: Dynamics and Chaos Pierre Berger 2 Contents 1 Introduction 5 1.1 What is a dynamical system?.............................. 5 1.2 Plan............................................

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

The Existence of Chaos in the Lorenz System

The Existence of Chaos in the Lorenz System The Existence of Chaos in the Lorenz System Sheldon E. Newhouse Mathematics Department Michigan State University E. Lansing, MI 48864 joint with M. Berz, K. Makino, A. Wittig Physics, MSU Y. Zou, Math,

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and Dynamical Systems and Ergodic Theory PhD Exam Spring 2012 Introduction: This is the first year for the Dynamical Systems and Ergodic Theory PhD exam. As such the material on the exam will conform fairly

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

CHAOTIC UNIMODAL AND BIMODAL MAPS

CHAOTIC UNIMODAL AND BIMODAL MAPS CHAOTIC UNIMODAL AND BIMODAL MAPS FRED SHULTZ Abstract. We describe up to conjugacy all unimodal and bimodal maps that are chaotic, by giving necessary and sufficient conditions for unimodal and bimodal

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Dynamical Systems 2, MA 761

Dynamical Systems 2, MA 761 Dynamical Systems 2, MA 761 Topological Dynamics This material is based upon work supported by the National Science Foundation under Grant No. 9970363 1 Periodic Points 1 The main objects studied in the

More information

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015 Problem 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if f(a) f(a). (Hint: use the closed set characterization of continuity). I make use of

More information

General Notation. Exercises and Problems

General Notation. Exercises and Problems Exercises and Problems The text contains both Exercises and Problems. The exercises are incorporated into the development of the theory in each section. Additional Problems appear at the end of most sections.

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

Mathematics for Economists

Mathematics for Economists Mathematics for Economists Victor Filipe Sao Paulo School of Economics FGV Metric Spaces: Basic Definitions Victor Filipe (EESP/FGV) Mathematics for Economists Jan.-Feb. 2017 1 / 34 Definitions and Examples

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm SOME QUESTIONS FOR MATH 766, SPRING 2016 SHUANGLIN SHAO Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm f C = sup f(x). 0 x 1 Prove that C([0, 1]) is a

More information

On Devaney Chaos and Dense Periodic Points: Period 3 and Higher Implies Chaos

On Devaney Chaos and Dense Periodic Points: Period 3 and Higher Implies Chaos On Devaney Chaos and Dense Periodic Points: Period 3 and Higher Implies Chaos Syahida Che Dzul-Kifli and Chris Good Abstract. We look at density of periodic points and Devaney Chaos. We prove that if f

More information

Lecture 4. Entropy and Markov Chains

Lecture 4. Entropy and Markov Chains preliminary version : Not for diffusion Lecture 4. Entropy and Markov Chains The most important numerical invariant related to the orbit growth in topological dynamical systems is topological entropy.

More information

Synchronization, Chaos, and the Dynamics of Coupled Oscillators. Supplemental 1. Winter Zachary Adams Undergraduate in Mathematics and Biology

Synchronization, Chaos, and the Dynamics of Coupled Oscillators. Supplemental 1. Winter Zachary Adams Undergraduate in Mathematics and Biology Synchronization, Chaos, and the Dynamics of Coupled Oscillators Supplemental 1 Winter 2017 Zachary Adams Undergraduate in Mathematics and Biology Outline: The shift map is discussed, and a rigorous proof

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS

THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS J. Appl. Math. & Computing Vol. 4(2004), No. - 2, pp. 277-288 THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS LIDONG WANG, GONGFU LIAO, ZHENYAN CHU AND XIAODONG DUAN

More information

MARKOV PARTITIONS FOR HYPERBOLIC SETS

MARKOV PARTITIONS FOR HYPERBOLIC SETS MARKOV PARTITIONS FOR HYPERBOLIC SETS TODD FISHER, HIMAL RATHNAKUMARA Abstract. We show that if f is a diffeomorphism of a manifold to itself, Λ is a mixing (or transitive) hyperbolic set, and V is a neighborhood

More information

THE CHAIN PROPERTIES AND LI-YORKE SENSITIVITY OF ZADEH S EXTENSION ON THE SPACE OF UPPER SEMI-CONTINUOUS FUZZY SETS

THE CHAIN PROPERTIES AND LI-YORKE SENSITIVITY OF ZADEH S EXTENSION ON THE SPACE OF UPPER SEMI-CONTINUOUS FUZZY SETS Iranian Journal of Fuzzy Systems Vol. *, No. *, (****) pp. **-** 47 THE CHAIN PROPERTIES AND LI-YORKE SENSITIVITY OF ZADEH S EXTENSION ON THE SPACE OF UPPER SEMI-CONTINUOUS FUZZY SETS XINXING WU, LIDONG

More information

SOME ASPECTS OF TOPOLOGICAL TRANSITIVITY A SURVEY

SOME ASPECTS OF TOPOLOGICAL TRANSITIVITY A SURVEY 3 SOME ASPECTS OF TOPOLOGICAL TRANSITIVITY A SURVEY SERGIĬ KOLYADA Institute of Mathematics, Ukrainian Academy of Sciences Tereschenkivs ka 3, 252601 Kiev, Ukraine L UBOMÍR SNOHA Department of Mathematics,

More information

MATH 614 Dynamical Systems and Chaos Lecture 7: Symbolic dynamics (continued).

MATH 614 Dynamical Systems and Chaos Lecture 7: Symbolic dynamics (continued). MATH 614 Dynamical Systems and Chaos Lecture 7: Symbolic dynamics (continued). Symbolic dynamics Given a finite set A (an alphabet), we denote by Σ A the set of all infinite words over A, i.e., infinite

More information

Introduction to Functional Analysis

Introduction to Functional Analysis Introduction to Functional Analysis Carnegie Mellon University, 21-640, Spring 2014 Acknowledgements These notes are based on the lecture course given by Irene Fonseca but may differ from the exact lecture

More information

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Introduction to Proofs in Analysis updated December 5, 2016 By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Purpose. These notes intend to introduce four main notions from

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

SHADOWING PROPERTY FOR INDUCED SET-VALUED DYNAMICAL SYSTEMS OF SOME EXPANSIVE MAPS

SHADOWING PROPERTY FOR INDUCED SET-VALUED DYNAMICAL SYSTEMS OF SOME EXPANSIVE MAPS Dynamic Systems and Applications 19 (2010) 405-414 SHADOWING PROPERTY FOR INDUCED SET-VALUED DYNAMICAL SYSTEMS OF SOME EXPANSIVE MAPS YUHU WU 1,2 AND XIAOPING XUE 1 1 Department of Mathematics, Harbin

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 25 (2012) 545 549 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml On the equivalence of four chaotic

More information

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE Fixed Point Theory, Volume 6, No. 1, 2005, 59-69 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.htm WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE YASUNORI KIMURA Department

More information

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then MH 7500 THEOREMS Definition. A topological space is an ordered pair (X, T ), where X is a set and T is a collection of subsets of X such that (i) T and X T ; (ii) U V T whenever U, V T ; (iii) U T whenever

More information

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L Lecture 24: Defn: Topological conjugacy: Given Z + d (resp, Zd ), actions T, S a topological conjugacy from T to S is a homeomorphism φ : M N s.t. φ T = S φ i.e., φ T n = S n φ for all n Z + d (resp, Zd

More information

SENSITIVITY AND REGIONALLY PROXIMAL RELATION IN MINIMAL SYSTEMS

SENSITIVITY AND REGIONALLY PROXIMAL RELATION IN MINIMAL SYSTEMS SENSITIVITY AND REGIONALLY PROXIMAL RELATION IN MINIMAL SYSTEMS SONG SHAO, XIANGDONG YE AND RUIFENG ZHANG Abstract. A topological dynamical system is n-sensitive, if there is a positive constant such that

More information

LINEAR CHAOS? Nathan S. Feldman

LINEAR CHAOS? Nathan S. Feldman LINEAR CHAOS? Nathan S. Feldman In this article we hope to convience the reader that the dynamics of linear operators can be fantastically complex and that linear dynamics exhibits the same beauty and

More information

ADDING MACHINES, ENDPOINTS, AND INVERSE LIMIT SPACES. 1. Introduction

ADDING MACHINES, ENDPOINTS, AND INVERSE LIMIT SPACES. 1. Introduction ADDING MACHINES, ENDPOINTS, AND INVERSE LIMIT SPACES LORI ALVIN AND KAREN BRUCKS Abstract. Let f be a unimodal map in the logistic or symmetric tent family whose restriction to the omega limit set of the

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL. 1. Introduction

NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXVI, 2 (2017), pp. 287 297 287 NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL PINGPING ZHANG Abstract. Using the piecewise monotone property, we give a full description

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

Transitive sensitive subsystems for interval maps

Transitive sensitive subsystems for interval maps STUDIA MATHEMATICA 69 () (2005) Transitive sensitive subsystems for interval maps by Sylvie Ruette (Paris) Abstract. We prove that for continuous interval maps the existence of a non-empty closed invariant

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Chaotic Subsystem Come From Glider E 3 of CA Rule 110

Chaotic Subsystem Come From Glider E 3 of CA Rule 110 Chaotic Subsystem Come From Glider E 3 of CA Rule 110 Lingxiao Si, Fangyue Chen, Fang Wang, and Pingping Liu School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China Abstract The

More information

SHADOWING, ENTROPY AND MINIMAL SUBSYSTEMS

SHADOWING, ENTROPY AND MINIMAL SUBSYSTEMS SHADOWING, ENTROPY AND MINIMAL SUBSYSTEMS T.K. SUBRAHMONIAN MOOTHATHU AND PIOTR OPROCHA Abstract. We consider non-wandering dynamical systems having the shadowing property, mainly in the presence of sensitivity

More information

Devaney s De nition of Chaos and other Forms

Devaney s De nition of Chaos and other Forms Faculty of Graduate Studies Program of Mathematics Devaney s De nition of Chaos and other Forms P repared By Bashir Abu Khalil Supervised By Prof. Mohammad Saleh M.Sc. Thesis Birzeit University Palestine

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Week 5 Lectures 13-15

Week 5 Lectures 13-15 Week 5 Lectures 13-15 Lecture 13 Definition 29 Let Y be a subset X. A subset A Y is open in Y if there exists an open set U in X such that A = U Y. It is not difficult to show that the collection of all

More information

On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems

On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems Jose Cánovas, Jiří Kupka* *) Institute for Research and Applications of Fuzzy Modeling University of Ostrava Ostrava, Czech

More information

A Glimpse into Topology

A Glimpse into Topology A Glimpse into Topology by Vishal Malik A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 430 (203-4) Lakehead University Thunder Bay, Ontario,

More information

ANALYSIS WORKSHEET II: METRIC SPACES

ANALYSIS WORKSHEET II: METRIC SPACES ANALYSIS WORKSHEET II: METRIC SPACES Definition 1. A metric space (X, d) is a space X of objects (called points), together with a distance function or metric d : X X [0, ), which associates to each pair

More information

SOLUTIONS TO SOME PROBLEMS

SOLUTIONS TO SOME PROBLEMS 23 FUNCTIONAL ANALYSIS Spring 23 SOLUTIONS TO SOME PROBLEMS Warning:These solutions may contain errors!! PREPARED BY SULEYMAN ULUSOY PROBLEM 1. Prove that a necessary and sufficient condition that the

More information

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 1. True or False (22 points, 2 each) T or F Every set in R n is either open or closed

More information

MATS113 ADVANCED MEASURE THEORY SPRING 2016

MATS113 ADVANCED MEASURE THEORY SPRING 2016 MATS113 ADVANCED MEASURE THEORY SPRING 2016 Foreword These are the lecture notes for the course Advanced Measure Theory given at the University of Jyväskylä in the Spring of 2016. The lecture notes can

More information

11691 Review Guideline Real Analysis. Real Analysis. - According to Principles of Mathematical Analysis by Walter Rudin (Chapter 1-4)

11691 Review Guideline Real Analysis. Real Analysis. - According to Principles of Mathematical Analysis by Walter Rudin (Chapter 1-4) Real Analysis - According to Principles of Mathematical Analysis by Walter Rudin (Chapter 1-4) 1 The Real and Complex Number Set: a collection of objects. Proper subset: if A B, then call A a proper subset

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Topology, Math 581, Fall 2017 last updated: November 24, 2017 1 Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Class of August 17: Course and syllabus overview. Topology

More information

Some Results and Problems on Quasi Weakly Almost Periodic Points

Some Results and Problems on Quasi Weakly Almost Periodic Points Λ43ΨΛ3fi ffi Φ ο Vol.43, No.3 204ff5μ ADVANCES IN MATHEMATICS(CHINA) May, 204 doi: 0.845/sxjz.202002a Some Results and Problems on Quasi Weakly Almost Periodic Points YIN Jiandong, YANG Zhongxuan (Department

More information

Math 172 HW 1 Solutions

Math 172 HW 1 Solutions Math 172 HW 1 Solutions Joey Zou April 15, 2017 Problem 1: Prove that the Cantor set C constructed in the text is totally disconnected and perfect. In other words, given two distinct points x, y C, there

More information

The uniform metric on product spaces

The uniform metric on product spaces The uniform metric on product spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Metric topology If (X, d) is a metric space, a X, and r > 0, then

More information

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS Problem 1. Give an example of a non-metrizable topological space. Explain. Problem 2. Introduce a topology on N by declaring that open sets are, N,

More information

TWO KINDS OF CHAOS AND RELATIONS BETWEEN THEM. 1. Introduction

TWO KINDS OF CHAOS AND RELATIONS BETWEEN THEM. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXII, 1(2003), pp. 119 127 119 TWO KINDS OF CHAOS AND RELATIONS BETWEEN THEM M. LAMPART Abstract. In this paper we consider relations between chaos in the sense of Li

More information

Bootcamp. Christoph Thiele. Summer As in the case of separability we have the following two observations: Lemma 1 Finite sets are compact.

Bootcamp. Christoph Thiele. Summer As in the case of separability we have the following two observations: Lemma 1 Finite sets are compact. Bootcamp Christoph Thiele Summer 212.1 Compactness Definition 1 A metric space is called compact, if every cover of the space has a finite subcover. As in the case of separability we have the following

More information

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS Journal of Pure and Applied Mathematics: Advances and Applications Volume 0 Number 0 Pages 69-0 ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS HENA RANI BISWAS Department of Mathematics University of Barisal

More information

TOPOLOGICAL ENTROPY AND TOPOLOGICAL STRUCTURES OF CONTINUA

TOPOLOGICAL ENTROPY AND TOPOLOGICAL STRUCTURES OF CONTINUA TOPOLOGICAL ENTROPY AND TOPOLOGICAL STRUCTURES OF CONTINUA HISAO KATO, INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA 1. Introduction During the last thirty years or so, many interesting connections between

More information

U e = E (U\E) e E e + U\E e. (1.6)

U e = E (U\E) e E e + U\E e. (1.6) 12 1 Lebesgue Measure 1.2 Lebesgue Measure In Section 1.1 we defined the exterior Lebesgue measure of every subset of R d. Unfortunately, a major disadvantage of exterior measure is that it does not satisfy

More information

Problem Set 5: Solutions Math 201A: Fall 2016

Problem Set 5: Solutions Math 201A: Fall 2016 Problem Set 5: s Math 21A: Fall 216 Problem 1. Define f : [1, ) [1, ) by f(x) = x + 1/x. Show that f(x) f(y) < x y for all x, y [1, ) with x y, but f has no fixed point. Why doesn t this example contradict

More information

Fragmentability and σ-fragmentability

Fragmentability and σ-fragmentability F U N D A M E N T A MATHEMATICAE 143 (1993) Fragmentability and σ-fragmentability by J. E. J a y n e (London), I. N a m i o k a (Seattle) and C. A. R o g e r s (London) Abstract. Recent work has studied

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

RECURRENT ITERATED FUNCTION SYSTEMS

RECURRENT ITERATED FUNCTION SYSTEMS RECURRENT ITERATED FUNCTION SYSTEMS ALEXANDRU MIHAIL The theory of fractal sets is an old one, but it also is a modern domain of research. One of the main source of the development of the theory of fractal

More information

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS A. M. Blokh Department of Mathematics, Wesleyan University Middletown, CT 06459-0128, USA August 1991, revised May 1992 Abstract. Let X be a compact tree,

More information

Real Analysis Chapter 4 Solutions Jonathan Conder

Real Analysis Chapter 4 Solutions Jonathan Conder 2. Let x, y X and suppose that x y. Then {x} c is open in the cofinite topology and contains y but not x. The cofinite topology on X is therefore T 1. Since X is infinite it contains two distinct points

More information