Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6 Math 317, Tathagata Basak, Some notes on determinant 1 Row operations in terms of matrix multiplication 11 Let I n denote the n n identity matrix Let E ij denote the n n matrix whose (i, j)-th entry is equal to 1 and all other entries are equal to 0 Let A be an n n matrix Performing a row operation on A is equivalent to multiplying A on the left by a certain matrix We can verify this directly by matrix multiplication, once we have written down these matrices Below we write down these matrices (1) Let c be a nonzero scalar Let A be the matrix obtained from A by performing the row operation i c i that multiplies the i-th row of A by c Then A = R I i,c A where RI i,c = I n +(c 1)E ii (2) Let c be a scalar Let A be the matrix obtained by performing the row operation j j + c i that changes the j-th row of A by adding to the j-th row, c times the i-th row of A Then Then A = Ri,j,cA II where Ri,c II = I n + ce ij (3) Let A be the matrix obtained from A by performing the row operation i j that interchanges the i-th and j-th row of A Then A = Ri,j III A where Ri,j III = I n E ii E jj + E ij + E ji Notice also that the inverse operation of each type of elementary row operation above is a row operation of the same kind More precisely, we have ( ) R I 1 ( ) i,c = R I, i, R II 1 ( ) 1 i,j,c = R II i,j, c, R III 1 i,j = R III i,j c 2 Determinant 21 Basic properties of the determinant: Let M n (R) denote the set of all n n matrices To each A M n (R), weshallassociatearealnumber,calledthedeterminantofa, anddenoted det(a) The determinant has the following four properties: (1) If two distinct rows of A are identical, then det(a) =0 (2) Let c be a real number and 1 i n Suppose A, B M n (R) that are identical except in the i-th row and the i-th row of A is c times the i-th row of B Then det(a) =c det(b) (3) Let 1 i n Suppose A, B, C M n (R) that are identical except in the i-th row and the i-th row of A is the sum of the i-th row of B and the i-th row of C Then det(a) = det(b)+det(c) (4) One has det(i n )=1 The following lemma describes the effect of elementary row operations on the determinant In fact these properties hold for any function D : M n (R) R that satisfies the four properties stated above For the rest of the section, we assume that D : M n (R) R is a function satisfying the four properties given in 21 Lemma 22 Let A, B M n (R) Then D also has the following properties: (a) If B is obtained from A by multiplying the i-th row of A by a scalar c, thend(b) =cd(a) In particular, if one of the rows of A is identically 0, thend(a) =0 (b) If B is obtained from A by adding c times i-th row to j-th row for some i j, thend(b) = D(A) (c) If B is obtained from A by interchanging the i-th and j-th row of A for some i j, then D(B) = D(A) 1

7 Proof Part (a) is simply a restatement of the property (1) For the rest of the proof it will be convenient to write v 1 v 2 A = where v 1 is the first row of A, v 2 is the second row of A and so on; so v j R n for each j So we can think of the determinant as a function from R n R n (n-copies) to R For part (b), we compute: D(B) =D + D + cd (A) v j + c v j c v j v j In the above computation, we have only shown the i-th and j-th rows of each of the matrices Note that except the j-th row, all other rows are identical at each step The second equality follows from property (3), the third uses property (2) and the fourth uses property 1 For part (c) we compute as follows: + v j v j v j v j 0=D +D +D +D +D (A)+D(B) + v j v i v j v i v i v j v i In the above computation, we have only shown the i-th and the j-th row of each of the matrices Note that all the other rows are identical at each step The first and the third equality follows from property (1) and the second equality follows from property (2) applied twice The above lemma has the following immediate corollary Corollary 23 Let A, B M n (R) SupposeB is obtained from A by a finite sequence of elementary row operations It is understood here that for each row operation of the form i c i, the scalar c is nonzero (a) One has det(a) =D(A) if and only if det(b) =D(B) (b) One has D(B) =0if and only if D(A) =0 Proof (a) From the previous lemma we see that each elementary row operation changes both det(a) and D(A) byexactlythesamefactorpart(a)follows (b) The previous lemma also implies that each elementary row operation changes D(A) bya nonzero factor Part (b) follows from this Lemma 24 Let A M n (R) is upper triangular Then D(A) is the product of the diagonal entries of A Proof Let a ij be the (i, j)-th entry of A First suppose some diagonal entry of A is equal to 0 Choose the largest i such that the i-th diagonal entry is equal to 0 If i = n, thenthen-th row of 2 v n

8 A is identically 0, so D(A) =0 Ifi<n,thennotethata i+1,i+1,,a n,n are all nonzero Let B be the matrix obtained from A after performing the successive row operations i i a i,n a n,n n i i a i,n 1 a n 1,n 1 n 1 i i a i,i+1 a i+1,i+1 i +1 One verifies that the i-th row of B is identically 0 So D(B) =0 Nowpart(b)oftheprevious lemma tells us that D(A) =0aswell ThuswehavearguedthatifsomediagonalentryofA is zero, then D(A) = 0 SonowassumethatallthediagonalentriesofA are nonzero Then we can perform row operations of type II to change A to a matrix B =diag(a 11,a 22,,a nn ) From Lemma 22 (b), we know that row operations of type II does not change the value of D, so D(A) =D(B) =a 11 a 22 a nn Theorem 25 There is a unique function det : M n (R) R satisfying the four properties in 21 plan of proof We shall omit the details proof of existence but here is how onemayproceed Define determinants explicitly as follows: Let A be an n n matrix whose (i, j)-th entry is a ij LetA ij be the (n 1) (n 1) matrix obtained from A by deleting the i-th row and the j-th column Then the determinant can be defined inductively by: n (1) det(a) = ( 1) i+j a ij det(a ij ) for any i =1,,n j=1 Now one needs to show that this function satisfies the four properties given in 21 The main work is needed to show that the right hand side of equation (1) has the same value for each i Then it quickly follows that interchanging two rows of a matrix changes the determinant by a sign Verifying the other properties are then easy proof of uniqueness: Suppose D : M n (R) R is some function satisfying the four properties given in 21 Let A be any n n matrix We need to argue that D(A) =det(a) We know that we can start with A and apply a finite number of elementary row operations to obtain a matrix B that is upper triangular Lemma 24 implies that for an upper triangular matrix D(B) = det(b) since both sides are equal to the product of the diagnonal entries of B Nowlemma23(a)implies that D(A) = det(a) We end stating a couple of more theorems We shall omit the proofs Theorem 26 Let A be an n n matrices Then the following are equivalent: (a) A is invertible (b) rank(a) =n (c) det(a) 0 Theorem 27 Let A and B be n n matrices Then det(ab) =det(a)det(b) 3

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

More information

II. Determinant Functions

II. Determinant Functions Supplemental Materials for EE203001 Students II Determinant Functions Chung-Chin Lu Department of Electrical Engineering National Tsing Hua University May 22, 2003 1 Three Axioms for a Determinant Function

More information

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignment 8 Fall 2016 [10] 1. Find the determinant by reducing to triangular form for the following matrices. 0 1 2 (a) A = 2 1 4. ANS: We perform the Gaussian Elimination on A by the following

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

This MUST hold matrix multiplication satisfies the distributive property.

This MUST hold matrix multiplication satisfies the distributive property. The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients

More information

Chapter 4. Determinants

Chapter 4. Determinants 4.2 The Determinant of a Square Matrix 1 Chapter 4. Determinants 4.2 The Determinant of a Square Matrix Note. In this section we define the determinant of an n n matrix. We will do so recursively by defining

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 2030: EIGENVALUES AND EIGENVECTORS Determinants Although we are introducing determinants in the context of matrices, the theory of determinants predates matrices by at least two hundred years Their

More information

Properties of the Determinant Function

Properties of the Determinant Function Properties of the Determinant Function MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Overview Today s discussion will illuminate some of the properties of the determinant:

More information

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and Elementary Matrices In this special handout of material not contained in the text, we introduce the concept of elementary matrix. Elementary matrices are useful in several ways that will be shown in this

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

MATH2210 Notebook 2 Spring 2018

MATH2210 Notebook 2 Spring 2018 MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants THE ALGEBRA OF DETERMINANTS 1. Determinants We have already defined the determinant of a 2 2 matrix: det = ad bc. We ve also seen that it s handy for determining when a matrix is invertible, and when it

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0 4 Determinants The determinant of a square matrix is a scalar (i.e. an element of the field from which the matrix entries are drawn which can be associated to it, and which contains a surprisingly large

More information

Chapter 2. Square matrices

Chapter 2. Square matrices Chapter 2. Square matrices Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/18 Invertible matrices Definition 2.1 Invertible matrices An n n matrix A is said to be invertible, if there is a

More information

Determinants: Uniqueness and more

Determinants: Uniqueness and more Math 5327 Spring 2018 Determinants: Uniqueness and more Uniqueness The main theorem we are after: Theorem 1 The determinant of and n n matrix A is the unique n-linear, alternating function from F n n to

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2.

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2. SSM: Linear Algebra Section 61 61 Chapter 6 1 2 1 Fails to be invertible; since det = 6 6 = 0 3 6 3 5 3 Invertible; since det = 33 35 = 2 7 11 5 Invertible; since det 2 5 7 0 11 7 = 2 11 5 + 0 + 0 0 0

More information

MATH 1210 Assignment 4 Solutions 16R-T1

MATH 1210 Assignment 4 Solutions 16R-T1 MATH 1210 Assignment 4 Solutions 16R-T1 Attempt all questions and show all your work. Due November 13, 2015. 1. Prove using mathematical induction that for any n 2, and collection of n m m matrices A 1,

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

Matrices and Linear Algebra

Matrices and Linear Algebra Contents Quantitative methods for Economics and Business University of Ferrara Academic year 2017-2018 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Determinants. Recall that the 2 2 matrix a b c d. is invertible if

Determinants. Recall that the 2 2 matrix a b c d. is invertible if Determinants Recall that the 2 2 matrix a b c d is invertible if and only if the quantity ad bc is nonzero. Since this quantity helps to determine the invertibility of the matrix, we call it the determinant.

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 11. Determinants

More information

Determinants by Cofactor Expansion (III)

Determinants by Cofactor Expansion (III) Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...

More information

SPRING OF 2008 D. DETERMINANTS

SPRING OF 2008 D. DETERMINANTS 18024 SPRING OF 2008 D DETERMINANTS In many applications of linear algebra to calculus and geometry, the concept of a determinant plays an important role This chapter studies the basic properties of determinants

More information

Calculating determinants for larger matrices

Calculating determinants for larger matrices Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

Gaussian Elimination and Back Substitution

Gaussian Elimination and Back Substitution Jim Lambers MAT 610 Summer Session 2009-10 Lecture 4 Notes These notes correspond to Sections 31 and 32 in the text Gaussian Elimination and Back Substitution The basic idea behind methods for solving

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

Undergraduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1 Undergraduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 15, 2014 Outline 1 Courses Description and Requirement 2 Course Outline ematical techniques used in economics courses

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

Matrices. In this chapter: matrices, determinants. inverse matrix

Matrices. In this chapter: matrices, determinants. inverse matrix Matrices In this chapter: matrices, determinants inverse matrix 1 1.1 Matrices A matrix is a retangular array of numbers. Rows: horizontal lines. A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Here are some additional properties of the determinant function.

Here are some additional properties of the determinant function. List of properties Here are some additional properties of the determinant function. Prop Throughout let A, B M nn. 1 If A = (a ij ) is upper triangular then det(a) = a 11 a 22... a nn. 2 If a row or column

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

More information

The determinant. Motivation: area of parallelograms, volume of parallepipeds. Two vectors in R 2 : oriented area of a parallelogram

The determinant. Motivation: area of parallelograms, volume of parallepipeds. Two vectors in R 2 : oriented area of a parallelogram The determinant Motivation: area of parallelograms, volume of parallepipeds Two vectors in R 2 : oriented area of a parallelogram Consider two vectors a (1),a (2) R 2 which are linearly independent We

More information

9 Appendix. Determinants and Cramer s formula

9 Appendix. Determinants and Cramer s formula LINEAR ALGEBRA: THEORY Version: August 12, 2000 133 9 Appendix Determinants and Cramer s formula Here we the definition of the determinant in the general case and summarize some features Then we show how

More information

Elementary Row Operations on Matrices

Elementary Row Operations on Matrices King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

TOPIC III LINEAR ALGEBRA

TOPIC III LINEAR ALGEBRA [1] Linear Equations TOPIC III LINEAR ALGEBRA (1) Case of Two Endogenous Variables 1) Linear vs. Nonlinear Equations Linear equation: ax + by = c, where a, b and c are constants. 2 Nonlinear equation:

More information

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of . Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Chapter 2: Matrices and Linear Systems

Chapter 2: Matrices and Linear Systems Chapter 2: Matrices and Linear Systems Paul Pearson Outline Matrices Linear systems Row operations Inverses Determinants Matrices Definition An m n matrix A = (a ij ) is a rectangular array of real numbers

More information

Lecture 10: Determinants and Cramer s Rule

Lecture 10: Determinants and Cramer s Rule Lecture 0: Determinants and Cramer s Rule The determinant and its applications. Definition The determinant of a square matrix A, denoted by det(a) or A, is a real number, which is defined as follows. -by-

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

22m:033 Notes: 3.1 Introduction to Determinants

22m:033 Notes: 3.1 Introduction to Determinants 22m:033 Notes: 3. Introduction to Determinants Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman October 27, 2009 When does a 2 2 matrix have an inverse? ( ) a a If A =

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

MATH 235. Final ANSWERS May 5, 2015

MATH 235. Final ANSWERS May 5, 2015 MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

det(ka) = k n det A.

det(ka) = k n det A. Properties of determinants Theorem. If A is n n, then for any k, det(ka) = k n det A. Multiplying one row of A by k multiplies the determinant by k. But ka has every row multiplied by k, so the determinant

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Operations and Elementary Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Math Lecture 26 : The Properties of Determinants

Math Lecture 26 : The Properties of Determinants Math 2270 - Lecture 26 : The Properties of Determinants Dylan Zwick Fall 202 The lecture covers section 5. from the textbook. The determinant of a square matrix is a number that tells you quite a bit about

More information

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Linear Algebra: Lecture notes from Kolman and Hill 9th edition. Linear Algebra: Lecture notes from Kolman and Hill 9th edition Taylan Şengül March 20, 2019 Please let me know of any mistakes in these notes Contents Week 1 1 11 Systems of Linear Equations 1 12 Matrices

More information

Determinants An Introduction

Determinants An Introduction Determinants An Introduction Professor Je rey Stuart Department of Mathematics Paci c Lutheran University Tacoma, WA 9844 USA je rey.stuart@plu.edu The determinant is a useful function that takes a square

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

The Determinant. Chapter Definition of the Determinant

The Determinant. Chapter Definition of the Determinant Chapter 5 The Determinant 5.1 Definition of the Determinant Given a n n matrix A, we would like to define its determinant. We already have a definition for the 2 2 matrix. We define the determinant of

More information

Determinant of a Matrix

Determinant of a Matrix 13 March 2018 Goals We will define determinant of SQUARE matrices, inductively, using the definition of Minors and cofactors. We will see that determinant of triangular matrices is the product of its diagonal

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Introduction to Matrices and Linear Systems Ch. 3

Introduction to Matrices and Linear Systems Ch. 3 Introduction to Matrices and Linear Systems Ch. 3 Doreen De Leon Department of Mathematics, California State University, Fresno June, 5 Basic Matrix Concepts and Operations Section 3.4. Basic Matrix Concepts

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

Notes on Determinants and Matrix Inverse

Notes on Determinants and Matrix Inverse Notes on Determinants and Matrix Inverse University of British Columbia, Vancouver Yue-Xian Li March 17, 2015 1 1 Definition of determinant Determinant is a scalar that measures the magnitude or size of

More information

= 1 and 2 1. T =, and so det A b d

= 1 and 2 1. T =, and so det A b d Chapter 8 Determinants The founder of the theory of determinants is usually taken to be Gottfried Wilhelm Leibniz (1646 1716, who also shares the credit for inventing calculus with Sir Isaac Newton (1643

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Matrix Operations: Determinant

Matrix Operations: Determinant Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant

More information

5.6. PSEUDOINVERSES 101. A H w.

5.6. PSEUDOINVERSES 101. A H w. 5.6. PSEUDOINVERSES 0 Corollary 5.6.4. If A is a matrix such that A H A is invertible, then the least-squares solution to Av = w is v = A H A ) A H w. The matrix A H A ) A H is the left inverse of A and

More information

Homework Notes Week 6

Homework Notes Week 6 Homework Notes Week 6 Math 24 Spring 24 34#4b The sstem + 2 3 3 + 4 = 2 + 2 + 3 4 = 2 + 2 3 = is consistent To see this we put the matri 3 2 A b = 2 into reduced row echelon form Adding times the first

More information

Solution to Homework 1

Solution to Homework 1 Solution to Homework Sec 2 (a) Yes It is condition (VS 3) (b) No If x, y are both zero vectors Then by condition (VS 3) x = x + y = y (c) No Let e be the zero vector We have e = 2e (d) No It will be false

More information

Inverses and Determinants

Inverses and Determinants Engineering Mathematics 1 Fall 017 Inverses and Determinants I begin finding the inverse of a matrix; namely 1 4 The inverse, if it exists, will be of the form where AA 1 I; which works out to ( 1 4 A

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Math 425 Lecture 1: Vectors in R 3, R n

Math 425 Lecture 1: Vectors in R 3, R n Math 425 Lecture 1: Vectors in R 3, R n Motiating Questions, Problems 1. Find the coordinates of a regular tetrahedron with center at the origin and sides of length 1. 2. What is the angle between the

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

1 Counting spanning trees: A determinantal formula

1 Counting spanning trees: A determinantal formula Math 374 Matrix Tree Theorem Counting spanning trees: A determinantal formula Recall that a spanning tree of a graph G is a subgraph T so that T is a tree and V (G) = V (T ) Question How many distinct

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

NOTES FOR LINEAR ALGEBRA 133

NOTES FOR LINEAR ALGEBRA 133 NOTES FOR LINEAR ALGEBRA 33 William J Anderson McGill University These are not official notes for Math 33 identical to the notes projected in class They are intended for Anderson s section 4, and are 2

More information

Section 5.6. LU and LDU Factorizations

Section 5.6. LU and LDU Factorizations 5.6. LU and LDU Factorizations Section 5.6. LU and LDU Factorizations Note. We largely follow Fraleigh and Beauregard s approach to this topic from Linear Algebra, 3rd Edition, Addison-Wesley (995). See

More information

Apprentice Program: Linear Algebra

Apprentice Program: Linear Algebra Apprentice Program: Linear Algebra Instructor: Miklós Abért Notes taken by Matt Holden and Kate Ponto June 26,2006 1 Matrices An n k matrix A over a ring R is a collection of nk elements of R, arranged

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 16, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Determinants and Scalar Multiplication

Determinants and Scalar Multiplication Invertibility and Properties of Determinants In a previous section, we saw that the trace function, which calculates the sum of the diagonal entries of a square matrix, interacts nicely with the operations

More information

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33 Chapter 5: Matrices Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018 1 / 33 In this chapter Matrices were first introduced in the Chinese Nine Chapters on the Mathematical

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Matrix Inversion Algorithm One payoff from this theorem: It gives us a way to invert matrices.

More information