Eigenvalues and Eigenvectors. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Size: px
Start display at page:

Download "Eigenvalues and Eigenvectors. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB"

Transcription

1 Eigenvalues and Eigenvectors

2 Consider the equation A x = λ x, where A is an nxn matrix. We call x (must be non-zero) an eigenvector of A if this equation can be solved for some value of λ. We call λ an eigenvalue of matrix A, and we call x an eigenvector corresponding to λ.

3 Consider the equation A x = λ x, where A is an nxn matrix. We call x (must be non-zero) an eigenvector of A if this equation can be solved for some value of λ. We call λ an eigenvalue of matrix A, and we call x an eigenvector corresponding to λ. We can rearrange the equation to see how to solve for λ and x: λ is an eigenvalue of A if, and only if the equation A λi x = 0 has a nontrivial solution. So the set of solutions is just the nullspace of (A λi). This is a subspace of R n and we call it the eigenspace corresponding to the eigenvalue λ. nxn identity matrix

4 Example: Consider the matrix A = An eigenvalue of this matrix is λ = 2. Find the associated eigenvectors.

5 Example: Consider the matrix A = An eigenvalue of this matrix is λ = 2. Find the associated eigenvectors. We need to find the nullspace of A λi : A 2I = = Nullspace will be vectors satisfying x + 2x 2 = 0 x = 2 is an eigenvector. The eigenspace is the -dimensional subspace of R 2 consisting of all multiples of 2.

6 Example: Consider the matrix A = An eigenvalue of this matrix is λ = 2. Find the associated eigenvectors. We need to find the nullspace of A λi : A 2I = = Nullspace will be vectors satisfying x + 2x 2 = 0 x = 2 is an eigenvector. The eigenspace is the -dimensional subspace of R 2 consisting of all multiples of 2. We can check that the eigenvector equation A x = λ x is satisfied: = 4 2 = 2 2

7 We know how to find eigenvectors, but only if we know what eigenvalue to use. How do we find eigenvalues? Here is the equation we need to solve, and we want to find nontrivial solutions: A λi x = 0

8 We know how to find eigenvectors, but only if we know what eigenvalue to use. How do we find eigenvalues? Here is the equation we need to solve, and we want to find nontrivial solutions: A λi x = 0 The only way to get non-trivial solutions is if the determinant is 0. This gives us an equation we can solve for λ. A scalar λ is an eigenvalue of an nxn matrix A if and only if λ satisfies the characteristic equation det A λi = 0.

9 We know how to find eigenvectors, but only if we know what eigenvalue to use. How do we find eigenvalues? Here is the equation we need to solve, and we want to find nontrivial solutions: A λi x = 0 The only way to get non-trivial solutions is if the determinant is 0. This gives us an equation we can solve for λ. A scalar λ is an eigenvalue of an nxn matrix A if and only if λ satisfies the characteristic equation det A λi = 0. Solving the characteristic equation will give all the eigenvalues of the matrix. They could be real (possibly repeated) or complex. We will look at several examples.

10 Example : Consider the matrix A =

11 Example : Consider the matrix A = First we solve the characteristic equation to find the e-values: 3 λ λ = 0 3 λ 8 λ 6 = 0 λ2 λ + 8 = 0 λ 2 λ 9 = 0 λ = 2 or λ = 9

12 Example : Consider the matrix A = First we solve the characteristic equation to find the e-values: 3 λ λ = 0 3 λ 8 λ 6 = 0 λ2 λ + 8 = 0 λ 2 λ 9 = 0 λ = 2 or λ = 9 Here we have 2 distinct, real eigenvalues. We expect to get a -dimensional eigenspace for each of them. We already found the e-vectors for λ = 2. For λ = 9 we need to find the nullspace of (A-9I): x x 2 = 0 x = 3.

13 Example : Consider the matrix A = Here are our results: Eigenvalue Eigenspace λ = 2 2 span λ 2 = 9 span 3

14 Example : Consider the matrix A = Here are our results: Eigenvalue Eigenspace λ = 2 2 span λ 2 = 9 span 3 We can give this a geometrical interpretation. The matrix A represents a linear transformation from R 2 R 2, and the eigenspaces are preserved under that transformation. i.e. any vector that is in an eigenspace is mapped to another vector in that eigenspace (scaled by the eigenvalue).

15 Example : Consider the matrix A = Here are our results: Eigenvalue Eigenspace λ = 2 2 span λ 2 = 9 span This vector is 9 times as long 0 e-vector for λ=2 e-vector for λ= This vector is twice as long

16 2 2 Example 2: Consider the matrix A =

17 2 2 Example 2: Consider the matrix A = First we find the characteristic equation: 2 λ 2 det 3 λ = λ

18 2 2 Example 2: Consider the matrix A = First we find the characteristic equation: 2 λ 2 det 3 λ = λ Cofactor expansion along the first column: 2 λ 3 λ 2 2 λ λ λ = 0 2 λ 3 λ 2 λ λ λ = 0 2 λ λ 2 5λ λ 3 = 0 2 λ λ )(λ 4 + 3(λ ) = 0 λ λ λ 5 = 0 λ = 5 or λ = repeated We say the eigenvalue λ= has multiplicity 2

19 2 2 Example 2: Consider the matrix A = Find eigenvectors corresponding to each eigenvalue: For λ = 5, find nullspace of x = For λ =, find nullspace of x = or x = 0

20 2 2 Example 2: Consider the matrix A = Here are our results: Eigenvalue λ = (multiplicity 2) span x = λ = 5 Eigenspace 2 0 span x 3 =, x 2 = 0 This time we have a repeated e-value, and we get a 2-dimensional eigenspace (won t always happen). So any vector that starts in the plane formed by x and x 2 will stay in that plane. In fact, since the e-value is, that vector won t change at all. The other e-value has multiplicity, so we get a -dimensional eigenspace (a line) just as in the previous example. Any vector starting on that line will stay the same direction, but be transformed to a vector 5 times longer. The diagram on the next slide shows these transformations.

21 2 2 Example 2: Consider the matrix A = x 3 5 x 3 x 2 x 2 x x Original e-vectors (zoomed in so you can see them better) Transformed e-vectors

22

Problems for M 10/26:

Problems for M 10/26: Math, Lesieutre Problem set # November 4, 25 Problems for M /26: 5 Is λ 2 an eigenvalue of 2? 8 Why or why not? 2 A 2I The determinant is, which means that A 2I has 6 a nullspace, and so there is an eigenvector

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

Math 205, Summer I, Week 4b:

Math 205, Summer I, Week 4b: Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Math 205, Summer I, Week 4b: Continued. Chapter 5, Section 8

Math 205, Summer I, Week 4b: Continued. Chapter 5, Section 8 Math 205, Summer I, 2016 Week 4b: Continued Chapter 5, Section 8 2 5.8 Diagonalization [reprint, week04: Eigenvalues and Eigenvectors] + diagonaliization 1. 5.8 Eigenspaces, Diagonalization A vector v

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions Warm-up True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be

More information

Math 215 HW #9 Solutions

Math 215 HW #9 Solutions Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith

More information

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 110 Linear Algebra Midterm 2 Review October 28, 2017 Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

More information

JUST THE MATHS SLIDES NUMBER 9.6. MATRICES 6 (Eigenvalues and eigenvectors) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 9.6. MATRICES 6 (Eigenvalues and eigenvectors) A.J.Hobson JUST THE MATHS SLIDES NUMBER 96 MATRICES 6 (Eigenvalues and eigenvectors) by AJHobson 96 The statement of the problem 962 The solution of the problem UNIT 96 - MATRICES 6 EIGENVALUES AND EIGENVECTORS 96

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

Calculating determinants for larger matrices

Calculating determinants for larger matrices Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

More information

In Class Peer Review Assignment 2

In Class Peer Review Assignment 2 Name: Due Date: Tues. Dec. 5th In Class Peer Review Assignment 2 D.M. 1 : 7 (7pts) Short Answer 8 : 14 (32pts) T/F and Multiple Choice 15 : 30 (15pts) Total out of (54pts) Directions: Put only your answers

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

1. In this problem, if the statement is always true, circle T; otherwise, circle F. Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

More information

Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith

Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. Definition: Let V T V be a linear transformation.

More information

Math 308 Final, Autumn 2017

Math 308 Final, Autumn 2017 Math 308 Final, Autumn 2017 Name: ID#: Signature: All work on this exam is my own. Instructions. You are allowed a calculator and notesheet (handwritten, two-sided). Hand in your notesheet with your exam.

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Vector Spaces and Linear Maps

Vector Spaces and Linear Maps Vector Spaces and Linear Maps Garrett Thomas August 14, 2018 1 About This document is part of a series of notes about math and machine learning. You are free to distribute it as you wish. The latest version

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

HOMEWORK 9 solutions

HOMEWORK 9 solutions Math 4377/6308 Advanced Linear Algebra I Dr. Vaughn Climenhaga, PGH 651A Fall 2013 HOMEWORK 9 solutions Due 4pm Wednesday, November 13. You will be graded not only on the correctness of your answers but

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall 2015 1 / 14 Introduction We define eigenvalues and eigenvectors. We discuss how to

More information

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name: Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

More information

Eigenvalues, Eigenvectors, and Diagonalization

Eigenvalues, Eigenvectors, and Diagonalization Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Lecture 11: Eigenvalues and Eigenvectors

Lecture 11: Eigenvalues and Eigenvectors Lecture : Eigenvalues and Eigenvectors De nition.. Let A be a square matrix (or linear transformation). A number λ is called an eigenvalue of A if there exists a non-zero vector u such that A u λ u. ()

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

CHAPTER 3. Matrix Eigenvalue Problems

CHAPTER 3. Matrix Eigenvalue Problems A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Definitions for Quizzes

Definitions for Quizzes Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

More information

EXAM. Exam #3. Math 2360, Spring April 24, 2001 ANSWERS

EXAM. Exam #3. Math 2360, Spring April 24, 2001 ANSWERS EXAM Exam #3 Math 2360, Spring 200 April 24, 200 ANSWERS i 40 pts Problem In this problem, we will work in the vectorspace P 3 = { ax 2 + bx + c a, b, c R }, the space of polynomials of degree less than

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

CHAPTER 5 REVIEW. c 1. c 2 can be considered as the coordinates of v

CHAPTER 5 REVIEW. c 1. c 2 can be considered as the coordinates of v CHAPTER 5 REVIEW Throughout this note, we assume that V and W are two vector spaces with dimv = n and dimw = m. T : V W is a linear transformation.. A map T : V W is a linear transformation if and only

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii) . Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A.

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A. Eigenspaces 1. (a) Find all eigenvalues and eigenvectors of A = (b) Find the corresponding eigenspaces. [ ] 1 1 1 Definition. If A is an n n matrix and λ is a scalar, the λ-eigenspace of A (usually denoted

More information

Proofs for Quizzes. Proof. Suppose T is a linear transformation, and let A be a matrix such that T (x) = Ax for all x R m. Then

Proofs for Quizzes. Proof. Suppose T is a linear transformation, and let A be a matrix such that T (x) = Ax for all x R m. Then Proofs for Quizzes 1 Linear Equations 2 Linear Transformations Theorem 1 (2.1.3, linearity criterion). A function T : R m R n is a linear transformation if and only if a) T (v + w) = T (v) + T (w), for

More information

HW2 - Due 01/30. Each answer must be mathematically justified. Don t forget your name.

HW2 - Due 01/30. Each answer must be mathematically justified. Don t forget your name. HW2 - Due 0/30 Each answer must be mathematically justified. Don t forget your name. Problem. Use the row reduction algorithm to find the inverse of the matrix 0 0, 2 3 5 if it exists. Double check your

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalue-eigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Generalized eigenvector - Wikipedia, the free encyclopedia

Generalized eigenvector - Wikipedia, the free encyclopedia 1 of 30 18/03/2013 20:00 Generalized eigenvector From Wikipedia, the free encyclopedia In linear algebra, for a matrix A, there may not always exist a full set of linearly independent eigenvectors that

More information

Definition: An n x n matrix, "A", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X 1 A X

Definition: An n x n matrix, A, is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that X 1 A X DIGONLIZTION Definition: n n x n matrix, "", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X X D. Theorem: n n x n matrix, "", is diagonalizable

More information

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal . Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal 3 9 matrix D such that A = P DP, for A =. 3 4 3 (a) P = 4, D =. 3 (b) P = 4, D =. (c) P = 4 8 4, D =. 3 (d) P

More information

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to: MAC Module Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to: Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

MAC Module 12 Eigenvalues and Eigenvectors

MAC Module 12 Eigenvalues and Eigenvectors MAC 23 Module 2 Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

MATH 1553 PRACTICE MIDTERM 3 (VERSION B)

MATH 1553 PRACTICE MIDTERM 3 (VERSION B) MATH 1553 PRACTICE MIDTERM 3 (VERSION B) Name Section 1 2 3 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 10 points. The maximum score on this exam is 50 points.

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

MAT1302F Mathematical Methods II Lecture 19

MAT1302F Mathematical Methods II Lecture 19 MAT302F Mathematical Methods II Lecture 9 Aaron Christie 2 April 205 Eigenvectors, Eigenvalues, and Diagonalization Now that the basic theory of eigenvalues and eigenvectors is in place most importantly

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS nn Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc. I will review some of these terms here, but quite

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

spring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra

spring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra spring, 2016. math 204 (mitchell) list of theorems 1 Linear Systems THEOREM 1.0.1 (Theorem 1.1). Uniqueness of Reduced Row-Echelon Form THEOREM 1.0.2 (Theorem 1.2). Existence and Uniqueness Theorem THEOREM

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Mathematical Methods for Engineers 1 (AMS10/10A)

Mathematical Methods for Engineers 1 (AMS10/10A) Mathematical Methods for Engineers 1 (AMS10/10A) Quiz 5 - Friday May 27th (2016) 2:00-3:10 PM AMS 10 AMS 10A Name: Student ID: Multiple Choice Questions (3 points each; only one correct answer per question)

More information

Math 1553, Introduction to Linear Algebra

Math 1553, Introduction to Linear Algebra Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has course-level learning goals that pertain to the entire course, and section-level

More information

Mon Mar matrix eigenspaces. Announcements: Warm-up Exercise:

Mon Mar matrix eigenspaces. Announcements: Warm-up Exercise: Math 227-4 Week notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an in-depth

More information

Diagonalization. Hung-yi Lee

Diagonalization. Hung-yi Lee Diagonalization Hung-yi Lee Review If Av = λv (v is a vector, λ is a scalar) v is an eigenvector of A excluding zero vector λ is an eigenvalue of A that corresponds to v Eigenvectors corresponding to λ

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

ANSWERS. E k E 2 E 1 A = B

ANSWERS. E k E 2 E 1 A = B MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Math 323 Exam 2 Sample Problems Solution Guide October 31, 2013

Math 323 Exam 2 Sample Problems Solution Guide October 31, 2013 Math Exam Sample Problems Solution Guide October, Note that the following provides a guide to the solutions on the sample problems, but in some cases the complete solution would require more work or justification

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Designing Information Devices and Systems I Discussion 4B

Designing Information Devices and Systems I Discussion 4B Last Updated: 29-2-2 9:56 EECS 6A Spring 29 Designing Information Devices and Systems I Discussion 4B Reference Definitions: Matrices and Linear (In)Dependence We ve seen that the following statements

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

NAME MATH 304 Examination 2 Page 1

NAME MATH 304 Examination 2 Page 1 NAME MATH 4 Examination 2 Page. [8 points (a) Find the following determinant. However, use only properties of determinants, without calculating directly (that is without expanding along a column or row

More information

3.3 Eigenvalues and Eigenvectors

3.3 Eigenvalues and Eigenvectors .. EIGENVALUES AND EIGENVECTORS 27. Eigenvalues and Eigenvectors In this section, we assume A is an n n matrix and x is an n vector... Definitions In general, the product Ax results is another n vector

More information

Math 20F Practice Final Solutions. Jor-el Briones

Math 20F Practice Final Solutions. Jor-el Briones Math 2F Practice Final Solutions Jor-el Briones Jor-el Briones / Math 2F Practice Problems for Final Page 2 of 6 NOTE: For the solutions to these problems, I skip all the row reduction calculations. Please

More information

City Suburbs. : population distribution after m years

City Suburbs. : population distribution after m years Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

Lecture 12: Diagonalization

Lecture 12: Diagonalization Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

The Jordan Normal Form and its Applications

The Jordan Normal Form and its Applications The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens

More information