2 Continuous Random Variables and their Distributions

Size: px
Start display at page:

Download "2 Continuous Random Variables and their Distributions"

Transcription

1 Name: Discussion-5 1 Introduction - Continuous random variables have a range in the form of Interval on the real number line. Union of non-overlapping intervals on real line. - We also know that for any x R,P (X = x) = 0. - Analogous to the theory of discrete random variables. 2 Continuous Random Variables and their Distributions - From the definition of CDF, F X (x) = P (X x) we get the definition of a continuous random variable Definition:A random variable X with CDF F X (x) is said to be continuous if F X (x) is a continuous function for all x R. - The CDF is a continuous function with no jumps. - No jumps is consistent with the fact that P (X = x) = 0 for all x. - CDF of a continuous random variable is differentiable almost everywhere in R. 2.1 Probability Density Function - For continuous random variables, CDF works but PMF does not since P (X = x) = 0. - For a continuous random variable X, we can intuitively define the Probability Density Function f X (x) as P (x < X x + ) f X (x) = lim. 0 +

2 FX(x) 1 a b x Figure 1: CDF for a continuous random variable uniformly distributed over [a, b]. - f X (x) is limit of the probability density of an interval as the length of the interval goes to 0. - Formally, we define the PDF of random variable X as Definition: Consider a continuous random variable X with CDF F X (x). The function f X (x) is the probability density function (PDF) of X, defined by f X (x) = df X(x) dx = F X(x), if F X (x) is differentiable at x. - If f X (x 1 ) > f X (x 2 ), we can say the value of X is more likely to be around x 1 than x 2. - The CDF can be obtained from PDF by integration F X (x) = - We also have x f X (u)du. P (a < X b) = F X (b) F X (a) = - Properties of PDF- b a f X (u)du. 2

3 Consider a continuous random variable X with PDF f X (x). We have 1. f X (x) 0 for all x R. 2. f X(u)du = P (a < X b) = F X (b) F X (a) = b a f X(u)du. 4. More generally, for a set A, P (X A) = A f X(u)du. 2.2 Range - Range of a random variable X is the set of all possible values of the random variable. - For a continuous random variable, we can define it as the set of all real numbers with non-zero PDF. R X = {x f X (x) > 0} 2.3 Expected Value and Variance - The definition of expected value of a continuous random variable is EX = xf X (x)dx - Expectation is a linear operation. E[aX + b] = aex + b for all a, b R E[X 1 + X X n ] = EX 1 + EX EX n for any set of random variables X 1, X 2,.., X n. 2.4 Expected Value of a Function of a Continuous Random Variable - We can use LOTUS to determine the expected value of a function of a continuous random variable Law of the unconscious statistician (LOTUS) for continuous random variables: E[g(X)] = g(x)f X(x)dx 3

4 2.4.1 Variance - Variance of a random variable is defined as V ar(x) = E[(X µ X ) 2 ] = EX 2 (EX) 2 - For a continuous random variable we can write Var(X) = E [ (X µ X ) 2] = = EX 2 (EX) 2 = (x µ X ) 2 f X (x)dx x 2 f X (x)dx µ 2 X - For a, b R, we have V ar(ax + b) = a 2 V ar(x) 2.5 Discrete vs Continuous Random Variables - Differences between discrete and continuous random variables. Discrete PMF P X (x) = P (X = x) EX = x k R X x k P X (x k ) LOTUS E[g(x)] = g(x k )P X (x k ) x R X Continuous PDF f X (x) = df X(x) dx EX = xf X(x)dx LOTUS E[g(X)] = g(x)f X(x)dx 4

5 3 Special Distributions 3.1 Uniform Distribution A continuous random variable X is said to have a Uniform distribution over the interval [a, b], shown as X Uniform(a, b), if its PDF is given by f X (x) = { 1 b a a < x < b 0 x < a or x > b EX = a + b 2 (b a)2, Var(X) = Exponential Distribution A continuous random variable X is said to have an exponential distribution with parameter λ > 0, shown as X Exponential(λ), if its PDF is given by { λe λx x > 0 f X (x) = 0 otherwise If X Exponential(λ), then EX = 1 λ and Var(X) = 1 λ 2. If X is exponential with parameter λ > 0, then X is a memoryless random variable, that is P (X > x + a X > a) = P (X > x), for a, x 0. 5

6 4 Problems 1. Let X be a random variable with PDF given by { 3 f X (x) = 2 x2 x 1 0 otherwise (a) Find P (0 X 1 2 ). (b) Find EX and Var(X). (c) Find EX 4. Solution: (a) To find P (0 X 1 ), we can write 2 P (0 X 1 2 ) = 3 2 (b) To find EX, we can write 2 0 x 2 dx = EX = = 3 2 = 0. uf X (u)du u 3 du In fact, we could have guessed EX = 0 because the PDF is symmetric around x = 0. To find Var(X), we have Var(X) = EX 2 (EX) 2 = EX 2 = = 3 2 = 3 5. u 2 f X (u)du u 4 du (c) To find EX 4, we can write 6

7 EX 4 = = 3 2 = 3 7. u 4 f X (u)du u 6 du 7

8 2. Suppose the number of customers arriving at a store obeys a Poisson distribution with an average of λ customers per unit time. That is, if Y is the number of customers arriving in an interval of length t, then Y P oisson(λt). Suppose that the store opens at time t = 0. Let X be the arrival time of the first customer. Show that X Exponential(λ). Solution: We first find P (X > t): P (X > t) = P (No arrival in [0, t]) λt (λt)0 = e 0! = e λt. Thus, the CDF of X for x > 0 is given by F X (x) = 1 P (X > x) = 1 e λx, which is the CDF of Exponential(λ). Note that by the same argument, the time between the first and second customer also has Exponential(λ) distribution. In general, the time between the kth and k + 1th customer is Exponential(λ). 8

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

Chapter 4. Continuous Random Variables 4.1 PDF

Chapter 4. Continuous Random Variables 4.1 PDF Chapter 4 Continuous Random Variables In this chapter we study continuous random variables. The linkage between continuous and discrete random variables is the cumulative distribution (CDF) which we will

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable ECE353: Probability and Random Processes Lecture 7 -Continuous Random Variable Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu Continuous

More information

F X (x) = P [X x] = x f X (t)dt. 42 Lebesgue-a.e, to be exact 43 More specifically, if g = f Lebesgue-a.e., then g is also a pdf for X.

F X (x) = P [X x] = x f X (t)dt. 42 Lebesgue-a.e, to be exact 43 More specifically, if g = f Lebesgue-a.e., then g is also a pdf for X. 10.2 Properties of PDF and CDF for Continuous Random Variables 10.18. The pdf f X is determined only almost everywhere 42. That is, given a pdf f for a random variable X, if we construct a function g by

More information

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27 Probability Review Yutian Li Stanford University January 18, 2018 Yutian Li (Stanford University) Probability Review January 18, 2018 1 / 27 Outline 1 Elements of probability 2 Random variables 3 Multiple

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

1 Expectation of a continuously distributed random variable

1 Expectation of a continuously distributed random variable OCTOBER 3, 204 LECTURE 9 EXPECTATION OF A CONTINUOUSLY DISTRIBUTED RANDOM VARIABLE, DISTRIBUTION FUNCTION AND CHANGE-OF-VARIABLE TECHNIQUES Expectation of a continuously distributed random variable Recall

More information

Basics of Stochastic Modeling: Part II

Basics of Stochastic Modeling: Part II Basics of Stochastic Modeling: Part II Continuous Random Variables 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR August 10, 2016 1 Reference

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Chapter 4. Continuous Random Variables

Chapter 4. Continuous Random Variables Chapter 4. Continuous Random Variables Review Continuous random variable: A random variable that can take any value on an interval of R. Distribution: A density function f : R R + such that 1. non-negative,

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

Math 3338, Homework 4. f(u)du. (Note that f is discontinuous, whereas F is continuous everywhere.)

Math 3338, Homework 4. f(u)du. (Note that f is discontinuous, whereas F is continuous everywhere.) Math 3338, Homework 4. Define a function f by f(x) = { if x < if x < if x. Calculate an explicit formula for F(x) x f(u)du. (Note that f is discontinuous, whereas F is continuous everywhere.) 2. Define

More information

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015 Review : STAT 36 Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics August 25, 25 Support of a Random Variable The support of a random variable, which is usually denoted

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES Contents 1. Continuous random variables 2. Examples 3. Expected values 4. Joint distributions

More information

STAT 430/510: Lecture 10

STAT 430/510: Lecture 10 STAT 430/510: Lecture 10 James Piette June 9, 2010 Updates HW2 is due today! Pick up your HW1 s up in stat dept. There is a box located right when you enter that is labeled "Stat 430 HW1". It ll be out

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

STAT 3610: Review of Probability Distributions

STAT 3610: Review of Probability Distributions STAT 3610: Review of Probability Distributions Mark Carpenter Professor of Statistics Department of Mathematics and Statistics August 25, 2015 Support of a Random Variable Definition The support of a random

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

HW7 Solutions. f(x) = 0 otherwise. 0 otherwise. The density function looks like this: = 20 if x [10, 90) if x [90, 100]

HW7 Solutions. f(x) = 0 otherwise. 0 otherwise. The density function looks like this: = 20 if x [10, 90) if x [90, 100] HW7 Solutions. 5 pts.) James Bond James Bond, my favorite hero, has again jumped off a plane. The plane is traveling from from base A to base B, distance km apart. Now suppose the plane takes off from

More information

Conditioning a random variable on an event

Conditioning a random variable on an event Conditioning a random variable on an event Let X be a continuous random variable and A be an event with P (A) > 0. Then the conditional pdf of X given A is defined as the nonnegative function f X A that

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 17: Continuous random variables: conditional PDF Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

7 Continuous Variables

7 Continuous Variables 7 Continuous Variables 7.1 Distribution function With continuous variables we can again define a probability distribution but instead of specifying Pr(X j) we specify Pr(X < u) since Pr(u < X < u + δ)

More information

Continuous Probability Spaces

Continuous Probability Spaces Continuous Probability Spaces Ω is not countable. Outcomes can be any real number or part of an interval of R, e.g. heights, weights and lifetimes. Can not assign probabilities to each outcome and add

More information

CIVL Continuous Distributions

CIVL Continuous Distributions CIVL 3103 Continuous Distributions Learning Objectives - Continuous Distributions Define continuous distributions, and identify common distributions applicable to engineering problems. Identify the appropriate

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes ECE353: Probability and Random Processes Lecture 18 - Stochastic Processes Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu From RV

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 2 Transformations and Expectations Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 14, 2015 Outline 1 Distributions of Functions

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2 & 5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13-3339 Cathy

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Week 9, 10/15/12-10/19/12, Notes: Continuous Distributions in General and the Uniform Distribution

Week 9, 10/15/12-10/19/12, Notes: Continuous Distributions in General and the Uniform Distribution Week 9, 10/15/12-10/19/12, Notes: Continuous Distributions in General and the Uniform Distribution 1 Monday s, 10/15/12, notes: Review Review days are generated by student questions. No material will be

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Experimental Design and Statistics - AGA47A

Experimental Design and Statistics - AGA47A Experimental Design and Statistics - AGA47A Czech University of Life Sciences in Prague Department of Genetics and Breeding Fall/Winter 2014/2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if University of California, Los Angeles Department of Statistics Statistics 1A Instructor: Nicolas Christou Continuous probability distributions Let X be a continuous random variable, < X < f(x) is the so

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

General Random Variables

General Random Variables 1/65 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Probability A general random variable is discrete, continuous, or mixed. A discrete random variable

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Chapter 2. Continuous random variables

Chapter 2. Continuous random variables Chapter 2 Continuous random variables Outline Review of probability: events and probability Random variable Probability and Cumulative distribution function Review of discrete random variable Introduction

More information

STAT 430/510: Lecture 16

STAT 430/510: Lecture 16 STAT 430/510: Lecture 16 James Piette June 24, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.7 and will begin Ch. 7. Joint Distribution of Functions

More information

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R Random Variables Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R As such, a random variable summarizes the outcome of an experiment

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables.

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables. Probability UBC Economics 326 January 23, 2018 1 2 3 Wooldridge (2013) appendix B Stock and Watson (2009) chapter 2 Linton (2017) chapters 1-5 Abbring (2001) sections 2.1-2.3 Diez, Barr, and Cetinkaya-Rundel

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

Chapter 4: Continuous Random Variable

Chapter 4: Continuous Random Variable Chapter 4: Continuous Random Variable Shiwen Shen University of South Carolina 2017 Summer 1 / 57 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

STAT509: Continuous Random Variable

STAT509: Continuous Random Variable University of South Carolina September 23, 2014 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

More information

Lecture 18. Uniform random variables

Lecture 18. Uniform random variables 18.440: Lecture 18 Uniform random variables Scott Sheffield MIT 1 Outline Uniform random variable on [0, 1] Uniform random variable on [α, β] Motivation and examples 2 Outline Uniform random variable on

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Continuous Distributions

Continuous Distributions Continuous Distributions 1.8-1.9: Continuous Random Variables 1.10.1: Uniform Distribution (Continuous) 1.10.4-5 Exponential and Gamma Distributions: Distance between crossovers Prof. Tesler Math 283 Fall

More information

Solution to Assignment 3

Solution to Assignment 3 The Chinese University of Hong Kong ENGG3D: Probability and Statistics for Engineers 5-6 Term Solution to Assignment 3 Hongyang Li, Francis Due: 3:pm, March Release Date: March 8, 6 Dear students, The

More information

Chapter 4: Continuous Probability Distributions

Chapter 4: Continuous Probability Distributions Chapter 4: Continuous Probability Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 57 Continuous Random Variable A continuous random

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Lecture 3. David Aldous. 31 August David Aldous Lecture 3

Lecture 3. David Aldous. 31 August David Aldous Lecture 3 Lecture 3 David Aldous 31 August 2015 This size-bias effect occurs in other contexts, such as class size. If a small Department offers two courses, with enrollments 90 and 10, then average class (faculty

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

S n = x + X 1 + X X n.

S n = x + X 1 + X X n. 0 Lecture 0 0. Gambler Ruin Problem Let X be a payoff if a coin toss game such that P(X = ) = P(X = ) = /2. Suppose you start with x dollars and play the game n times. Let X,X 2,...,X n be payoffs in each

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2-5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 14-3339 Cathy Poliak,

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Chapter 4: Continuous Random Variables and Probability Distributions

Chapter 4: Continuous Random Variables and Probability Distributions Chapter 4: and Probability Distributions Walid Sharabati Purdue University February 14, 2014 Professor Sharabati (Purdue University) Spring 2014 (Slide 1 of 37) Chapter Overview Continuous random variables

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

Lecture 3 Continuous Random Variable

Lecture 3 Continuous Random Variable Lecture 3 Continuous Random Variable 1 Cumulative Distribution Function Definition Theorem 3.1 For any random variable X, 2 Continuous Random Variable Definition 3 Example Suppose we have a wheel of circumference

More information

Continuous random variables

Continuous random variables Continuous random variables CE 311S What was the difference between discrete and continuous random variables? The possible outcomes of a discrete random variable (finite or infinite) can be listed out;

More information

1 Joint and marginal distributions

1 Joint and marginal distributions DECEMBER 7, 204 LECTURE 2 JOINT (BIVARIATE) DISTRIBUTIONS, MARGINAL DISTRIBUTIONS, INDEPENDENCE So far we have considered one random variable at a time. However, in economics we are typically interested

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Lecture 11: Probability, Order Statistics and Sampling

Lecture 11: Probability, Order Statistics and Sampling 5-75: Graduate Algorithms February, 7 Lecture : Probability, Order tatistics and ampling Lecturer: David Whitmer cribes: Ilai Deutel, C.J. Argue Exponential Distributions Definition.. Given sample space

More information

Chap 2.1 : Random Variables

Chap 2.1 : Random Variables Chap 2.1 : Random Variables Let Ω be sample space of a probability model, and X a function that maps every ξ Ω, toa unique point x R, the set of real numbers. Since the outcome ξ is not certain, so is

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Lecture 5: Expectation

Lecture 5: Expectation Lecture 5: Expectation 1. Expectations for random variables 1.1 Expectations for simple random variables 1.2 Expectations for bounded random variables 1.3 Expectations for general random variables 1.4

More information

Probability Distributions

Probability Distributions Probability Distributions Series of events Previously we have been discussing the probabilities associated with a single event: Observing a 1 on a single roll of a die Observing a K with a single card

More information

Math 30530: Introduction to Probability, Fall 2013

Math 30530: Introduction to Probability, Fall 2013 Math 353: Introduction to Probability, Fall 3 Midterm Exam II Practice exam solutions. I m taking part in the All-Ireland hay-tossing championship next week (hay-tossing is a real sport in Ireland & Scotland

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

We introduce methods that are useful in:

We introduce methods that are useful in: Instructor: Shengyu Zhang Content Derived Distributions Covariance and Correlation Conditional Expectation and Variance Revisited Transforms Sum of a Random Number of Independent Random Variables more

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

BASICS OF PROBABILITY

BASICS OF PROBABILITY October 10, 2018 BASICS OF PROBABILITY Randomness, sample space and probability Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be predicted with certainty,

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

Math Spring Practice for the Second Exam.

Math Spring Practice for the Second Exam. Math 4 - Spring 27 - Practice for the Second Exam.. Let X be a random variable and let F X be the distribution function of X: t < t 2 t < 4 F X (t) : + t t < 2 2 2 2 t < 4 t. Find P(X ), P(X ), P(X 2),

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information