Chapter 4. Neural Networks Based on Competition

Size: px
Start display at page:

Download "Chapter 4. Neural Networks Based on Competition"

Transcription

1 Chaper 4. Neural Neworks Based on Compeon Compeon s mporan for NN Compeon beween neurons has been observed n bologcal nerve sysems Compeon s mporan n solvng many problems To classfy an npu paern _1 no one of he m classes dea case: one class node has oupu 1, all oher 0 ; ofen more han one class _n nodes have non-zero oupu INPUT C_1 C_m CLASSIFICATION If hese class nodes compee wh each oher, maybe only one wll wn evenually wnner-akes-all. The wnner represens he compued classfcaon of he npu

2 Wnner-akes-all WTA: Among all compeng nodes, only one wll wn and all ohers wll lose We manly deal wh sngle wnner WTA, bu mulple wnners WTA are possble and useful n some applcaons Eases way o realze WTA: have an eernal, cenral arbraor a program o decde he wnner by comparng he curren oupus of he compeors break he e arbrarly Ths s bologcally unsound no such eernal arbraor ess n bologcal nerve sysem.

3 Ways o realze compeon n NN Laeral nhbon Mane, Mecan ha oupu of each node feeds y_ o ohers hrough nhbory connecons wh negave weghs Resource compeon < 0 oupu of _k s dsrbued o y_ y_ and y_ proporonal o w_k and w_k, as well as y_ and y_ w self decay k bologcally sound Learnng mehods n compeve neworks Compeve learnng Kohonen learnng self-organzng map, SOM Couner-propagaon ne Adapve resonance heory ART n Ch. 5 w < 0 _k y_ w < 0 w y_ w k

4 Fed-wegh Compeve Nes Mane Laeral nhbon beween compeors weghs : w 1 ε f oherwse acvaon funcon : f > 0 f 0 oherwse Noes: Compeon: erave process unl he ne sablzes a mos one node wh posve acvaon 0 < ε < 1 / m, oo small: akes oo long o converge oo bg: may suppress he enre nework no wnner where m s he # of compeors ε ε

5 Mecal Ha Archecure: For a gven node, close neghbors: cooperave muually ecaory, w > 0 farher away neghbors: compeve muually nhbory,w < 0 oo far away neghbors: rrelevan w 0 Need a defnon of dsance neghborhood: one dmensonal: orderng by nde 1,2, n wo dmensonal: lace

6 > < k k c k c w, dsance f 0, dsance f, dsance f weghs 2 1 ramp funcon : ma ma ma acvaon funcon > < f f f f

7 eample : 0 0.0, 0.5, 0.8, 1.0, 0.8, 0.5, , 0.38, 1.06, 1.16, 1.06, 0.38, , 0.39, 1.14, 1.66, 1.14, 0.39, 0.0 Equlbrum: negave npu posve npu for all nodes wnner has he hghes acvaon; s cooperave neghbors also have posve acvaon; s compeve neghbors have negave acvaons.

8 Hammng Nework Hammng dsance of wo vecors, dmenson n, Number of bs n dsagreemen. In bpolar: and y y a d where : a s number of bs n agreemen n and y d s number of bs dfferen n and y d n a hammng dsance y 2a n a 0.5 y n larger y larger a shorer Hammng dsance of

9 Suppose a space of paerns s dvded no k classes, each class has an eampler represenave vecor e. An npu belongs o class, f and only f s closer o e han o any oher e,.e., e e Hammng ne s such a classfer: Weghs: le represen class w Y 0.5e, b 0. 5n The oal npu o y _ n b w 1 2 e Y n a

10 Upper layer: MAX ne akes he y_n as s nal value, hen eraes oward sable sae one oupu node wh hghes y_n wll be he wnner because s wegh vecor s closes o he npu vecor As assocave memory: each corresponds o a sored paern; Y paern connecon/compleon; sorage capacy oal # of nodes: k oal # of paerns sored: k capacy: k or k/k 1

11 Implc laeral nhbon by compeng lmed resources: he acvaon of he npu nodes y_1 y_ y_m W y _ n y _ n larger y _ n y β w y decay y akes larger share of w

12 Compeve Learnng Unsupervsed learnng Goal: Learn o form classes/clusers of eamplers/sample paerns accordng o smlares of hese eampers. Paerns n a cluser would have smlar feaures No pror knowledge as wha feaures are mporan for classfcaon, and how many classes are here. Archecure: Oupu nodes: Y_1,.Y_m, represenng he m classes They are compeors WTA realzed eher by an eernal procedure or by laeral nhbon as n Mane

13 Tranng: Tran he nework such ha he wegh vecor w. assocaed wh Y_ becomes he represenave vecor of he class of npu paerns Y_ s o represen. Two phase unsupervsed learnng compeng phase: apply an npu vecor randomly chosen from sample se. compue oupu for all y: y deermne he wnner wnner s no gven n ranng samples so hs s unsupervsed rewardng phase: he wnner s reworded by updang s weghs weghs assocaed wh all oher oupu nodes are no updaed repea he wo phases many mes and gradually reduce he learnng rae unl all weghs are sablzed. w

14 Wegh updae: w Mehod 1: Mehod 2 w w w w w -w_ a-w_ w_ a w_ w_ a-w_ w_ w_ a In each mehod, s moved closer o Normalzng he wegh vecor o un lengh afer s updaed w w w w

15 w s movng o he cener of a cluser of sample vecors afer repeaed wegh updaes Three eamplers: S1, S2 and S3 w_0 w_3 Inal wegh vecor w_0 Afer successvely raned S3 w_1 by S1, S2, and S3, S1 he wegh vecor changes o w_1, S2 w_2, and w_3 w_2

16 Eamples A smple eample of compeve learnng pp vecors of dmenson 4 n 2 classes 4 npu nodes, 2 oupu nodes S1 1, 1, 0, 0 S2 0, 0, 0, 1 S3 1, 0, 0, 0 S4 0, 0, 1, 1 Inalzaon: 0.6, wegh mar: Tranng wh S1 D1 S1 w W D 1 S1 w , class 2 wns w hen W

17 W Smlarly, afer ranng wh S2 0, 0, 0, 1, n whch class 1 wns, wegh mar becomes A he end of he frs eraon each of he 4 vecors are used, wegh mar becomes Reduce Repea ranng. Afer 10 eraons, wegh mar becomes 6.7e e e e W W S1 and S3 belong o class 2 S2 and S4 belong o class 1 w_1 and w_2 are he cenrods of he wo classes

18 Commens 1. Ideally, when learnng sops, each s close o he cenrod of a group/cluser of sample npu vecors. 2. To sablze w, he learnng rae may be reduced slowly oward zero durng learnng. 3. # of oupu nodes: oo few: several clusers may be combned no one class oo many: over classfcaon ART model laer allows dynamc add/remove oupu nodes w 4. Inal : w ranng samples known o be n dsnc classes, provded such nfo s avalable random bad choces may cause anomaly

19 Eample w_2 w_1 w 1 w 2 wll always wn no maer he sample s from whch class s suck and wll no parcpae n learnng unsuck: le oupu nodes have some conscence emporarly sho off nodes whch have had very hgh wnnng rae hard o deermne wha rae should be consdered as very hgh

20 Kohonen Self-Organzng Maps SOM Compeve learnng Kohonen 1982 s a specal case of SOM Kohonen 1989 In compeve learnng, he nework s raned o organze npu vecor space no subspaces/classes/clusers each oupu node corresponds o one class he oupu nodes are no ordered: random map cluser_1 w_2 w_3 w_1 cluser_2 cluser_3 The opologcal order of he hree clusers s 1, 2, 3 The order of her maps a oupu nodes are 2, 3, 1 The map does no preserve he opologcal order of he ranng vecors

21 Topographc map a mappng ha preserves neghborhood relaons beween npu vecors, opology preservng or feaure preservng. f 1 and 2 are wo neghborng npu vecors by some dsance mercs, her correspondng wnnng oupu nodes classes, and mus also be close o each oher n some fashon one dmensonal: lne or rng, node has neghbors or ±1mod n wo dmensonal:grd. recangular: node, has neghbors:, ± 1, ± 1,, or addonal ± 1, ± 1 heagonal: 6 neghbors ±1

22 Bologcal movaon Mappng wo dmensonal connuous npus from sensory organ eyes, ears, skn, ec o wo dmensonal dscree oupus n he nerve sysem. Renoopc map: from eye rena o he vsual core. Tonoopc map: from he ear o he audory core These maps preserve opographc orders of npu. Bologcal evdence shows ha he connecons n hese maps are no enrely pre-programmed or pre-wred a brh. Learnng mus occur afer he brh o creae he necessary connecons for approprae opographc mappng.

23 Two layer nework: Oupu layer: SOM Archecure Each node represens a class of npus Node acvaon : y w w Neghborhood relaon s defned over hese nodes Each node cooperaes wh all s neghbors whn dsance R and compees wh all oher oupu nodes. Cooperaon and compeon of hese nodes can be realzed by Mecan Ha model R 0: all nodes are compeors no cooperave random map R > 0: opology preservng map

24 SOM Learnng 1. Inalze W for all oupu nodes, and o a small value 2. For a randomly seleced npu sample/eampler deermne he wnnng oupu node J eher W J s mamum or w J w s mnmum 3. For all oupu node wh J R, updae he wegh w w w 4. Perodcally reduce and R slowly. 5. Repea 2-4 unl he nework sablzed. 2

25 Noes 1. Inal weghs: small random value from -e, e 2. Reducon of : Lnear: Geomerc: β may be 1 or greaer han 1 3. Reducon of R: R R 1 whle R > 0 should be much slower han reducon. R can be a consan hrough ou he learnng. 4. Effec of learnng For each npu, no only he wegh vecor of wnner J s pulled closer o, bu also he weghs of J s close neghbors whn he radus of R. 5. Evenually, w becomes close smlar o w ± 1. The classes hey represen are also smlar. 6. May need large nal R

26 Eamples A smple eample of compeve learnng pp vecors of dmenson 4 n 2 classes 4 npu nodes, 2 oupu nodes S1 1, 1, 0, 0 S2 0, 0, 0, 1 S3 1, 0, 0, 0 S4 0, 0, 1, 1 Inalzaon: 0.6, wegh mar: Tranng wh S1 D1 S1 w W D 1 S1 w , class 2 wns w hen W

27 How o llusrae Kohonen map Inpu vecor: 2 dmensonal Oupu vecor: 1 dmensonal lne/rng or 2 dmensonal grd. Wegh vecor s also 2 dmenson Represen he opology of oupu nodes by pons on a 2 dmensonal plane. Plong each oupu node on he plane wh s wegh vecor as s coordnaes. Connecng neghborng oupu nodes by a lne oupu nodes: 1, 1 2, 1 1, 2 wegh vecors: 0.5, , , 0.9 C1, 2 C1, 1 C2, 1

28 Travelng Salesman Problem TSP by SOM Each cy s represened as a 2 dmensonal npu vecor s coordnaes, y, Oupu nodes C_ form a one dmensonal SOM, each node corresponds o a cy. Inally, C_1,..., C_n have random wegh vecors Durng learnng, a wnner C_ on an npu, y of cy I, no only moves s w_ oward, y, bu also ha of of s neghbors w_1, w_-1. As he resul, C_-1 and C_1 wll laer be more lkely o wn wh npu vecors smlar o, y,.e, hose ces closer o I A he end, f a node represens cy I, would end up o have s neghbors 1 or -1 o represen ces smlar o cy I,e., ces close o cy I. Ths can be vewed as a concurren greedy algorhm

29 Inal poson Two canddae soluons: ADFGHIJBC ADFGHIJCB

30 Addonal eamples

31

32 Couner propagaon nework CPN Basc dea of CPN Purpose: fas and coarse appromaon of vecor mappng y φ no o map any gven o s φ wh gven precson, npu vecors are dvded no clusers/classes. each cluser of has one oupu y, whch s hopefully he average of φ for all n ha class. Archecure: Smple case: FORWARD ONLY CPN, 1 z1 y1 v z w y k n z p y m from npu feaures o class from class o oupu feaures

33 Learnng n wo phases: ranng sample :y where y φ s he precse mappng Phase1: s raned by compeve learnng o become he represenave vecor of a cluser of npu vecors use sample only 1. For a chosen, feedforward o deermned he wnnng Reduce, hen repea seps 1 and 2 unl sop condon s me Phase 2: w s raned by dela rule o be an average oupu of φ where s an npu vecor ha causes z o wn use boh and y. 1. For a chosen, feedforward o deermned he wnnng 2. v new v old v old oponal 3. v w v new v old v old k new w old y w old k 4. Repea seps 1 3 unl sop condon s me k k z z

34 Noes A combnaon of boh unsupervsed learnng for n phase 1 and supervsed learnng for n phase 2. w Afer phase 1, clusers are formed among sample npu, each s a represenave of a cluser average. Afer phase 2, each cluser maps o an oupu vecor y, whch s he average of φ : cluser { } Vew phase 2 learnng as followng dela rule E w k w k yk w k where yk w k, because w k E 2 yk w k z 2 yk w k z when z wns w k w k I can be shown ha, when, v and w φ where s he mean of all ranng samples ha make wn v v

35 1 1 1 as rewreen be updaerule can ssmlar.wegh of proof Show only on v v w v k [ ] v v v v E E E E v E ] [1 1] [ ] [ 1] [ 1 hen If are drawn randomly from he ranng se,

36 Afer ranng, he nework works lke a look-up of mah able. For any npu, fnd a regon where falls represened by he wnng z node; use he regon as he nde o look-up he able for he funcon value. CPN works n mul-dmensonal npu space More cluser nodes z, more accurae mappng.

37 If boh y Full CPN φ and s nverse funcon φ we can esablsh b-dreconal appromaon Two pars of weghs marces: V o z and U z o y for appro. map o y φ W y o z and T z o for appro. map y o φ When :y s appled on X and y on Y, hey can only deermne he wnner J or separaely for z, pp for more deals 1 y es * J z Jy

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015

Learning Objectives. Self Organization Map. Hamming Distance(1/5) Introduction. Hamming Distance(3/5) Hamming Distance(2/5) 15/04/2015 /4/ Learnng Objecves Self Organzaon Map Learnng whou Exaples. Inroducon. MAXNET 3. Cluserng 4. Feaure Map. Self-organzng Feaure Map 6. Concluson 38 Inroducon. Learnng whou exaples. Daa are npu o he syse

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Anomaly eecon Lecure Noes for Chaper 9 Inroducon o aa Mnng, 2 nd Edon by Tan, Senbach, Karpane, Kumar 2/14/18 Inroducon o aa Mnng, 2nd Edon 1 Anomaly/Ouler eecon Wha are anomales/oulers? The se of daa

More information

CHAPTER 7: CLUSTERING

CHAPTER 7: CLUSTERING CHAPTER 7: CLUSTERING Semparamerc Densy Esmaon 3 Paramerc: Assume a snge mode for p ( C ) (Chapers 4 and 5) Semparamerc: p ( C ) s a mure of denses Mupe possbe epanaons/prooypes: Dfferen handwrng syes,

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Lecture 2 L n i e n a e r a M od o e d l e s

Lecture 2 L n i e n a e r a M od o e d l e s Lecure Lnear Models Las lecure You have learned abou ha s machne learnng Supervsed learnng Unsupervsed learnng Renforcemen learnng You have seen an eample learnng problem and he general process ha one

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

How about the more general linear scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )? lmcd Lnear ransformaon of a vecor he deas presened here are que general hey go beyond he radonal mar-vecor ype seen n lnear algebra Furhermore, hey do no deal wh bass and are equally vald for any se of

More information

Volatility Interpolation

Volatility Interpolation Volaly Inerpolaon Prelmnary Verson March 00 Jesper Andreasen and Bran Huge Danse Mares, Copenhagen wan.daddy@danseban.com brno@danseban.com Elecronc copy avalable a: hp://ssrn.com/absrac=69497 Inro Local

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Reinforcement Learning in Associative Memory

Reinforcement Learning in Associative Memory Renforcemen Learnng n Assocave Memory Shaojuan Zhu and Dan Hammersrom Cener for Bologcally Inspred Informaon Engneerng, ECE Deparmen OGI School of Scence and Engneerng a Oregon Healh & Scence Unversy {zhusj,

More information

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current : . A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering CS 536: Machne Learnng Nonparamerc Densy Esmaon Unsupervsed Learnng - Cluserng Fall 2005 Ahmed Elgammal Dep of Compuer Scence Rugers Unversy CS 536 Densy Esmaon - Cluserng - 1 Oulnes Densy esmaon Nonparamerc

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition EHEM ALPAYDI he MI Press, 04 Lecure Sldes for IRODUCIO O Machne Learnng 3rd Edon alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/ml3e Sldes from exboo resource page. Slghly eded and wh addonal examples

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2) Company LOGO THERMODYNAMICS The Frs Law and Oher Basc Conceps (par ) Deparmen of Chemcal Engneerng, Semarang Sae Unversy Dhon Harano S.T., M.T., M.Sc. Have you ever cooked? Equlbrum Equlbrum (con.) Equlbrum

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations. Soluons o Ordnary Derenal Equaons An ordnary derenal equaon has only one ndependen varable. A sysem o ordnary derenal equaons consss o several derenal equaons each wh he same ndependen varable. An eample

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

II. Light is a Ray (Geometrical Optics)

II. Light is a Ray (Geometrical Optics) II Lgh s a Ray (Geomercal Opcs) IIB Reflecon and Refracon Hero s Prncple of Leas Dsance Law of Reflecon Hero of Aleandra, who lved n he 2 nd cenury BC, posulaed he followng prncple: Prncple of Leas Dsance:

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES EP Queung heory and eleraffc sysems 3rd lecure Marov chans Brh-deah rocess - Posson rocess Vora Fodor KTH EES Oulne for oday Marov rocesses Connuous-me Marov-chans Grah and marx reresenaon Transen and

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

CHAPTER 2: Supervised Learning

CHAPTER 2: Supervised Learning HATER 2: Supervsed Learnng Learnng a lass from Eamples lass of a famly car redcon: Is car a famly car? Knowledge eracon: Wha do people epec from a famly car? Oupu: osve (+) and negave ( ) eamples Inpu

More information

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment EEL 6266 Power Sysem Operaon and Conrol Chaper 5 Un Commmen Dynamc programmng chef advanage over enumeraon schemes s he reducon n he dmensonaly of he problem n a src prory order scheme, here are only N

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

The topology and signature of the regulatory interactions predict the expression pattern of the segment polarity genes in Drosophila m elanogaster

The topology and signature of the regulatory interactions predict the expression pattern of the segment polarity genes in Drosophila m elanogaster The opology and sgnaure of he regulaory neracons predc he expresson paern of he segmen polary genes n Drosophla m elanogaser Hans Ohmer and Réka Alber Deparmen of Mahemacs Unversy of Mnnesoa Complex bologcal

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure Sldes for INTRDUCTIN T Machne Learnng ETHEM ALAYDIN The MIT ress, 2004 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/2ml CHATER 3: Hdden Marov Models Inroducon Modelng dependences n npu; no

More information

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2 COMPUTE SCIENCE 49A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PATS, PAT.. a Dene he erm ll-ondoned problem. b Gve an eample o a polynomal ha has ll-ondoned zeros.. Consder evaluaon o anh, where e e anh. e e

More information

Energy Storage Devices

Energy Storage Devices Energy Sorage Deces Objece of Lecure Descrbe he consrucon of a capacor and how charge s sored. Inroduce seeral ypes of capacors Dscuss he elecrcal properes of a capacor The relaonshp beween charge, olage,

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

National Exams December 2015 NOTES: 04-BS-13, Biology. 3 hours duration

National Exams December 2015 NOTES: 04-BS-13, Biology. 3 hours duration Naonal Exams December 205 04-BS-3 Bology 3 hours duraon NOTES: f doub exss as o he nerpreaon of any queson he canddae s urged o subm wh he answer paper a clear saemen of any assumpons made 2 Ths s a CLOSED

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

by Lauren DeDieu Advisor: George Chen

by Lauren DeDieu Advisor: George Chen b Laren DeDe Advsor: George Chen Are one of he mos powerfl mehods o nmercall solve me dependen paral dfferenal eqaons PDE wh some knd of snglar shock waves & blow-p problems. Fed nmber of mesh pons Moves

More information

Political Economy of Institutions and Development: Problem Set 2 Due Date: Thursday, March 15, 2019.

Political Economy of Institutions and Development: Problem Set 2 Due Date: Thursday, March 15, 2019. Polcal Economy of Insuons and Developmen: 14.773 Problem Se 2 Due Dae: Thursday, March 15, 2019. Please answer Quesons 1, 2 and 3. Queson 1 Consder an nfne-horzon dynamc game beween wo groups, an ele and

More information

Testing a new idea to solve the P = NP problem with mathematical induction

Testing a new idea to solve the P = NP problem with mathematical induction Tesng a new dea o solve he P = NP problem wh mahemacal nducon Bacground P and NP are wo classes (ses) of languages n Compuer Scence An open problem s wheher P = NP Ths paper ess a new dea o compare he

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Prakkum Polymer Scence/Polymersaonsechnk Versuch Resdence Tme Dsrbuon Polymerzaon Technology Laboraory Course Resdence Tme Dsrbuon of Chemcal Reacors If molecules or elemens of a flud are akng dfferen

More information

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria IOSR Journal of Mahemacs (IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume 0, Issue 4 Ver. IV (Jul-Aug. 04, PP 40-44 Mulple SolonSoluons for a (+-dmensonalhroa-sasuma shallow waer wave equaon UsngPanlevé-Bӓclund

More information

CS 268: Packet Scheduling

CS 268: Packet Scheduling Pace Schedulng Decde when and wha pace o send on oupu ln - Usually mplemened a oupu nerface CS 68: Pace Schedulng flow Ion Soca March 9, 004 Classfer flow flow n Buffer managemen Scheduler soca@cs.bereley.edu

More information

Li An-Ping. Beijing , P.R.China

Li An-Ping. Beijing , P.R.China A New Type of Cpher: DICING_csb L An-Png Bejng 100085, P.R.Chna apl0001@sna.com Absrac: In hs paper, we wll propose a new ype of cpher named DICING_csb, whch s derved from our prevous sream cpher DICING.

More information

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov June 7 e-ournal Relably: Theory& Applcaons No (Vol. CONFIDENCE INTERVALS ASSOCIATED WITH PERFORMANCE ANALYSIS OF SYMMETRIC LARGE CLOSED CLIENT/SERVER COMPUTER NETWORKS Absrac Vyacheslav Abramov School

More information

Supervised Learning in Multilayer Networks

Supervised Learning in Multilayer Networks Copyrgh Cambrdge Unversy Press 23. On-screen vewng permed. Prnng no permed. hp://www.cambrdge.org/521642981 You can buy hs book for 3 pounds or $5. See hp://www.nference.phy.cam.ac.uk/mackay/la/ for lnks.

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

P R = P 0. The system is shown on the next figure:

P R = P 0. The system is shown on the next figure: TPG460 Reservor Smulaon 08 page of INTRODUCTION TO RESERVOIR SIMULATION Analycal and numercal soluons of smple one-dmensonal, one-phase flow equaons As an nroducon o reservor smulaon, we wll revew he smples

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

Track Properities of Normal Chain

Track Properities of Normal Chain In. J. Conemp. Mah. Scences, Vol. 8, 213, no. 4, 163-171 HIKARI Ld, www.m-har.com rac Propes of Normal Chan L Chen School of Mahemacs and Sascs, Zhengzhou Normal Unversy Zhengzhou Cy, Hennan Provnce, 4544,

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Constrained-Storage Variable-Branch Neural Tree for. Classification

Constrained-Storage Variable-Branch Neural Tree for. Classification Consraned-Sorage Varable-Branch Neural Tree for Classfcaon Shueng-Ben Yang Deparmen of Dgal Conen of Applcaon and Managemen Wenzao Ursulne Unversy of Languages 900 Mnsu s oad Kaohsng 807, Tawan. Tel :

More information