Deterministic Time and Space Complexity Measures

Size: px
Start display at page:

Download "Deterministic Time and Space Complexity Measures"

Transcription

1 Deterministic Complexity Measures: Time and Space Deterministic Time and Space Complexity Measures Definition Let M be any DTM with L(M) Σ, and let x Σ be any input. For the computation M(x), define the time function and the space function, denoted respectively by Time M and Space M, both of which map from Σ to N, as follows: Time M (x) = Space M (x) = m undefined if M(x) has exactly m + 1 configurations otherwise; number of tape cells in a largest configuration of M(x) if M(x) terminates undefined otherwise. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 1 / 22

2 Deterministic Complexity Measures: Time and Space Blum s Axioms Let ϕ 0,ϕ 1,ϕ 2,... be a fixed Gödelization (i.e., an effective enumeration) of all one-argument functions in IP, the class of all partial recursive (i.e., computable) functions. Let IR be the class of all total (i.e., everywhere defined) recursive functions. Let Φ IP be a function mapping from N Σ to N, and write Φ i (x) as a shorthand for Φ(i, x). We say that Φ is a Blum complexity measure if and only if the following two axioms are satisfied: Axiom 1: For each i N, D Φi = D ϕi. Axiom 2: The set {(i, x, m) Φi (x) = m} is decidable. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 2 / 22

3 Deterministic Complexity Measures: Time and Space Deterministic Time and Space Complexity Measures Definition (continued) Define the functions time M : N N and space M : N N by: max Time M (x) if Time M (x) is defined for x: x =n time M (n) = each x with x = n undefined otherwise; space M (n) = max Space M (x) if Space M (x) is defined for x: x =n each x with x = n undefined otherwise. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 3 / 22

4 Deterministic Complexity Measures: Time and Space Deterministic Time and Space Complexity Classes Definition Let t and s be functions in IR mapping from N to N. Define the following deterministic complexity classes with resource function t and s, respectively: DTIME(t) = A DSPACE(s) = A A = L(M) for some DTM M and, for each n N, time M (n) t(n) A = L(M) for some DTM M and, for each n N, space M (n) s(n) ;. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 4 / 22

5 Deterministic Complexity Measures: Time and Space Deterministic Time and Space Complexity Classes Remark: Note that a deterministic Turing machine M decides its language. If A = L(M) then both time M (n) and space M (n) are defined for each n N. In contrast, a nondeterministic Turing machine accepts its language. Thus, the nondeterministic case is treated slightly differently. The resource functions t and s in are called the names of DTIME(t) and DSPACE(s), respectively. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 5 / 22

6 Deterministic Complexity Measures: Time and Space Deterministic Time and Space Complexity Classes Remark: If M is a Turing machine with more than one tape, then Space M (x), the size of a largest configuration of M(x), is defined to be the maximum number of tape cells, where the maximum is taken both over all tapes and over all configurations in the computation. If there is a separate read-only input tape, then only the space used on the working tapes is to be taken into account (reasonable due to sublinear space functions such as logarithmic space). J. Rothe (HHU Düsseldorf) Kryptokomplexität I 6 / 22

7 Nondeterministic Complexity Measures: Time and Space Nondeterministic Time and Space Measures Definition Let M be any NTM with L(M) Σ, and let x Σ be any input. Let Time M (x,α) and Space M (x,α) denote the time and space functions for each path α in M(x). For the computation M(x), define the nondeterministic time and space function, denoted by NTime M and NSpace M, both of which map from Σ to N, as follows: min Time M(x,α) if x L(M) NTime M (x) = M(x) accepts on path α undefined otherwise; NSpace M (x) = min Space M (x,α) if x L(M) M(x) accepts on path α undefined otherwise. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 7 / 22

8 Nondeterministic Complexity Measures: Time and Space Nondeterministic Time and Space Measures Definition (continued) Let t and s be functions in IR mapping from N to N. We say that M accepts a set A in time t if for each x A, we have NTime M (x) t( x ), and for each x A, M does not accept x. We say that M accepts a set A in space s if for each x A, we have NSpace M (x) s( x ), and for each x A, M does not accept x. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 8 / 22

9 Nondeterministic Complexity Measures: Time and Space Nondeterministic Time and Space Complexity Classes Definition (continued) Define the following nondeterministic complexity classes with resource function t and s, respectively: NTIME(t) = A A = L(M) for some NTM M that accepts A in time t(n) ; NSPACE(s) = A A = L(M) for some NTM M that accepts A in space s(n). J. Rothe (HHU Düsseldorf) Kryptokomplexität I 9 / 22

10 Resource Functions Resource Functions Remark: It is reasonable to consider collections F of similar resource functions and to define the complexity class corresponding to F by DTIME(F) = DTIME(f) etc. f F Such a collection F contains all resource functions with a similar rate of growth. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 10 / 22

11 Resource Functions Resource Functions Remark: Consider the collections of functions mapping from N to N each: ILin contains all linear functions, IPol contains all polynomials, 2 ILin contains all exponential functions whose exponent is linear in n, and 2 IPol contains all exponential functions whose exponent is polynomial in n. More generally, for any function t : N N, define the collection of all functions linear in t (respectively, polynomial in t) by: ILin(t) = {f f = l t and l ILin}; IPol(t) = {f f = p t and p IPol}. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 11 / 22

12 Asymptotic Rate of Growth Asymptotic Rate-of-Growth Notation Definition For functions f and g mapping from N to N, define the following notation: f(n) ae g(n) to mean that f(n) g(n) is true for all but finitely many n N. Analogously, the notations < ae, ae, and > ae are defined. The subscript ae of ae, etc. stands for almost everywhere. Similarly, the notation f(n) io g(n) means that f(n) g(n) is true for infinitely many n N. Analogously, the notations < io, io, and > io are defined. The subscript io of io, etc. stands for infinitely often. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 12 / 22

13 Asymptotic Rate of Growth Asymptotic Rate-of-Growth Notation Definition For functions f and g mapping from N to N, define the following notation: f O(g) there is a real constant c > 0 such that f(n)+1 ae c (g(n)+1). f o(g) for all real constants c > 0, f(n)+1 < ae c (g(n)+1). J. Rothe (HHU Düsseldorf) Kryptokomplexität I 13 / 22

14 Asymptotic Rate of Growth Asymptotic Rate-of-Growth Notation Definition f g lim sup n f(n)+1 g(n)+1 <. Note that f O(g) f g. Intuitively, f g means that, by order of magnitude, f does not grow faster than g, with at most finitely many exceptions allowed. f g lim sup n f(n)+1 g(n)+1 = 0. Note that f o(g) f g. Intuitively, f g means that, by order of magnitude, g does grow strictly faster than f, with at most finitely many exceptions allowed. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 14 / 22

15 Asymptotic Rate of Growth Asymptotic Rate-of-Growth Notation Definition f io g lim inf n f(n)+1 g(n)+1 <. Intuitively, f io g means that, by order of magnitude, f does not grow faster than g, at least not for infinitely many arguments. f io g lim inf n f(n)+1 g(n)+1 = 0. Intuitively, f io g means that, by order of magnitude, g does grow strictly faster than f, at least for infinitely many arguments. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 15 / 22

16 Asymptotic Rate of Growth Asymptotic Rate-of-Growth Notation Definition Write f g for g f, f g for g f, f io g for g io f, and f io g for g io f. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 16 / 22

17 Some Central Worst-Case Complexity Classes Some Central Worst-Case Complexity Classes Space classes L = DSPACE(log) NL = NSPACE(log) LINSPACE = DSPACE(ILin) NLINSPACE = NSPACE(ILin) PSPACE = DSPACE(IPol) NPSPACE = NSPACE(IPol) EXPSPACE = DSPACE(2 IPol ) NEXPSPACE = NSPACE(2 IPol ) J. Rothe (HHU Düsseldorf) Kryptokomplexität I 17 / 22

18 Some Central Worst-Case Complexity Classes Some Central Worst-Case Complexity Classes Time classes REALTIME = DTIME(id) LINTIME = DTIME(ILin) P = DTIME(IPol) NP = NTIME(IPol) E = DTIME(2 ILin ) NE = NTIME(2 ILin ) EXP = DTIME(2 IPol ) NEXP = NTIME(2 IPol ) J. Rothe (HHU Düsseldorf) Kryptokomplexität I 18 / 22

19 Some Central Worst-Case Complexity Classes Polynomial versus Exponential Functions t(n) n = 10 n = 20 n = 30 n sec sec sec n sec.0004 sec.0009 sec n sec.008 sec.027 sec n 5.1 sec 3.2 sec 24.3 sec 2 n.001 sec 1.0 sec 17.9 min 3 n.059 sec 58 min 6.5 years Table: Comparing some functions (Garey & Johnson 1979) J. Rothe (HHU Düsseldorf) Kryptokomplexität I 19 / 22

20 Some Central Worst-Case Complexity Classes Polynomial versus Exponential Functions t(n) n = 40 n = 50 n = 60 n sec sec sec n sec.0025 sec.0036 sec n sec.125 sec.256 sec n min 5.2 min 13.0 min 2 n 12.7 days 35.7 years 366 centuries 3 n 3855 centuries centuries centuries Table: Comparing some functions (Garey & Johnson 1979) J. Rothe (HHU Düsseldorf) Kryptokomplexität I 20 / 22

21 Some Central Worst-Case Complexity Classes What if the Computers Get Faster? t i (n) Computer 100 times 1000 times today faster faster t 1 (n) = n N N N 1 t 2 (n) = n 2 N 2 10 N N 2 t 3 (n) = n 3 N N 3 10 N 3 t 4 (n) = n 5 N N N 4 t 5 (n) = 2 n N 5 N N t 6 (n) = 3 n N 6 N N Table: What if the computers get faster? (Garey & Johnson 1979) J. Rothe (HHU Düsseldorf) Kryptokomplexität I 21 / 22

22 Some Central Worst-Case Complexity Classes Time versus Space for Deterministic Classes Theorem 1 DTIME(t) DSPACE(t). 2 DSPACE(s) DTIME(2 ILin(s) ) if s log. Proof: See blackboard. J. Rothe (HHU Düsseldorf) Kryptokomplexität I 22 / 22

The space complexity of a standard Turing machine. The space complexity of a nondeterministic Turing machine

The space complexity of a standard Turing machine. The space complexity of a nondeterministic Turing machine 298 8. Space Complexity The space complexity of a standard Turing machine M = (Q,,,, q 0, accept, reject) on input w is space M (w) = max{ uav : q 0 w M u q av, q Q, u, a, v * } The space complexity of

More information

Space Complexity. The space complexity of a program is how much memory it uses.

Space Complexity. The space complexity of a program is how much memory it uses. Space Complexity The space complexity of a program is how much memory it uses. Measuring Space When we compute the space used by a TM, we do not count the input (think of input as readonly). We say that

More information

Lecture 5: The Landscape of Complexity Classes

Lecture 5: The Landscape of Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 5: The Landscape of Complexity Classes David Mix Barrington and Alexis Maciel July 21,

More information

Lecture 3: Reductions and Completeness

Lecture 3: Reductions and Completeness CS 710: Complexity Theory 9/13/2011 Lecture 3: Reductions and Completeness Instructor: Dieter van Melkebeek Scribe: Brian Nixon Last lecture we introduced the notion of a universal Turing machine for deterministic

More information

Introduction to Complexity Classes. Marcin Sydow

Introduction to Complexity Classes. Marcin Sydow Denition TIME(f(n)) TIME(f(n)) denotes the set of languages decided by deterministic TM of TIME complexity f(n) Denition SPACE(f(n)) denotes the set of languages decided by deterministic TM of SPACE complexity

More information

Introduction to Computational Complexity

Introduction to Computational Complexity Introduction to Computational Complexity A 10-lectures Graduate Course Martin Stigge, martin.stigge@it.uu.se Uppsala University, Sweden 13.7. - 17.7.2009 Martin Stigge (Uppsala University, SE) Computational

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Hierarchy theorems. Evgenij Thorstensen V18. Evgenij Thorstensen Hierarchy theorems V18 1 / 18

Hierarchy theorems. Evgenij Thorstensen V18. Evgenij Thorstensen Hierarchy theorems V18 1 / 18 Hierarchy theorems Evgenij Thorstensen V18 Evgenij Thorstensen Hierarchy theorems V18 1 / 18 Comparing functions To prove results like TIME(f(n)) TIME(g(n)), we need a stronger notion of one function growing

More information

Complexity Theory 112. Space Complexity

Complexity Theory 112. Space Complexity Complexity Theory 112 Space Complexity We ve already seen the definition SPACE(f(n)): the languages accepted by a machine which uses O(f(n)) tape cells on inputs of length n. Counting only work space NSPACE(f(n))

More information

Chapter 1 - Time and Space Complexity. deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE

Chapter 1 - Time and Space Complexity. deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE Chapter 1 - Time and Space Complexity deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE 1 / 41 Deterministic Turing machines Definition 1.1 A (deterministic

More information

Lecture 21: Space Complexity (The Final Exam Frontier?)

Lecture 21: Space Complexity (The Final Exam Frontier?) 6.045 Lecture 21: Space Complexity (The Final Exam Frontier?) 1 conp NP MIN-FORMULA conp P NP FIRST-SAT TAUT P FACTORING SAT NP NP NP 2 VOTE VOTE VOTE For your favorite course on automata and complexity

More information

Resource-Bounded Computation

Resource-Bounded Computation Resource-Bounded Computation Previously: can something be done? Now: how efficiently can it be done? Goal: conserve computational resources: Time, space, other resources? Def: L is decidable within time

More information

Time Complexity. Definition. Let t : n n be a function. NTIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM}

Time Complexity. Definition. Let t : n n be a function. NTIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM} Time Complexity Definition Let t : n n be a function. TIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM} NTIME(t(n)) = {L L is a language decidable by a O(t(n)) non-deterministic

More information

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26 Space Complexity Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Space 1/26 Outline Basics on Space Complexity Main Space Complexity Classes Deterministic and Non-Deterministic

More information

P vs. NP Classes. Prof. (Dr.) K.R. Chowdhary.

P vs. NP Classes. Prof. (Dr.) K.R. Chowdhary. P vs. NP Classes Prof. (Dr.) K.R. Chowdhary Email: kr.chowdhary@iitj.ac.in Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur Monday 10 th April, 2017 kr chowdhary

More information

Introduction to Computational Complexity

Introduction to Computational Complexity Introduction to Computational Complexity Jiyou Li lijiyou@sjtu.edu.cn Department of Mathematics, Shanghai Jiao Tong University Sep. 24th, 2013 Computation is everywhere Mathematics: addition; multiplication;

More information

Computability and Complexity CISC462, Fall 2018, Space complexity 1

Computability and Complexity CISC462, Fall 2018, Space complexity 1 Computability and Complexity CISC462, Fall 2018, Space complexity 1 SPACE COMPLEXITY This material is covered in Chapter 8 of the textbook. For simplicity, we define the space used by a Turing machine

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Space Complexity John E. Savage Brown University February 11, 2008 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February 11,

More information

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity CSE 531: Computational Complexity I Winter 2016 Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity January 22, 2016 Lecturer: Paul Beame Scribe: Paul Beame Diagonalization enabled us to separate

More information

Lecture 2: Tape reduction and Time Hierarchy

Lecture 2: Tape reduction and Time Hierarchy Computational Complexity Theory, Fall 2010 August 27 Lecture 2: Tape reduction and Time Hierarchy Lecturer: Peter Bro Miltersen Scribe: Andreas Hummelshøj Jakobsen Tape reduction Theorem 1 (k-tapes 2-tape

More information

MTAT Complexity Theory October 13th-14th, Lecture 6

MTAT Complexity Theory October 13th-14th, Lecture 6 MTAT.07.004 Complexity Theory October 13th-14th, 2011 Lecturer: Peeter Laud Lecture 6 Scribe(s): Riivo Talviste 1 Logarithmic memory Turing machines working in logarithmic space become interesting when

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 7 Distinguish between computability and complexity Articulate motivation questions

More information

CS5371 Theory of Computation. Lecture 23: Complexity VIII (Space Complexity)

CS5371 Theory of Computation. Lecture 23: Complexity VIII (Space Complexity) CS5371 Theory of Computation Lecture 23: Complexity VIII (Space Complexity) Objectives Introduce Space Complexity Savitch s Theorem The class PSPACE Space Complexity Definition [for DTM]: Let M be a DTM

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Polynomial Time Computation. Topics in Logic and Complexity Handout 2. Nondeterministic Polynomial Time. Succinct Certificates.

Polynomial Time Computation. Topics in Logic and Complexity Handout 2. Nondeterministic Polynomial Time. Succinct Certificates. 1 2 Topics in Logic and Complexity Handout 2 Anuj Dawar MPhil Advanced Computer Science, Lent 2010 Polynomial Time Computation P = TIME(n k ) k=1 The class of languages decidable in polynomial time. The

More information

Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ) Υπολογιστική Πολυπλοκότητα Εργαστήριο Λογικής και Επιστήμης Υπολογισμών Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ) Υπολογιστική Πολυπλοκότητα Εργαστήριο Λογικής και Επιστήμης Υπολογισμών Εθνικό Μετσόβιο Πολυτεχνείο Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ) Υπολογιστική Πολυπλοκότητα Εργαστήριο Λογικής και Επιστήμης Υπολογισμών Εθνικό Μετσόβιο Πολυτεχνείο 2016-2017 Πληροφορίες Μαθήματος Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ) Αλγόριθμοι

More information

: On the P vs. BPP problem. 30/12/2016 Lecture 12

: On the P vs. BPP problem. 30/12/2016 Lecture 12 03684155: On the P vs. BPP problem. 30/12/2016 Lecture 12 Time Hierarchy Theorems Amnon Ta-Shma and Dean Doron 1 Diagonalization arguments Throughout this lecture, for a TM M, we denote M t to be the machine

More information

Computational Complexity IV: PSPACE

Computational Complexity IV: PSPACE Seminar on Theoretical Computer Science and Discrete Mathematics Aristotle University of Thessaloniki Context 1 Section 1: PSPACE 2 3 4 Time Complexity Time complexity of DTM M: - Increasing function t:

More information

CS5371 Theory of Computation. Lecture 23: Complexity VIII (Space Complexity)

CS5371 Theory of Computation. Lecture 23: Complexity VIII (Space Complexity) CS5371 Theory of Computation Lecture 23: Complexity VIII (Space Complexity) Objectives Introduce Space Complexity Savitch s Theorem The class PSPACE Space Complexity Definition [for DTM]: Let M be a DTM

More information

Advanced Topics in Theoretical Computer Science

Advanced Topics in Theoretical Computer Science Advanced Topics in Theoretical Computer Science Part 5: Complexity (Part II) 30.01.2014 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Contents Recall: Turing

More information

Theory of Computation

Theory of Computation Theory of Computation Unit 4-6: Turing Machines and Computability Decidability and Encoding Turing Machines Complexity and NP Completeness Syedur Rahman syedurrahman@gmail.com Turing Machines Q The set

More information

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005 Complexity Theory Knowledge Representation and Reasoning November 2, 2005 (Knowledge Representation and Reasoning) Complexity Theory November 2, 2005 1 / 22 Outline Motivation Reminder: Basic Notions Algorithms

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 9/6/2004. Notes for Lecture 3

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 9/6/2004. Notes for Lecture 3 U.C. Berkeley CS278: Computational Complexity Handout N3 Professor Luca Trevisan 9/6/2004 Notes for Lecture 3 Revised 10/6/04 1 Space-Bounded Complexity Classes A machine solves a problem using space s(

More information

CS601 DTIME and DSPACE Lecture 5. Time and Space functions: t,s : N N +

CS601 DTIME and DSPACE Lecture 5. Time and Space functions: t,s : N N + CS61 DTIME and DSPACE Lecture 5 Time and Space functions: t,s : N N + Definition 5.1 A set A U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constantc, such that, 1. A = L(M)

More information

Notes on Space-Bounded Complexity

Notes on Space-Bounded Complexity U.C. Berkeley CS172: Automata, Computability and Complexity Handout 6 Professor Luca Trevisan 4/13/2004 Notes on Space-Bounded Complexity These are notes for CS278, Computational Complexity, scribed by

More information

Time-Space Tradeoffs for SAT

Time-Space Tradeoffs for SAT Lecture 8 Time-Space Tradeoffs for SAT April 22, 2004 Lecturer: Paul Beame Notes: Definition 8.1. TIMESPACE(T (n), S(n)) = {L {0, 1} offline, multitape TM M such that L = L(M) and M uses time O(T (n))

More information

Lecture 8: Alternatation. 1 Alternate Characterizations of the Polynomial Hierarchy

Lecture 8: Alternatation. 1 Alternate Characterizations of the Polynomial Hierarchy CS 710: Complexity Theory 10/4/2011 Lecture 8: Alternatation Instructor: Dieter van Melkebeek Scribe: Sachin Ravi In this lecture, we continue with our discussion of the polynomial hierarchy complexity

More information

MTAT Complexity Theory October 20th-21st, Lecture 7

MTAT Complexity Theory October 20th-21st, Lecture 7 MTAT.07.004 Complexity Theory October 20th-21st, 2011 Lecturer: Peeter Laud Lecture 7 Scribe(s): Riivo Talviste Polynomial hierarchy 1 Turing reducibility From the algorithmics course, we know the notion

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Logistics HW7 due tonight Thursday's class: REVIEW Final exam on Thursday Dec 8, 8am-11am, LEDDN AUD Note card allowed

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

DIMACS Technical Report May Complexity Classes. Eric Allender 1;2. Dept. of Computer Science. Rutgers University

DIMACS Technical Report May Complexity Classes. Eric Allender 1;2. Dept. of Computer Science. Rutgers University DIMACS Technical Report 98-23 May 1998 Complexity Classes by Eric Allender 1;2 Dept. of Computer Science Rutgers University New Brunswick, New Jersey 08903 Michael C. Loui 3 University of Illinois at Urbana-Champaign

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 22 Last time Review Today: Finish recursion theorem Complexity theory Exam 2 solutions out Homework 9 out Sofya Raskhodnikova L22.1 I-clicker question (frequency:

More information

Complexity of domain-independent planning. José Luis Ambite

Complexity of domain-independent planning. José Luis Ambite Complexity of domain-independent planning José Luis Ambite 1 Decidability Decision problem: a problem with a yes/no answer e.g. is N prime? Decidable: if there is a program (i.e. a Turing Machine) that

More information

Could we potentially place A in a smaller complexity class if we consider other computational models?

Could we potentially place A in a smaller complexity class if we consider other computational models? Introduction to Complexity Theory Big O Notation Review Linear function: r(n) =O(n). Polynomial function: r(n) =2 O(1) Exponential function: r(n) =2 no(1) Logarithmic function: r(n) = O(log n) Poly-log

More information

NP, polynomial-time mapping reductions, and NP-completeness

NP, polynomial-time mapping reductions, and NP-completeness NP, polynomial-time mapping reductions, and NP-completeness In the previous lecture we discussed deterministic time complexity, along with the time-hierarchy theorem, and introduced two complexity classes:

More information

Outline. Complexity Theory. Example. Sketch of a log-space TM for palindromes. Log-space computations. Example VU , SS 2018

Outline. Complexity Theory. Example. Sketch of a log-space TM for palindromes. Log-space computations. Example VU , SS 2018 Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 3. Logarithmic Space Reinhard Pichler Institute of Logic and Computation DBAI Group TU Wien 3. Logarithmic Space 3.1 Computational

More information

Notes on Space-Bounded Complexity

Notes on Space-Bounded Complexity U.C. Berkeley CS172: Automata, Computability and Complexity Handout 7 Professor Luca Trevisan April 14, 2015 Notes on Space-Bounded Complexity These are notes for CS278, Computational Complexity, scribed

More information

Review of Basic Computational Complexity

Review of Basic Computational Complexity Lecture 1 Review of Basic Computational Complexity March 30, 2004 Lecturer: Paul Beame Notes: Daniel Lowd 1.1 Preliminaries 1.1.1 Texts There is no one textbook that covers everything in this course. Some

More information

Computational Complexity

Computational Complexity CS311 Computational Structures Computational Complexity Lecture 16 Andrew P. Black Andrew Tolmach 1 So, itʼs computable! But at what cost? Some things that are computable in principle are in practice intractable

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Reasoning Complexity Theory Bernhard Nebel, Malte Helmert and Stefan Wölfl Albert-Ludwigs-Universität Freiburg April 29, 2008 Nebel, Helmert, Wölfl (Uni Freiburg)

More information

Theory of Computation

Theory of Computation Theory of Computation Dr. Sarmad Abbasi Dr. Sarmad Abbasi () Theory of Computation 1 / 38 Lecture 21: Overview Big-Oh notation. Little-o notation. Time Complexity Classes Non-deterministic TMs The Class

More information

Definition: Alternating time and space Game Semantics: State of machine determines who

Definition: Alternating time and space Game Semantics: State of machine determines who CMPSCI 601: Recall From Last Time Lecture Definition: Alternating time and space Game Semantics: State of machine determines who controls, White wants it to accept, Black wants it to reject. White wins

More information

Lecture 3. 1 Terminology. 2 Non-Deterministic Space Complexity. Notes on Complexity Theory: Fall 2005 Last updated: September, 2005.

Lecture 3. 1 Terminology. 2 Non-Deterministic Space Complexity. Notes on Complexity Theory: Fall 2005 Last updated: September, 2005. Notes on Complexity Theory: Fall 2005 Last updated: September, 2005 Jonathan Katz Lecture 3 1 Terminology For any complexity class C, we define the class coc as follows: coc def = { L L C }. One class

More information

Lecture 12: Randomness Continued

Lecture 12: Randomness Continued CS 710: Complexity Theory 2/25/2010 Lecture 12: Randomness Continued Instructor: Dieter van Melkebeek Scribe: Beth Skubak & Nathan Collins In the last lecture we introduced randomized computation in terms

More information

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5 UC Berkeley Handout N5 CS94: Pseudorandomness and Combinatorial Constructions September 3, 005 Professor Luca Trevisan Scribe: Gatis Midrijanis Notes for Lecture 5 In the few lectures we are going to look

More information

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite The Church-Turing Thesis CS60001: Foundations of Computing Science Professor, Dept. of Computer Sc. & Engg., Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q 0, q accept, q reject ), where

More information

Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death Robbie Hott www.cs.virginia.edu/~jh2jf Department of Computer Science University of Virginia

More information

Time Complexity. CS60001: Foundations of Computing Science

Time Complexity. CS60001: Foundations of Computing Science Time Complexity CS60001: Foundations of Computing Science Professor, Dept. of Computer Sc. & Engg., Measuring Complexity Definition Let M be a deterministic Turing machine that halts on all inputs. The

More information

Intractable Problems [HMU06,Chp.10a]

Intractable Problems [HMU06,Chp.10a] Intractable Problems [HMU06,Chp.10a] Time-Bounded Turing Machines Classes P and NP Polynomial-Time Reductions A 10 Minute Motivation https://www.youtube.com/watch?v=yx40hbahx3s 1 Time-Bounded TM s A Turing

More information

Lecture 16: Time Complexity and P vs NP

Lecture 16: Time Complexity and P vs NP 6.045 Lecture 16: Time Complexity and P vs NP 1 Time-Bounded Complexity Classes Definition: TIME(t(n)) = { L there is a Turing machine M with time complexity O(t(n)) so that L = L(M) } = { L L is a language

More information

ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness. Prof. Peter Bermel January 11, 2017

ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness. Prof. Peter Bermel January 11, 2017 ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness Prof. Peter Bermel January 11, 2017 Outline Overview Definitions Computing Machines Church-Turing Thesis Polynomial Time (Class P)

More information

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs Any Expression φ Can Be Converted into CNFs and DNFs φ = x j : This is trivially true. φ = φ 1 and a CNF is sought: Turn φ 1 into a DNF and apply de Morgan s laws to make a CNF for φ. φ = φ 1 and a DNF

More information

Computational Complexity Theory. Markus Bläser, Holger Dell Universität des Saarlandes Draft November 14, 2016 and forever

Computational Complexity Theory. Markus Bläser, Holger Dell Universität des Saarlandes Draft November 14, 2016 and forever Computational Complexity Theory Markus Bläser, Holger Dell Universität des Saarlandes Draft November 14, 2016 and forever 2 1 Simple lower bounds and gaps Complexity theory is the science of classifying

More information

Computational Complexity III: Limits of Computation

Computational Complexity III: Limits of Computation : Limits of Computation School of Informatics Thessaloniki Seminar on Theoretical Computer Science and Discrete Mathematics Aristotle University of Thessaloniki Context 1 2 3 Computability vs Complexity

More information

Time-bounded computations

Time-bounded computations Lecture 18 Time-bounded computations We now begin the final part of the course, which is on complexity theory. We ll have time to only scratch the surface complexity theory is a rich subject, and many

More information

Chapter 6: Turing Machines

Chapter 6: Turing Machines Chapter 6: Turing Machines 6.1 The Turing Machine Definition A deterministic Turing machine (DTM) M is specified by a sextuple (Q, Σ, Γ, δ, s, f), where Q is a finite set of states; Σ is an alphabet of

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

Computational Complexity CSCI-GA Subhash Khot Transcribed by Patrick Lin

Computational Complexity CSCI-GA Subhash Khot Transcribed by Patrick Lin Computational Complexity CSCI-GA 3350 Subhash Khot Transcribed by Patrick Lin Abstract. These notes are from a course in Computational Complexity, as offered in Spring 2014 at the Courant Institute of

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 7.2, 7.3 Distinguish between polynomial and exponential DTIME Define nondeterministic

More information

Computational Complexity Theory. Markus Bläser Universität des Saarlandes Draft January 23, 2014 and forever

Computational Complexity Theory. Markus Bläser Universität des Saarlandes Draft January 23, 2014 and forever Computational Complexity Theory Markus Bläser Universität des Saarlandes Draft January 23, 24 and forever 2 1 Simple lower bounds and gaps Complexity theory is the science of classifying problems with

More information

Logarithmic space. Evgenij Thorstensen V18. Evgenij Thorstensen Logarithmic space V18 1 / 18

Logarithmic space. Evgenij Thorstensen V18. Evgenij Thorstensen Logarithmic space V18 1 / 18 Logarithmic space Evgenij Thorstensen V18 Evgenij Thorstensen Logarithmic space V18 1 / 18 Journey below Unlike for time, it makes sense to talk about sublinear space. This models computations on input

More information

Artificial Intelligence. 3 Problem Complexity. Prof. Dr. Jana Koehler Fall 2016 HSLU - JK

Artificial Intelligence. 3 Problem Complexity. Prof. Dr. Jana Koehler Fall 2016 HSLU - JK Artificial Intelligence 3 Problem Complexity Prof. Dr. Jana Koehler Fall 2016 Agenda Computability and Turing Machines Tractable and Intractable Problems P vs. NP Decision Problems Optimization problems

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation CISC 4090 Theory of Computation Complexity Professor Daniel Leeds dleeds@fordham.edu JMH 332 Computability Are we guaranteed to get an answer? Complexity How long do we have to wait for an answer? (Ch7)

More information

Definition: Alternating time and space Game Semantics: State of machine determines who

Definition: Alternating time and space Game Semantics: State of machine determines who CMPSCI 601: Recall From Last Time Lecture 3 Definition: Alternating time and space Game Semantics: State of machine determines who controls, White wants it to accept, Black wants it to reject. White wins

More information

Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes

Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes Beyond NP [HMU06,Chp.11a] Tautology Problem NP-Hardness and co-np Historical Comments Optimization Problems More Complexity Classes 1 Tautology Problem & NP-Hardness & co-np 2 NP-Hardness Another essential

More information

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008 CS 301 - Lecture 28 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Mm7 Intro to distributed computing (jmp) Mm8 Backtracking, 2-player games, genetic algorithms (hps) Mm9 Complex Problems in Network Planning (JMP)

Mm7 Intro to distributed computing (jmp) Mm8 Backtracking, 2-player games, genetic algorithms (hps) Mm9 Complex Problems in Network Planning (JMP) Algorithms and Architectures II H-P Schwefel, Jens M. Pedersen Mm6 Advanced Graph Algorithms (hps) Mm7 Intro to distributed computing (jmp) Mm8 Backtracking, 2-player games, genetic algorithms (hps) Mm9

More information

1 Deterministic Turing Machines

1 Deterministic Turing Machines Time and Space Classes Exposition by William Gasarch 1 Deterministic Turing Machines Turing machines are a model of computation. It is believed that anything that can be computed can be computed by a Turing

More information

Lecture 22: PSPACE

Lecture 22: PSPACE 6.045 Lecture 22: PSPACE 1 VOTE VOTE VOTE For your favorite course on automata and complexity Please complete the online subject evaluation for 6.045 2 Final Exam Information Who: You On What: Everything

More information

INAPPROX APPROX PTAS. FPTAS Knapsack P

INAPPROX APPROX PTAS. FPTAS Knapsack P CMPSCI 61: Recall From Last Time Lecture 22 Clique TSP INAPPROX exists P approx alg for no ε < 1 VertexCover MAX SAT APPROX TSP some but not all ε< 1 PTAS all ε < 1 ETSP FPTAS Knapsack P poly in n, 1/ε

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM)? Proposed by Alan Turing in 936 finite-state control + infinitely long tape A

More information

Variations of the Turing Machine

Variations of the Turing Machine Variations of the Turing Machine 1 The Standard Model Infinite Tape a a b a b b c a c a Read-Write Head (Left or Right) Control Unit Deterministic 2 Variations of the Standard Model Turing machines with:

More information

The Polynomial Hierarchy

The Polynomial Hierarchy The Polynomial Hierarchy Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Motivation..synthesizing circuits is exceedingly difficulty. It is even

More information

Space Complexity. Huan Long. Shanghai Jiao Tong University

Space Complexity. Huan Long. Shanghai Jiao Tong University Space Complexity Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/ chen/

More information

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness 15-455 COMPLEXITY THEORY Space Complexity: Savitch's Theorem and PSPACE- Completeness October 30,2012 MEASURING SPACE COMPLEXITY FINITE STATE CONTROL I N P U T 1 2 3 4 5 6 7 8 9 10 We measure space complexity

More information

Review of unsolvability

Review of unsolvability Review of unsolvability L L H To prove unsolvability: show a reduction. To prove solvability: show an algorithm. Unsolvable problems (main insight) Turing machine (algorithm) properties Pattern matching

More information

Time Complexity (1) CSCI Spring Original Slides were written by Dr. Frederick W Maier. CSCI 2670 Time Complexity (1)

Time Complexity (1) CSCI Spring Original Slides were written by Dr. Frederick W Maier. CSCI 2670 Time Complexity (1) Time Complexity (1) CSCI 2670 Original Slides were written by Dr. Frederick W Maier Spring 2014 Time Complexity So far we ve dealt with determining whether or not a problem is decidable. But even if it

More information

Computational Complexity Theory. Markus Bläser, Holger Dell, Karteek Sreenivasaiah Universität des Saarlandes Draft June 15, 2015 and forever

Computational Complexity Theory. Markus Bläser, Holger Dell, Karteek Sreenivasaiah Universität des Saarlandes Draft June 15, 2015 and forever Computational Complexity Theory Markus Bläser, Holger Dell, Karteek Sreenivasaiah Universität des Saarlandes Draft June 15, 2015 and forever 2 1 Simple lower bounds and gaps Complexity theory is the science

More information

Finish K-Complexity, Start Time Complexity

Finish K-Complexity, Start Time Complexity 6.045 Finish K-Complexity, Start Time Complexity 1 Kolmogorov Complexity Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string such that M(w) halts

More information

Computational complexity

Computational complexity COMS11700 Computational complexity Department of Computer Science, University of Bristol Bristol, UK 2 May 2014 COMS11700: Computational complexity Slide 1/23 Introduction If we can prove that a language

More information

COSE215: Theory of Computation. Lecture 21 P, NP, and NP-Complete Problems

COSE215: Theory of Computation. Lecture 21 P, NP, and NP-Complete Problems COSE215: Theory of Computation Lecture 21 P, NP, and NP-Complete Problems Hakjoo Oh 2017 Spring Hakjoo Oh COSE215 2017 Spring, Lecture 21 June 11, 2017 1 / 11 Contents 1 The classes P and N P Reductions

More information

CS151 Complexity Theory. Lecture 4 April 12, 2017

CS151 Complexity Theory. Lecture 4 April 12, 2017 CS151 Complexity Theory Lecture 4 A puzzle A puzzle: two kinds of trees depth n...... cover up nodes with c colors promise: never color arrow same as blank determine which kind of tree in poly(n, c) steps?

More information

The P versus NP Problem. Dean Casalena University of Cape Town CSLDEA001

The P versus NP Problem. Dean Casalena University of Cape Town CSLDEA001 The P versus NP Problem Dean Casalena University of Cape Town CSLDEA001 dean@casalena.co.za Contents 1. Introduction 2. Turing Machines and Syntax 2.1 Overview 2.2 Turing Machine Syntax. 2.3 Polynomial

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

Chapter 7: Time Complexity

Chapter 7: Time Complexity Chapter 7: Time Complexity 1 Time complexity Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity of M is the function f: N N, where f(n) is the maximum

More information

COMP 382: Reasoning about algorithms

COMP 382: Reasoning about algorithms Fall 2014 Unit 4: Basics of complexity analysis Correctness and efficiency So far, we have talked about correctness and termination of algorithms What about efficiency? Running time of an algorithm For

More information

Theory of Computation. Ch.8 Space Complexity. wherein all branches of its computation halt on all

Theory of Computation. Ch.8 Space Complexity. wherein all branches of its computation halt on all Definition 8.1 Let M be a deterministic Turing machine, DTM, that halts on all inputs. The space complexity of M is the function f : N N, where f(n) is the maximum number of tape cells that M scans on

More information

PSPACE, NPSPACE, L, NL, Savitch's Theorem. More new problems that are representa=ve of space bounded complexity classes

PSPACE, NPSPACE, L, NL, Savitch's Theorem. More new problems that are representa=ve of space bounded complexity classes PSPACE, NPSPACE, L, NL, Savitch's Theorem More new problems that are representa=ve of space bounded complexity classes Outline for today How we'll count space usage Space bounded complexity classes New

More information