Time Series Analysis


 Todd Montgomery
 2 years ago
 Views:
Transcription
1 Time Series Analysis
2 A time series is a sequence of observations made: 1) over a continuous time interval, 2) of successive measurements across that interval, 3) using equal spacing between consecutive measurements, 4) with each time unit within the time interval having only one data point. Some examples include: Monthly mean temperature from Daily Down Jones Industrial average.
3 Wetland Enhanced Vegetation Index Measurements: Date EVI Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Date EVI Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Date EVI Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Date EVI Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Nov Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
4 Time Series Analyses allow us to answer the questions: Do these data exhibit seasonal (fixed pattern) variation? Do these data exhibit a trend (increasing or decreasing)? Do these data exhibit a cyclic pattern (nonfixed pattern) variation?
5 Strong seasonality, strong cyclic behavior, no trend No seasonality, slight cyclic behavior, strong trend Strong seasonality, no cyclic behavior, strong trend No seasonality, cyclic behavior, or trend
6 These components of a time series data set can be written as: y = S + T + t t t E t where y is the observation at t time, S is the seasonal component, T is the combined trend and cyclic components, and E is the error (remainder) component. This is called an additive model and assumes that the value of the next observation in the sequence is arithmetically associated with the previous observation. For example: In the sequence (2, 4, 2, 4, 2, 4) the next observation in the sequence is arithmetically generated by +2 or 2 of the previous observation.
7 These components of a time series data set can also be written as: This is called an multiplicative model and assumes that the value of the next observation in the sequence is multiplicative associated with the previous observation. For example: y = S T t t In the sequence (2, 4, 8, 16, 32, 64) the next observation in the sequence is multiplicatively generated by 2 or 2 of the previous observation. t E t
8 Therefore: If your time series appears to be random (neither increasing or decreasing) over time, use an additive model. If your time series appears to be either increasing or decreasing over time, use a multiplicative model.
9 An alternative to using a multiplicative model is to first transform the data and then using an additive model: y t = S t T t E t is equivalent to y = log S + logt + t t t log E t However, this makes the interpretation of the results somewhat more difficult.
10 Time Series Decomposition: a statistical method that deconstructs a time series into notional (i.e. seasonal, trend, and error) components. Moving Average: the method of removing seasonal influences in which each observation is replaced by the average of the x number of observations preceding it. (m centered on y) = T t y m where m is the order (window) of moving average, T is the estimate of the trendcycle at time t, and y is the observation. The m centered on y term means that the window is centered on the observation. Therefore, if your window is 7, you will average the observation, plus the 3 observation before and after.
11 Weighted Moving Average: adding a term that will capture the influence each observation has on the whole. For example, if we are interested in plant growth we would want more importance to be given to observations during the growing season and deemphasize observations during the nongrowing season. ( y(m centered on y) T t = m weight)
12 Moving Average (yearly: m = 12) example Date Data Weights Weighted EVI Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Yearly Moving Average Trend It is best to have an odd numbered window since it is easier to center.
13 Bofedal EVI Decomposed Data (2001 only) Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Original Data Seasonal Trend NA NA NA NA NA NA Error NA NA NA NA NA NA Since we have monthly data on a 12 month repeating cycle, we will use a 12 month moving average, which results in loss of the first and last 6 observations. Most computer programs use a weighted average, with greater weight placed on closer observations. Note: = 1436 (see box above)
14 Two Techniques for Estimating the Time Series Components 1. Seasonal averaging: The seasonal figure is computed by averaging, for each time unit, over all periods. All Januaries are averaged, then all Februaries are averaged, etc This results in constant components (e.g. is the same for each year). 2. Seasonal smoothing: The seasonal component is found by smoothing the seasonal subseries (the series of all January values,...). This results nonconstant components.
15 Decomposition using Seasonal Averaging
16 Decomposition using Seasonal Smoothing
17
18 Seasonal averaging trend Seasonal smoothing trend
19 Steps in Additive Time Series Decomposition 1. Calculate the trendcycle component (T t ) using moving averages. 2. Calculate a detrended series by subtracting the trend from the observation (y t T t ). 3. Estimate the seasonal component (S t ) for each period (e.g. month) by averaging the detrended values for that period. 4. Calculate the remainder (error) component by subtracting both the seasonal and trendcycle components from the observation (E t = y t S t T t ).
20 Steps in Multiplicative Time Series Decomposition 1. Calculate the trendcycle component (T t ) using moving averages. 2. Calculate a detrended series by dividing the observation by the trend (y t / T t ). 3. Estimate the seasonal component (S t ) for each period (e.g. month) by averaging the detrended values for that period. 4. Calculate the remainder (error) component by dividing the observation by the product of the seasonal and trendcycle components: E t = y t / (S t T t ).
21 Comments on Classical Time Series Decomposition Classical decomposition methods assume that the seasonal component repeats from year to year. This is not always the case. For example, electricity demand patterns have changed over time as power used increases. External interruptions in the time series will significantly influence the decomposition results. For example, an employee dispute at an airline may alter passenger traffic. Larger moving average windows will remove lager amounts of data from the analyses. If this is anticipated, data should be collected well before and after the period of interest.
22 Time Series Analysis Example
23
24
25 Stationarity a property of a time series data set where the mean and sd of the series do not change over time. Stationarity is only important if you are trying to forecast. Stationary Data NonStationary Data Mean and sd constant over time. Mean increases over time. We will only be describing the time series data, so stationarity is not critical.
26 The raw EVI data for bofedal #16 shows periodicity, but the magnitude (mean EVI) and duration (sd EVI) of each period changes over time.
27 A monthly plot shows considerable variation within each month (mean EVI in red), but a predictable trend over the course of the year. These austral winter months have the least variation.
28 Autocorrelation when the value of y t is correlated with (or not independent of) the value of y t1. In other words, the current measurement is a function of past measurements.
29 Nearly all of the vertical lines cross the horizontal dashed line, indicating a high level of autocorrelation. The EVI values are correlated across time, although this diminishes as time increases.
30 The decomposed EVI data. Note the strong seasonal peaks
31 The seasonal component is fairly strong, showing a definite single yearly peak.
32 The residual plot shows that the error component is symmetrical about the mean (0), suggesting there is no systematic bias.
33 What happened here?
34
35
GAMINGRE 8/1/ of 7
FYE 09/30/92 JULY 92 0.00 254,550.00 0.00 0 0 0 0 0 0 0 0 0 254,550.00 0.00 0.00 0.00 0.00 254,550.00 AUG 10,616,710.31 5,299.95 845,656.83 84,565.68 61,084.86 23,480.82 339,734.73 135,893.89 67,946.95
More informationTime series and Forecasting
Chapter 2 Time series and Forecasting 2.1 Introduction Data are frequently recorded at regular time intervals, for instance, daily stock market indices, the monthly rate of inflation or annual profit figures.
More informationTechnical note on seasonal adjustment for M0
Technical note on seasonal adjustment for M0 July 1, 2013 Contents 1 M0 2 2 Steps in the seasonal adjustment procedure 3 2.1 Preadjustment analysis............................... 3 2.2 Seasonal adjustment.................................
More informationTechnical note on seasonal adjustment for Capital goods imports
Technical note on seasonal adjustment for Capital goods imports July 1, 2013 Contents 1 Capital goods imports 2 1.1 Additive versus multiplicative seasonality..................... 2 2 Steps in the seasonal
More informationDAILY QUESTIONS 28 TH JUNE 18 REASONING  CALENDAR
DAILY QUESTIONS 28 TH JUNE 18 REASONING  CALENDAR LEAP AND NONLEAP YEAR *A nonleap year has 365 days whereas a leap year has 366 days. (as February has 29 days). *Every year which is divisible by 4
More informationSYSTEM BRIEF DAILY SUMMARY
SYSTEM BRIEF DAILY SUMMARY * ANNUAL MaxTemp NEL (MWH) Hr Ending Hr Ending LOAD (PEAK HOURS 7:00 AM TO 10:00 PM MONSAT) ENERGY (MWH) INCREMENTAL COST DAY DATE Civic TOTAL MAXIMUM @Max MINIMUM @Min FACTOR
More informationSuan Sunandha Rajabhat University
Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai Suan Sunandha Rajabhat University INTRODUCTION The objective of this research is to forecast
More informationSYSTEM BRIEF DAILY SUMMARY
SYSTEM BRIEF DAILY SUMMARY * ANNUAL MaxTemp NEL (MWH) Hr Ending Hr Ending LOAD (PEAK HOURS 7:00 AM TO 10:00 PM MONSAT) ENERGY (MWH) INCREMENTAL COST DAY DATE Civic TOTAL MAXIMUM @Max MINIMUM @Min FACTOR
More informationIntroduction to Forecasting
Introduction to Forecasting Introduction to Forecasting Predicting the future Not an exact science but instead consists of a set of statistical tools and techniques that are supported by human judgment
More informationBUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7
BUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7 1. The definitions follow: (a) Time series: Time series data, also known as a data series, consists of observations on a
More informationTime Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia
International Journal of Applied Science and Technology Vol. 5, No. 5; October 2015 Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia Olayan
More informationForecasting using R. Rob J Hyndman. 1.3 Seasonality and trends. Forecasting using R 1
Forecasting using R Rob J Hyndman 1.3 Seasonality and trends Forecasting using R 1 Outline 1 Time series components 2 STL decomposition 3 Forecasting and decomposition 4 Lab session 5 Forecasting using
More information2.1 Inductive Reasoning Ojectives: I CAN use patterns to make conjectures. I CAN disprove geometric conjectures using counterexamples.
2.1 Inductive Reasoning Ojectives: I CAN use patterns to make conjectures. I CAN disprove geometric conjectures using counterexamples. 1 Inductive Reasoning Most learning occurs through inductive reasoning,
More informationBAYESIAN PROCESSOR OF ENSEMBLE (BPE): PRIOR DISTRIBUTION FUNCTION
BAYESIAN PROCESSOR OF ENSEMBLE (BPE): PRIOR DISTRIBUTION FUNCTION Parametric Models and Estimation Procedures Tested on Temperature Data By Roman Krzysztofowicz and Nah Youn Lee University of Virginia
More informationAnnual Average NYMEX Strip Comparison 7/03/2017
Annual Average NYMEX Strip Comparison 7/03/2017 To Year to Year Oil Price Deck ($/bbl) change Year change 7/3/2017 6/1/2017 5/1/2017 4/3/2017 3/1/2017 2/1/20172.7% 2017 Average 10.4% 47.52 48.84 49.58
More informationEXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY
EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 011 MODULE 3 : Stochastic processes and time series Time allowed: Three Hours Candidates should answer FIVE questions. All questions carry
More informationSTATISTICAL FORECASTING and SEASONALITY (M. E. Ippolito; )
STATISTICAL FORECASTING and SEASONALITY (M. E. Ippolito; 10613) PART I OVERVIEW The following discussion expands upon exponential smoothing and seasonality as presented in Chapter 11, Forecasting, in
More informationREPORT ON LABOUR FORECASTING FOR CONSTRUCTION
REPORT ON LABOUR FORECASTING FOR CONSTRUCTION For: Project: XYZ Local Authority New Sample Project Contact us: Construction Skills & Whole Life Consultants Limited Dundee University Incubator James Lindsay
More informationDetermine the trend for time series data
Extra Online Questions Determine the trend for time series data Covers AS 90641 (Statistics and Modelling 3.1) Scholarship Statistics and Modelling Chapter 1 Essent ial exam notes Time series 1. The value
More informationINDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture 12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.
INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture 12 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Data Extension & Forecasting Moving
More informationChanging Hydrology under a Changing Climate for a Coastal Plain Watershed
Changing Hydrology under a Changing Climate for a Coastal Plain Watershed David Bosch USDAARS, Tifton, GA Jeff Arnold ARS Temple, TX and Peter Allen Baylor University, TX SEWRU Objectives 1. Project changes
More informationClimatography of the United States No
Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 63.9 39.3 51.6 86 1976 16 56.6 1986 20 1976 2 47.5 1973
More informationClimatography of the United States No
Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 32.8 21.7 27.3 62 1918 1 35.8 198324 1950 29 10.5 1979
More informationClimatography of the United States No
Climate Division: AK 5 NWS Call Sign: ANC Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 90 Number of s (3) Jan 22.2 9.3 15.8
More informationRob J Hyndman. Forecasting using. 3. Autocorrelation and seasonality OTexts.com/fpp/2/ OTexts.com/fpp/6/1. Forecasting using R 1
Rob J Hyndman Forecasting using 3. Autocorrelation and seasonality OTexts.com/fpp/2/ OTexts.com/fpp/6/1 Forecasting using R 1 Outline 1 Time series graphics 2 Seasonal or cyclic? 3 Autocorrelation Forecasting
More informationTime Series and Forecasting
Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?
More informationJackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center
Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Doug Mayo Jackson County Extension Director 19522008 Rainfall Data
More informationClimatography of the United States No
Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 39.3 47.5 77
More informationClimatography of the United States No
Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 57.9 38.9 48.4 85
More informationClimatography of the United States No
Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 56.6 36.5 46.6 81
More informationClimatography of the United States No
Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 44.8 25.4 35.1 72
More informationClimatography of the United States No
Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 49.4 37.5 43.5 73
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 69.4 46.6 58.0 92
More informationClimatography of the United States No
Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 58.5 38.8 48.7 79 1962
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 67.5 42. 54.8 92 1971
More informationClimatography of the United States No
Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 57.8 39.5 48.7 85 1962
More informationparticular regional weather extremes
SUPPLEMENTARY INFORMATION DOI: 1.138/NCLIMATE2271 Amplified midlatitude planetary waves favour particular regional weather extremes particular regional weather extremes James A Screen and Ian Simmonds
More informationClimatography of the United States No
Climate Division: ND 8 NWS Call Sign: BIS Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 21.1 .6 10.2
More informationClimatography of the United States No
Climate Division: TN 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 47.6 24.9 36.3 81
More informationAlgae and Dissolved Oxygen Dynamics of Landa Lake and the Upper Spring Run
Algae and Dissolved Oxygen Dynamics of Landa Lake and the Upper Spring Run Why study algae and dissolved oxygen dynamics of Landa Lake and the Upper Spring Run? During lowflow conditions, extensive algal
More informationClimatography of the United States No
Climate Division: CA 5 NWS Call Sign: FAT Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 53.6 38.4 46. 78
More informationJackson County 2013 Weather Data
Jackson County 2013 Weather Data 61 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Doug Mayo Jackson County Extension Director 19522008 Rainfall Data
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: 1L2 N Lon: 118 3W Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 63.7
More informationConstructing a typical meteorological year TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem
Constructing a typical meteorological year TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem ARMEANU ILEANA*, STĂNICĂ FLORIN**, PETREHUS VIOREL*** *University
More informationClimatography of the United States No
Climate Division: CA 5 NWS Call Sign: BFL Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.3 39.3 47.8
More informationMonthly Trading Report July 2018
Monthly Trading Report July 218 Figure 1: July 218 (% change over previous month) % Major Market Indicators 2 2 4 USEP Forecasted Demand CCGT/Cogen/Trigen Supply ST Supply Figure 2: Summary of Trading
More informationClimatography of the United States No
Climate Division: TN 3 NWS Call Sign: BNA Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 45.6 27.9 36.8
More informationInterannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region
YaleNUIST Center on Atmospheric Environment Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region ZhangZhen 2015.07.10 1 Outline Introduction Data
More informationEuroindicators Working Group
Euroindicators Working Group Luxembourg, 9 th & 10 th June 2011 Item 9.4 of the Agenda New developments in EuroMIND estimates Rosa Ruggeri Cannata Doc 309/11 What is EuroMIND? EuroMIND is a Monthly INDicator
More informationExemplar for Internal Achievement Standard. Mathematics and Statistics Level 3
Exemplar for internal assessment resource Mathematics and Statistics for Achievement Standard 91580 Exemplar for Internal Achievement Standard Mathematics and Statistics Level 3 This exemplar supports
More informationClimatography of the United States No
Climate Division: CA 5 NWS Call Sign: Elevation: 6 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)
More informationClimatography of the United States No
Climate Division: CA 4 NWS Call Sign: Elevation: 2 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)
More informationClimatography of the United States No
Climate Division: CA 4 NWS Call Sign: Elevation: 13 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s
More informationClimatography of the United States No
Climate Division: CA 5 NWS Call Sign: Elevation: 1,14 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of
More informationEVALUATION OF ALGORITHM PERFORMANCE 2012/13 GAS YEAR SCALING FACTOR AND WEATHER CORRECTION FACTOR
EVALUATION OF ALGORITHM PERFORMANCE /3 GAS YEAR SCALING FACTOR AND WEATHER CORRECTION FACTOR. Background The annual gas year algorithm performance evaluation normally considers three sources of information
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: LAX Elevation: 1 Feet Lat: 33 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of
More informationENGINE SERIAL NUMBERS
ENGINE SERIAL NUMBERS The engine number was also the serial number of the car. Engines were numbered when they were completed, and for the most part went into a chassis within a day or so. However, some
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: TOA Elevation: 11 Feet Lat: 33 2W Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number
More informationClimatography of the United States No
No. 2 19712 Asheville, North Carolina 2881 COOP ID: 46646 Climate Division: CA 4 NWS Call Sign: 8W Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp
More informationClimatography of the United States No
No. 2 19712 Asheville, North Carolina 2881 COOP ID: 4792 Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65
More informationComputing & Telecommunications Services Monthly Report January CaTS Help Desk. Wright State University (937)
January 215 Monthly Report Computing & Telecommunications Services Monthly Report January 215 CaTS Help Desk (937) 7754827 18887754827 25 Library Annex helpdesk@wright.edu www.wright.edu/cats/ Last
More informationWHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities
WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and 20012002 Rainfall For Selected Arizona Cities Phoenix Tucson Flagstaff Avg. 20012002 Avg. 20012002 Avg. 20012002 October 0.7 0.0
More informationVariability of Reference Evapotranspiration Across Nebraska
Know how. Know now. EC733 Variability of Reference Evapotranspiration Across Nebraska Suat Irmak, Extension Soil and Water Resources and Irrigation Specialist Kari E. Skaggs, Research Associate, Biological
More informationThe Spectrum of Broadway: A SAS
The Spectrum of Broadway: A SAS PROC SPECTRA Inquiry James D. Ryan and Joseph Earley Emporia State University and Loyola Marymount University Abstract This paper describes how to use the sophisticated
More informationPublic Library Use and Economic Hard Times: Analysis of Recent Data
Public Library Use and Economic Hard Times: Analysis of Recent Data A Report Prepared for The American Library Association by The Library Research Center University of Illinois at Urbana Champaign April
More informationCWV Review London Weather Station Move
CWV Review London Weather Station Move 6th November 26 Demand Estimation SubCommittee Background The current composite weather variables (CWVs) for North Thames (NT), Eastern (EA) and South Eastern (SE)
More informationHow are adding integers and subtracting integers related? Work with a partner. Use integer counters to find 4 2. Remove 2 positive counters.
. How are adding integers and subtracting integers related? ACTIVITY: Work with a partner. Use integer counters to find 4. Start with 4 positive counters. Remove positive counters. What is the total number
More informationMonthly Trading Report Trading Date: Dec Monthly Trading Report December 2017
Trading Date: Dec 7 Monthly Trading Report December 7 Trading Date: Dec 7 Figure : December 7 (% change over previous month) % Major Market Indicators 5 4 Figure : Summary of Trading Data USEP () Daily
More informationClimatography of the United States No
No. 2 19712 Asheville, North Carolina 2881 COOP ID: 43417 Climate Division: CA 4 NWS Call Sign: N Lon: 121 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1)
More informationIn this activity, students will compare weather data from to determine if there is a warming trend in their community.
Overview: In this activity, students will compare weather data from 19102000 to determine if there is a warming trend in their community. Objectives: The student will: use the Internet to locate scientific
More informationClimatography of the United States No
No. 2 19712 Asheville, North Carolina 2881 COOP ID: 4795 Climate Division: CA 6 NWS Call Sign: SBA Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp
More informationClimatography of the United States No
Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 42.6 24.2 33.4 79 1950 25 44.2 197416 1994 19 18.8 1977 977
More informationClimate also has a large influence on how local ecosystems have evolved and how we interact with them.
The Mississippi River in a Changing Climate By Paul Lehman, P.Eng., General Manager Mississippi Valley Conservation (This article originally appeared in the Mississippi Lakes Association s 212 Mississippi
More informationCommunicating Climate Change Consequences for Land Use
Communicating Climate Change Consequences for Land Use Site: Prabost, Skye. Event: Kyle of Lochalsh, 28 th February 28 Further information: http://www.macaulay.ac.uk/ladss/comm_cc_consequences.html Who
More informationClimatography of the United States No
No. 2 19712 Asheville, North Carolina 2881 COOP ID: 46175 Climate Division: CA 6 NWS Call Sign: 3L3 Elevation: 1 Feet Lat: 33 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1)
More informationClimatography of the United States No
No. 2 19712 Asheville, North Carolina 2881 COOP ID: 42713 Climate Division: CA 7 NWS Call Sign: Elevation: 3 Feet Lat: 32 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1)
More informationSTOCHASTIC MODELING OF MONTHLY RAINFALL AT KOTA REGION
STOCHASTIC MODELIG OF MOTHLY RAIFALL AT KOTA REGIO S. R. Bhakar, Raj Vir Singh, eeraj Chhajed and Anil Kumar Bansal Department of Soil and Water Engineering, CTAE, Udaipur, Rajasthan, India Email: srbhakar@rediffmail.com
More informationTILT, DAYLIGHT AND SEASONS WORKSHEET
TILT, DAYLIGHT AND SEASONS WORKSHEET Activity Description: Students will use a data table to make a graph for the length of day and average high temperature in Utah. They will then answer questions based
More informationU.S. Outlook For October and Winter Thursday, September 19, 2013
About This report coincides with today s release of the monthly temperature and precipitation outlooks for the U.S. from the Climate Prediction Center (CPC). U.S. CPC October and Winter Outlook The CPC
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 51.5 35.0 43.3 80
More informationClimatography of the United States No
Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 59.3 31.5 45.4 80 1976
More informationClimatography of the United States No
Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 44.5 29.3 36.9 69 1951
More informationClimatography of the United States No
Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.3 37.1 45.2 77 1962
More informationClimatography of the United States No
Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.3 31.8 42.6 74+ 1975
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 68.5 45.7 57.1 90 1971
More informationClimatography of the United States No
Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.7 32.7 43.2 79 1962
More informationClimatography of the United States No
Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 56.0 35.7 45.9 83 1975
More informationClimatography of the United States No
Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) 64.8 45.4 55.1 85 1971
More informationClimatography of the United States No
Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) 65.5 38.7 52.1 87 1962
More informationClimatography of the United States No
Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 58.8 34.3 46.6 81+ 1948
More informationClimatography of the United States No
Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 70.4 44.2 57.3 95 1971
More informationSpatiotemporal variations of alpine climate, snow cover and phenology
Spatiotemporal variations of alpine climate, snow cover and phenology S. Asam, M. Callegari, M. Matiu, G. Fiore, L. De Gregorio, A. Jacob, A. Menzel, C. Notarnicola, M. Zebisch Asam et al., Spatiotemporal
More informationClimatography of the United States No
Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 52.4 35.4 43.9 69
More informationClimatography of the United States No
Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.9 42.0 52.0 89
More informationClimatography of the United States No
Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 38.8 47.2 81
More informationClimatography of the United States No
Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 53.5 37.6 45.6 78
More informationClimatography of the United States No
Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 66.1 38.3 52.2 91
More informationClimatography of the United States No
Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.2 4.7 48.5 79 1962
More informationClimatography of the United States No
Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 50.2 31.2 40.7 65+
More informationClimatography of the United States No
Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.4 33.1 47.3 82+
More information