Radiation Heat Transfer

Size: px
Start display at page:

Download "Radiation Heat Transfer"

Transcription

1 Heat Lectures 0- CM30 /5/06 CM30 ransport I Part II: Heat ransfer Radiation Heat ransfer In Unit Operations Heat Shields Professor Faith Morrison Department of Chemical Engineering Michigan echnological University CM30 ransport Processes and Unit Operations I Part : Heat ransfer Summary (Part thus far) Within homogeneous phases: Microscopic Energy Balances D Steady solutions rectangular: conduction cylindrical: ln emperature and Newton s law of cooling boundary conditions (if is supplied) Unsteady solutions (from literature) Carslaw and Jeager Heisler charts

2 Heat Lectures 0- CM30 /5/06 CM30 ransport Processes and Unit Operations I Part : Heat ransfer Summary (Part thus far) cross phase boundaries: Microscopic Energy, Momentum, and Mass Balances Micro momentum: Micro energy: convection Simultaneous effects (complex) Solutions are difficult to obtain (and often not really necessary) use and expts to obtain Data correlations for: forced convection natural convection phase evaporation/condensation change radiation 3 One more type of heat transfer Radiation versus Conduction and Convection Continuum view Conduction is caused by macroscopic temperature gradients Convection is caused by macroscopic flow Radiation? NO CONINUUM EXPLNION

3 Heat Lectures 0- CM30 /5/06 Continuum versus Molecular description of matter Real matter is not a continuum; at small enough length scales, molecules are discrete. continuum is infinitely divisible 5 Radiation versus Conduction and Convection Continuum view Conduction is caused by macroscopic temperature gradients Convection is caused by macroscopic flow Radiation? NO CONINUUM EXPLNION Molecular view Conduction Brownian motion Convection flow here is also, of course, a molecular explanation of these effects, since we know that matter is made of atoms and molecules Radiation is caused by changes in electron energy states in molecules and atoms Molecular view 6 3

4 Heat Lectures 0- CM30 /5/06 Molecular view Individual molecules carry: chemical identity macroscopic velocity (speed and direction) internal energy (Brownian velocity) When they undergo Brownian motion within an inhomogeneous mixture, they cause: diffusion (mass transport) exchange of momentum (viscous transport) conduction (energy transport) 7 Kinetic heory J. C. Maxwell, L. Boltzmann, 860 Molecules are in constant motion (Brownian motion) emperature is related to, of the molecules Molecular view Simplest model no particle volume no intermolecular forces More realistic model finite particle volume intermolecular forces s Intermolecular potential function r - 8

5 Heat Lectures 0- CM30 /5/06 But, there is more to molecular energy than just Brownian motion Molecular view In atoms and molecules, electrons can exist in multiple, discrete energy states ransfers between energy states are accompanied by an emission of radiation Energy discrete energy levels Sienko and Plane, Chemistry: Principles and pplications, McGraw Hill, 979 Quantum Mechanics Radiation Heat ransfer is related to these non- Brownian mechanisms. 9 Kinetic heory Molecular view Is based on Brownian motion (molecules in constant motion proportional to their temperature) Predicts that properties that are carried by individual molecules (chemical identity, momentum, average kinetic energy) will be transported DOWN gradients in these uantities. Gradient transport laws are due to Brownian motion Heat ransfer by Radiation Energy discrete energy levels Is due to the release of energy stored in molecules that is NO related to average kinetic energy (temperature), but rather to changing populations of excited states. Radiation is NO a Brownian effect 0 5

6 Heat Lectures 0- CM30 /5/06 How does this relate to chemical engineering? Consider a furnace with an internal blower: here is heat transfer due to convection: surface temp (Use correlations) Bulk temp here is also heat transfer due to radiation. Where do we get? Where do we get? nswer: Heat transfer due to radiation hot surface We need to look into the physics of this mode of heat transfer. 6

7 Heat Lectures 0- CM30 /5/06 Radiation does not reuire a medium to transfer energy (works in a vacuum) travels at the speed of light, 3 00 / travels as a wave; differs from x-rays, light, only by wavelength, l radiation is important when temperatures are high hot surface examples: the sun home radiator hot walls in vacuum oven heat exchanger walls when Δ is high and a vapor film has formed Note: absolute temperature units 3 hot surface Why is radiation flux related to temperature and not to something else? (From kinetic theory, temperature is related to average kinetic energy) nswer: s a molecule gains energy, it both speeds up (increases average kinetic energy) and increases its population of excited states. he increase in average kinetic energy is reflected in temperature (directly proportional), and heat transfer through conduction. he increase in number of electrons in excited states is reflected in increased radiation heat flux. Electrons enter excited states in proportion to absolute. 7

8 Heat Lectures 0- CM30 /5/06 Electromagnetic Spectrum visible from P.. ipler, Physics, Worth, 976 Gamma rays X rays Ultraviolet Infrared Short radio waves =nm =mm =mm Wavelength l, m thermal radiation 0.m 0m FM radio, V 0 M radio 5 What causes energy transfer by radiation? energy hits surface pushes some molecules into an excited state when the molecules/atoms relax from the excited state, they emit radiation incident emits radiation hot body reflects emits absorptivity absorbed incident absorbs, increases 6 8

9 Heat Lectures 0- CM30 /5/06 absorptivity absorbed incident bsorption In general, absorptivity is a function of wavelength incident reflected absorbs, increases emitted absorbed gray body: a body for which a is constant (does not depend on ) black body: a body for which, i.e. absorbs all incident radiation 7 emissivity emitted emitted, black body Emission gray body: a body for which a is constant black body: a body for which absorptivity absorbed incident true for black and non-black solid surfaces Kirchhoff s Law: emissivity euals absorptivity at the same temperature the fraction of energy absorbed by a material = the relative amount of energy emitted from that material compared to a black body 8 9

10 Heat Lectures 0- CM30 /5/06 emissivity emitted emitted, black body Black Bodies Stefan-Boltzmann Law: the amount of energy emitted by a black body is proportional to emitted emitted, black body NOE: absolute temperature 9 Non-Black Bodies emissivity emitted emitted, black body emitted emitted, nonblack body emitted, black body emitted, black body Stefan-Boltzmann: Energy emitted by a non-black body emitted, nonblack body 0 0

11 Heat Lectures 0- CM30 /5/06 Radiation Summary: bsorptivity, α gray body: constant black body: Emissivity,, Kirchoff s law: ε Stefan-Boltzman law, How does this relate to chemical engineering? Consider a furnace with an internal blower: here is heat transfer due to convection: surface temp (Use correlations) Bulk temp here is also heat transfer due to radiation: Because these two types of physics do not interact, we can just add the effects.

12 Heat Lectures 0- CM30 /5/06 How does this relate to chemical engineering? Consider a furnace with an internal blower: here is heat transfer due to convection: surface temp (Use correlations) Bulk temp here is also heat transfer due to radiation: Where do we get? Because these two types of physics do not interact, we can just add the effects. 3 Where do we get?, b, black body, net flux to object: Net flux to the body = Heat/area absorbed - Heat/area emitted

13 Heat Lectures 0- CM30 /5/06 Where do we get? net flux to object: Heat/area absorbed,,, fraction absorbed b Incident energy,, energy emitted by walls, which are acting as a black body, using Kirchhoff s law black body, 5 Where do we get?, b, net flux to object: Heat/area emitted,, Object is a gray body, assuming: 6 3

14 Heat Lectures 0- CM30 /5/06 Where do we get?, b, net flux to object: Net flux to the body = Heat/area absorbed - Heat/area emitted assuming: 7 Finally, calculate net energy absorbed: assuming: euating with expression for : Geankoplis th ed., en.0-0 p30 8

15 Heat Lectures 0- CM30 /5/06 Example: Geankoplis.0-3 horizontal oxidized steel pipe carrying steam and having an OD of 0.683m has a surface temperature of 37.9 K and is exposed to air at 97. K in a large enclosure. Calculate the heat loss for m of pipe Example: Geankoplis.0-3 horizontal oxidized steel pipe carrying steam and having an OD of 0.683m has a surface temperature of 37.9 K and is exposed to air at 97. K in a large enclosure. Calculate the heat loss for m of pipe. nswers: 6.9/ 6./

16 Heat Lectures 0- CM30 /5/06 One final topic: Radiation Heat ransfer Between wo Infinite Plates Consider a uantity of radiation energy that is emitted from surface. Reflected= not absorbed See: Geankoplis, section.b lso: Bird, Stewart, and Lightfoot, ransport Phenomena 960 Wiley PP6-8 Left plate at Right plate at emit reflect 3 absorb emit 6 absorb 5 reflect 7 emit 3 First round surface Quantity of energy incident at surface : Quantity of energy absorbed at surface : Quantity of energy reflected from surface : Radiation Heat ransfer Between wo Infinite Plates his energy goes back to surface. fraction reflected (not absorbed) incident energy 3 6

17 Heat Lectures 0- CM30 /5/06 Second round surface Quantity of energy absorbed at surface (second round): Radiation Heat ransfer Between wo Infinite Plates fraction absorbed incident energy Quantity of energy reflected from surface (second round): fraction reflected (not absorbed) incident energy 33 hird round surface Radiation Heat ransfer Between wo Infinite Plates Quantity of energy absorbed at surface (third round): fraction absorbed incident energy Quantity of energy reflected from surface (third round): fraction reflected (not absorbed) incident energy here is a pattern. 3 7

18 Heat Lectures 0- CM30 /5/06 Radiation Heat ransfer Between wo Infinite Plates Now, calculate the radiation energy going from surface to surface : Later, calculate energy from to ; then subtract to obtain net energy transferred. energy absorbed at surface n n energy from 35 Radiation Heat ransfer Between wo Infinite Plates Radiation energy going from surface to surface : n n0 n How can we calculate? nswer: / 36 8

19 Heat Lectures 0- CM30 /5/06 9 Radiation Heat ransfer Between wo Infinite Plates Radiation energy going from surface to surface : Final Result 37 Faith. Morrison, Michigan Radiation Heat ransfer Between wo Infinite Plates Radiation energy going from surface to surface : Radiation energy going from surface to surface : NE Radiation energy going from surface to surface : 38

20 Heat Lectures 0- CM30 /5/06 Radiation Shields Radiation Shield Left plate at Right plate at 3 Purpose of Heat Shields: o reduce the amount of energy transfer from (hotter) plate at to second (cooler) plate at 3. Note: net, net,3 39 nalysis of Radiation Shields Radiation Shield We will assume that the emissivity is the same for all surfaces. net, net,3 3 Now we eliminate between these euations. Note: net, net,

21 Heat Lectures 0- CM30 /5/06 nalysis of Radiation Shields Radiation Shield nalysis of Radiation Shields Radiation Shield 3 With one heat shield present, falls by half compared to no heat shield. Heat Shield N Heat Shields With N heat shields present, falls by a factor of /N compared to no heat shield. by the same analysis,

22 Heat Lectures 0- CM30 /5/06 Radiation Summary: General properties: bsorptivity, α gray body: constant black body: Emissivity,, Kirchoff s law: ε Stefan-Boltzman law, Heat transfer coefficient: Geankoplis th ed., en.0-0 p30 Heat shields: lways use absolute temperature (Kelvin) in radiation calculations. 3 CM30 ransport Processes and Unit Operations I Part : Professor Faith Morrison Department of Chemical Engineering Michigan echnological University CM30 - Momentum and Heat ransport CM30 Heat and Mass ransport

23 Heat Lectures 0- CM30 /5/06 CM30 ransport Processes and Unit Operations I Part : Heat ransfer Summary Within homogeneous phases: Microscopic Energy Balances D Steady solutions rectangular: cylindrical: ln emperature and Newton s law of cooling boundary conditions (if is supplied) Unsteady solutions (from literature) Carslaw and Jeager Heisler charts 5 CM30 ransport Processes and Unit Operations I Part : Heat ransfer Summary cross phase boundaries: Microscopic Energy, Momentum, and Mass Balances Micro momentum: Micro energy: Simultaneous effects (complex) Solutions are difficult to obtain (and often not really necessary) use to obtain Data correlations for: forced convection, natural convection (use in design) evaporation/condensation radiation 6 3

24 Heat Lectures 0- CM30 /5/06 CM30 ransport Processes and Unit Operations I Part : Heat ransfer Summary Heat ransfer Unit Operations Macroscopic energy balances Heat Exchangers double pipe (Δ Shell-and-tube Heat exchanger effectiveness Evaporators/ Condensers Ovens Heat Shields 7 CM30 ransport Processes and Unit Operations I Professor Faith Morrison Department of Chemical Engineering Michigan echnological University CM30 - Momentum and Heat ransport CM30 Heat and Mass ransport 8

Radiation Heat Transfer

Radiation Heat Transfer CM30 ranport I Part II: Heat ranfer Radiation Heat ranfer Profeor Faith Morrion Department of Chemical Engineering Michigan echnological Univerity CM30 ranport Procee and Unit Operation I Part : Heat ranfer

More information

Types of Heat Transfer

Types of Heat Transfer ype of Heat ranfer * Dvz Dt x k d dx v S * * v Gr z HH vap lat uject in the coure conduction (Fourier Law) forced convection (due to flow) ource term free convection (fluid motion due to denity variation

More information

Types of Heat Transfer

Types of Heat Transfer Type of Heat Tranfer Dv Dt x = k dt dx v T S 2 * * ( v GrT * z = + z H vap lat uject in the coure conduction (Fourier Law forced convection (due to flow ource term free convection (fluid motion due to

More information

Lecture 4 1/28/2019. CM3120 Transport/Unit Operations 2

Lecture 4 1/28/2019. CM3120 Transport/Unit Operations 2 CM3120 ransport/unit Operations 2 State Heat ransfer Professor Faith Morrison Department of Chemical Engineering Michigan echnological University wwwchemmtuedu/~fmorriso/cm3120/cm3120html 1 o get started,

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Law of Heat Transfer

Law of Heat Transfer Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation 7.1 Introduction Radiation heat transfer is the transfer of heat energy in the form of electromagnetic

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2 Heat Transfer: Physical Origins and Rate Equations Chapter One Sections 1.1 and 1. Heat Transfer and Thermal Energy What is heat transfer? Heat transfer is thermal energy in transit due to a temperature

More information

LECTURE NOTES. Heat Transfer. III B. Tech II Semester (JNTUA-R15) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS)

LECTURE NOTES. Heat Transfer. III B. Tech II Semester (JNTUA-R15) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) LECTURE NOTES on Heat Transfer III B. Tech II Semester (JNTUA-R15) Mr. K.SURESH, Assistant Professor CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati 517

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

Temperature Scales

Temperature Scales TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we really mean this random molecular motion.

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices. Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Applied Thermodynamics HEAT TRANSFER. Introduction What and How?

Applied Thermodynamics HEAT TRANSFER. Introduction What and How? LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE: 3 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING PROGRAMME: ENGR. ALIYU, S.J Course code: MCE 311 Course title: Applied Thermodynamics

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Question. Woodstoves. Thermal Energy. Heat. Burning Wood. Chemical Forces. Which is more effective at heating a room:

Question. Woodstoves. Thermal Energy. Heat. Burning Wood. Chemical Forces. Which is more effective at heating a room: Question Which is more effective at heating a room: 1. a black woodstove 2. a white woodstove Thermal Energy is disordered energy is the kinetic and potential energies of atoms gives rise to temperature

More information

K20: Temperature, Heat, and How Heat Moves

K20: Temperature, Heat, and How Heat Moves K20: Temperature, Heat, and How Heat Moves Definition of Temperature Definition of Heat How heat flows (Note: For all discussions here, particle means a particle of mass which moves as a unit. It could

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010.

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010. hermodynamics Lecture 7: Heat transfer Open systems Bendiks Jan Boersma hijs Vlugt heo Woudstra March, 00 Energy echnology Summary lecture 6 Poisson relation efficiency of a two-stroke IC engine (Otto

More information

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers?

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers? Lectures 7+8 04 CM30 /30/05 CM30 Transport I Part II: Heat Transfer Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Department of Chemical Engineering Michigan

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

Applied Heat Transfer:

Applied Heat Transfer: Lectures 7+8 CM30 /6/06 CM30 Transport I Part II: Heat Transfer Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Department of Chemical Engineering Michigan Technological

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015

Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J).

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J). Work Work The process of moving an object by applying a force. Work = Force x displacement. Work is measured in Joules (J) or Newton-meters (Nm). W = Fd Example: To prove his strength, a weightlifter pushes

More information

G α Absorbed irradiation

G α Absorbed irradiation Thermal energy emitted y matter as a result of virational and rotational movements of molecules, atoms and electrons. The energy is transported y electromagnetic waves (or photons). adiation reuires no

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Simultaneous Conduction and Radiation Energy Transfer

Simultaneous Conduction and Radiation Energy Transfer Simultaneous Conduction and Radiation Energy Transfer Radiant energy can transfer from a colder to a warmer radiator. ###########, PhD Chemical Process Control Systems Engineer, PE TX & CA Abstract The

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 14 Temperature and Heat Thermodynamics Starting a different area of physics called thermodynamics Thermodynamics focuses on energy rather than

More information

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Energy and Radiation GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Last lecture: the Atmosphere! Mainly nitrogen (78%) and oxygen (21%)! T, P and ρ! The Ideal Gas Law! Temperature profiles Lecture outline!

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

High temperature He is hot

High temperature He is hot Lecture 9 What is Temperature and Heat? High temperature He is hot Some important definitions * Two objects are in Thermal contact with each other if energy can be exchanged between them. Thermal equilibrium

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Physics Mechanics

Physics Mechanics 1 Physics 170 - Mechanics Lecture 35 Heat 2 Definition and Units of Heat Heat is a form of energy, and therefore is measured in joules. There are other units of heat, the most common one is the kilocalorie:

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

11. Advanced Radiation

11. Advanced Radiation . Advanced adiation. Gray Surfaces The gray surface is a medium whose monochromatic emissivity ( λ does not vary with wavelength. The monochromatic emissivity is defined as the ratio of the monochromatic

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Heat Transfer Heat transfer rate by conduction is related to the temperature gradient by Fourier s law. For the one-dimensional heat transfer problem in Fig. 1.8, in which temperature varies in the y-

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board HEAT TRANSFER Principles and Applications BINAY K. DUTTA West Bengal Pollution Control Board Kolkata PHI Learning PfcO too1 Delhi-110092 2014 Contents Preface Notations ix xiii 1. Introduction 1-8 1.1

More information

H E A T T R A N S F E R. LECTURER: MOHSIN MOHD SIES C H A P T E R

H E A T T R A N S F E R. LECTURER: MOHSIN MOHD SIES   C H A P T E R M 4463 LU: MOI MOD I http://www.fkm.utm.my/~mohsin Introduction Basic of eat ransfer Introduction hermodynamics: nergy can be transferred between a system and its surroundings. system interacts with its

More information

Name Date Class. Electromagnetic Spectrum. Colors

Name Date Class. Electromagnetic Spectrum. Colors b e n c h m a r k t e s t : p h y s i c a l s c i e n c e Multiple Choice Directions: Use the diagram below to answer question 1. Electromagnetic Spectrum Radio waves A B C D Gamma rays Long Wavelength

More information

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell ASTRONOMY 103: THE EVOLVING UNIVERSE Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell Two Blackbody Trends 1. Wein s (Veen s) Law λp 1 / T or λp = 2900 / T (λp is the peak wavelength in micrometers

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction HEAT TRANSFER Mechanisms of Heat Transfer: (1) Conduction where Q is the amount of heat, Btu, transferred in time t, h k is the thermal conductivity, Btu/[h ft 2 ( o F/ft)] A is the area of heat transfer

More information

PHYSICS 149: Lecture 26

PHYSICS 149: Lecture 26 PHYSICS 149: Lecture 26 Chapter 14: Heat 14.1 Internal Energy 14.2 Heat 14.3 Heat Capacity and Specific Heat 14.5 Phase Transitions 14.6 Thermal Conduction 14.7 Thermal Convection 14.8 Thermal Radiation

More information

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows.

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows. Outline Stock Flow and temperature Earth as a black body Equation models for earth s temperature { { Albedo effect Greenhouse effect Balancing earth s energy flows Exam questions How does earth maintain

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion Introduction to Climatology GEOGRAPHY 300 Tom Giambelluca University of Hawai i at Mānoa Solar Radiation and the Seasons Energy Energy: The ability to do work Energy: Force applied over a distance kg m

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Quantum Mechanics: Blackbody Radiation

Quantum Mechanics: Blackbody Radiation Blackbody Radiation Quantum Mechanics Origin of Quantum Mechanics Raleigh-Jeans law (derivation)-ultraviolet catastrophe, Wien s Distribution Law & Wein s Displacement law, Planck s radiation law (calculation

More information

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves Chapter 21.8-13(not.9-.10) Electromagnetic Announcements Clicker quizzes NO LONGER GRADED! WebAssign HW Set 8 due this Friday Problems cover material from Chapters 21-22 Office hours: My office hours today

More information

UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI UNIVERSITY OF NAIROBI SCHOOL OF ENGINEERING DEPARTMENT OF ENVIRONMENTAL & BIOSYSTEMS ENGINEERING FEB 423- Heat and Mass Transfer (60 hrs) LECTURE: PRACTICALS: LECTURE THEATRE Friday 9:00 am to 1:00 pm

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

More information

The Nature of Light. Chapter Five

The Nature of Light. Chapter Five The Nature of Light Chapter Five Guiding Questions 1. How fast does light travel? How can this speed be measured? 2. Why do we think light is a wave? What kind of wave is it? 3. How is the light from an

More information

Recall: The Importance of Light

Recall: The Importance of Light Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE COURSE TITLE : HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Conduction,Fourier law,variation

More information

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy Q: What is energy? Energy is the ability to do work. Q: What is work? Work is done when a force causes an object to move. Q: Potential Energy The energy of an object due to its position, shape, or condition

More information

TRANSMISSION OF HEAT

TRANSMISSION OF HEAT TRANSMISSION OF HEAT Synopsis :. In general heat travels from one point to another whenever there is a difference of temperatures.. Heat flows from a body at higher temperature to a lower temperature..

More information

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both.

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both. Light carries energy Lecture 5 Understand Light Reading: Chapter 6 You feel energy carried by light when light hits your skin. Energy Conservation: Radiation energy will be given to molecules making your

More information

1, 2, 3, 4, 6, 14, 17 PS1.B

1, 2, 3, 4, 6, 14, 17 PS1.B Correlations to Next Generation Science Standards Physical Science Disciplinary Core Ideas PS-1 Matter and Its Interactions PS1.A Structure and Properties of Matter Each atom has a charged substructure

More information

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient Lecture 28 Contents Heat transfer importance Conduction Convection Free Convection Forced convection Radiation Radiation coefficient Illustration on heat transfer coefficient 1 Illustration on heat transfer

More information

The Planck Distribution. The Planck law describes theoretical spectral distribution for the emissive power of a black body. It can be written as

The Planck Distribution. The Planck law describes theoretical spectral distribution for the emissive power of a black body. It can be written as Thermal energy emitted y matter as a result of virational and rotational movements of molecules, atoms and electrons. The energy is transported y electromagnetic waves (or photons). adiation reuires no

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III Light and Other Electromagnetic Radiation Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Light and Other Electromagnetic Radiation

Light and Other Electromagnetic Radiation Light and Other Electromagnetic Radiation 1 Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

Radiation Heat Transfer. Introduction. Blackbody Radiation. Definitions ,

Radiation Heat Transfer. Introduction. Blackbody Radiation. Definitions , Radiation Heat Transfer Reading Problems 5-5-7 5-27, 5-33, 5-50, 5-57, 5-77, 5-79, 5-96, 5-07, 5-08 Introduction A narrower band inside the thermal radiation spectrum is denoted as the visible spectrum,

More information

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system

More information

Lecture5PracticeQuiz.txt

Lecture5PracticeQuiz.txt TAKEN FROM HORIZONS 7TH EDITION CHAPTER 6 TUTORIAL QUIZ 1. The difference between radiation and sound is that a. radiation exhibits the Doppler effect, whereas sound does not. b. radiation travels much

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information

Earth s Energy Balance and the Atmosphere

Earth s Energy Balance and the Atmosphere Earth s Energy Balance and the Atmosphere Topics we ll cover: Atmospheric composition greenhouse gases Vertical structure and radiative balance pressure, temperature Global circulation and horizontal energy

More information

Quantum Mechanics (made fun and easy)

Quantum Mechanics (made fun and easy) Lecture 7 Quantum Mechanics (made fun and easy) Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why

More information

Name... Class... Date...

Name... Class... Date... Radiation and temperature Specification reference: P6.3 Black body radiation (physics only) Aims This is an activity that has been designed to help you improve your literacy skills. In this activity you

More information

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions 1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous

More information