( ). Expanding the square and keeping in mind that

Size: px
Start display at page:

Download "( ). Expanding the square and keeping in mind that"

Transcription

1 One-electron atom in a Magnetic Field When the atom is in a magnetic field the magnetic moment of the electron due to its orbital motion and its spin interacts with the field and the Schrodinger Hamiltonian is Ĥ = P ˆ + e 2 A ( ) Ze2 4πε 0 r ˆµS i +W (r) ˆL i Ŝ where A is the vector potential, e is the proton charge and ˆµS = g e µ Ŝ the magnetic moment of the electron. We have also included the spin-orbit term since it splits the levels with non-zero orbital angular momentum. Lets first consider the ˆ vector potential term P + e 2 A ( ). Expanding the square and keeping in mind that the momentum is a differential operator, ˆP =, we have i P ˆ 2 + e 2 A 2 + e ˆP ( i A + eai ˆP ). The question is does ˆP commute with A? Let g be an arbitrary function and note that and so ˆ P i Ag = i α A α g = i ˆ P i A Ai ˆP = i i A ( A α α g + g α A α ) = Ai ˆPg + i g i A And so if we use the Coulomb gauge where i A = 0, ˆP and A do commute and we can write the Hamiltonian as Ĥ = P ˆ 2 Ze2 4πε 0 r + e Ai ˆP e 2 + A 2 +W (r) ˆL i Ŝ m or Ĥ = Ĥ 0 + e m Ai ˆP e 2 + A 2 +W (r) ˆL i Ŝ

2 Let s first consider the term linear in A. Since a constant magnetic induction is derivable from the vector potential A = ( r ) we can write 2 Ai ˆP = r i ˆP = 2 2 ε r ˆP αβγ β γ α = 2 ε r ˆP γβα γ β α = i r ˆP 2 and since the orbital angular momentum ˆL = r ˆP we have e Ai ˆP e = i ˆL m where we measure the angular momentum in multiples of. As noted previously the quantity e is called the ohr magneton, J µ and equals T J T Joule Tesla. The orbital magnetic moment operator can be written as ˆµL = µ ˆL and so the contribution to the Hamiltonian due to terms linear in the vector potential takes the familiar form ˆµL i, often called the Zeeman term. Lets now consider the term e2 A 2. We can write ( ( ) ) 2. If Ai A = A α A α = 4 ε r ε r = αβγ β γ αλρ λ ρ ( 4 δ δ δ δ βγ γρ βρ γλ )r β γ r λ ρ = 4 r 2 2 r i the magnetic field defines the z axis this becomes to the Hamiltonian is e rsin θ and the contribution 8m r 2 sin 2 θ. Note that the dimensions of e m are C i kg kg i S C = S and it s a frequency. One defines the Larmor frequency so the diamagnetic contribution to the Hamiltonian is sometimes written 2 mω 2 r 2 sin 2 θ. The total Hamiltonian can be written L Ĥ = H 0 + µ ( ˆL + ge Ŝ ) i + e2 2 8m r 2 sin 2 θ +W (r) ˆL i Ŝ ω as e L and

3 The term linear in is approximately 0.47 cm T while the quadratic term is approximately e2 a m = 5.0 cm 0 7 2, the ratio being 0 6. So even in a fairly T 2 large field of 0T the term quadratic in is negligible compared with the term linear in so we will consider the Hamiltonian Ĥ = Ĥ 0 + W (r) ˆL i Ŝ + Ĥ Zeeman with Ĥ Zeeman = µ ( ˆL + 2 Ŝ ) i = µ ( ˆLZ + 2ŜZ ) and with in the z direction. Note that the spin-orbit term is intrinsic to the atom while the Zeeman term depends on and can have any value. Let s now consider the effect of a magnetic field when the spin-orbit splitting is much larger then the Zeeman interaction. In this case we can perturb the fine structure terms independently. Since each spin-orbit level is 2j + fold degenerate we need to see if degenerate perturbation theory is needed. Accordingly we form the matrix of the perturbation for the 2j + degenerate states for a given j and we need Φ jmj ' l/ 2 Φ jm' l/ 2 ( ˆL z + 2Ŝz ) Φ jmj. We can write ˆL l/ 2 z + 2Ŝz = Ĵ + Ŝz and so z ( ˆLz + 2Ŝz ) Φ jml/ 2 = mδ m' m + Φ jm' l/ 2 Ŝ z Φ jml/ 2. Using the explicit form for the angular functions we have ± m Φ Ŝ Φ = δ 2l + jm' l / 2 z jml / 2 m' m and so the perturbation matrix is diagonal and each degenerate state shifts ( ) according to E jml ( Zeeman) = µ ± 2l + where one uses the upper sign when j = +/ 2 and the lower when j = / 2. Note that we can define an effective g factor for each l value g jl = ± 2l + and write the energy shift as

4 ( ) E j l ( Zeeman) = g j µ = g j cm. Note further that for the ns /2, with = 0 only the plus sign is relevant and so g = 2. With the Zeeman term the total energy is E(nj ) = E n + α 2 R Z 4 ( j( j +) ( +) 3/ 4) + g 2 n 3 +/ 2 jl µ ( )( +) Note that the Zeeman term is independent of the principal quantum number n. Let s first look at the splitting in the ns /2 level where the spin-orbit interaction is zero. Since g ij = 2 each state is shifted by cm and they are split by cm. This energy separation can be measured via ESR spectroscopy. A transition between the two = ± 2 levels, ±.4674cm can be induced by applying an oscillating electromagnetic field at right angles to. If the frequency of the radiation is ν in Hertz we have the equality hν = 2(0.4674)cm. Using h = cm sec and expressing in Gauss we have = ν G. Many ESR spectrometers have a fixed frequency (X band) around Hz so the resonance magnetic field for H is approximately 3320 G. Now consider the 0 case and in particular the 2P /2 levels. These are split by the magnetic field into 2 and 4 states respectively with the energies E(2P /2 ) = 0.36 cm and E(2P 3/2 ) = cm. These energies are shown schematically the figure below.

5 =3/ j=3/2 2P 3/ =/2 =-/2 =-3/2 E(cm - ) j=/2 2P / =/2 =-/2 The question is what is the strength of a weak field for the perturbation of the individual fine structure levels to be valid? Taking the energy of the 2P /2 level as zero places the unperturbed 2P 3/2 level at cm - (the fine structure separation), the lowest state = 3 / 2 at cm and the highest 2P /2 state at cm, the resulting separation being cm. Clearly the closer these two states, the less reliable is perturbation theory. When this separation is zero the field is 0.335T or 3350G so something considerably smaller than this, perhaps 0.0T would seem reasonable. Note that no such limit is imposed on the ns /2 states because there is no spin-orbit coupling and a field of 0.355T is perfectly acceptable! If we relax the condition that the field is week enough that it doesn t mix the spin orbit states of the 2P /2 then we must treat the perturbation as W (r) ˆL i Ŝ + Ĥ Zeeman

6 and the unperturbed states as the three 2p levels each with an α or β spin. Alternatively we may take the 2P /2 wavefunctions as the unperturbed states since they are also eigenfunctions of Ĥ 0 and that s what we will do since we already have all 6 of the diagonal elements of the perturbation matrix in this basis and these are in general R n Φ W (r) ˆL jmj i Ŝ + Ĥ Zeeman R n Φ jmj = α 2 R Z 4 ( j( j +) ( +) 3/ 4) + g 2 n 3 +/ 2 jl µ ( )( +) We then need to see how the Zeeman operator couples the 2P /2 states. We can do this in general by evaluating j = / 2,,,/ 2 µ ˆL z + 2Ŝz ( ) j = +/ 2,,,/ 2 and using the explicit form of the eigenfunctions we find this is diagonal in and equals µ / 2 +/ 2 which for = equals µ 3 3 / / 2 so only the = ±/ 2 states are coupled, the matrix element being 2 3 µ. If we order the unperturbed functions 2P /2 as / 2,/ 2, 3 / 2,/ 2, / 2, / 2, 3 / 2, / 2, 3 / 2,3 / 2 & 3 / 2, 3 / 2 the perturbation matrix is block diagonal with two 2x2 blocks and two x blocks. If we let A = α 2 R 48 & C = µ 3 the 2x2 blocks are A C with eigenvalues and

7 A C with eigenvalues and the uncoupled m ±3/2 energies,. We plot these 6 eigenvalues as well as the two 2s /2 states (energies 5A ± 3C ) as a function of. 3 2 n=2 levels of H in a magnetic field 2p + α weak field 2p 0 α =+3/2 =+/2 E(cm-) sα 2p - α 2p + β 2sβ =+/- /2 =-/2 intermediate field 2p 0 β 2p - β =-3/ (T)

β matrices defined above in terms of these Pauli matrices as

β matrices defined above in terms of these Pauli matrices as The Pauli Hamiltonian First let s define a set of x matrices called the Pauli spin matrices; i σ ; ; x σ y σ i z And note for future reference that σ x σ y σ z σ σ x + σ y + σ z 3 3 We can rewrite α &

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Non-degenerate Perturbation Theory. and where one knows the eigenfunctions and eigenvalues of

Non-degenerate Perturbation Theory. and where one knows the eigenfunctions and eigenvalues of on-degenerate Perturbation Theory Suppose one wants to solve the eigenvalue problem ĤΦ = Φ where µ =,1,2,, E µ µ µ and where Ĥ can be written as the sum of two terms, ˆ ˆ ˆ ˆ ˆ ˆ H = H + ( H H ) = H +

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

Solutions to chapter 4 problems

Solutions to chapter 4 problems Chapter 9 Solutions to chapter 4 problems Solution to Exercise 47 For example, the x component of the angular momentum is defined as ˆL x ŷˆp z ẑ ˆp y The position and momentum observables are Hermitian;

More information

Solution of Second Midterm Examination Thursday November 09, 2017

Solution of Second Midterm Examination Thursday November 09, 2017 Department of Physics Quantum Mechanics II, Physics 570 Temple University Instructor: Z.-E. Meziani Solution of Second Midterm Examination Thursday November 09, 017 Problem 1. (10pts Consider a system

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Angular Momentum. Andreas Wacker Mathematical Physics Lund University

Angular Momentum. Andreas Wacker Mathematical Physics Lund University Angular Momentum Andreas Wacker Mathematical Physics Lund University Commutation relations of (orbital) angular momentum Angular momentum in analogy with classical case L= r p satisfies commutation relations

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Magnetic Resonance Spectroscopy ( )

Magnetic Resonance Spectroscopy ( ) Magnetic Resonance Spectroscopy In our discussion of spectroscopy, we have shown that absorption of E.M. radiation occurs on resonance: When the frequency of applied E.M. field matches the energy splitting

More information

CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM. (From Cohen-Tannoudji, Chapter XII)

CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM. (From Cohen-Tannoudji, Chapter XII) CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM (From Cohen-Tannoudji, Chapter XII) We will now incorporate a weak relativistic effects as perturbation

More information

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid Announcement This handout includes 9 problems. The first 5 are the problem set due. The last 4 cover material from the final few lectures

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

Atomic and molecular physics Revision lecture

Atomic and molecular physics Revision lecture Atomic and molecular physics Revision lecture Answer all questions Angular momentum J`2 ` J z j,m = j j+1 j,m j,m =m j,m Allowed values of mgo from j to +jin integer steps If there is no external field,

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

( ) ( ) ( ) Invariance Principles & Conservation Laws. = P δx. Summary of key point of argument

( ) ( ) ( ) Invariance Principles & Conservation Laws. = P δx. Summary of key point of argument Invariance Principles & Conservation Laws Without invariance principles, there would be no laws of physics! We rely on the results of experiments remaining the same from day to day and place to place.

More information

PH 451/551 Quantum Mechanics Capstone Winter 201x

PH 451/551 Quantum Mechanics Capstone Winter 201x These are the questions from the W7 exam presented as practice problems. The equation sheet is PH 45/55 Quantum Mechanics Capstone Winter x TOTAL POINTS: xx Weniger 6, time There are xx questions, for

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

6.1 Nondegenerate Perturbation Theory

6.1 Nondegenerate Perturbation Theory 6.1 Nondegenerate Perturbation Theory Analytic solutions to the Schrödinger equation have not been found for many interesting systems. Fortunately, it is often possible to find expressions which are analytic

More information

Electric fields : Stark effect, dipole & quadrupole polarizability.

Electric fields : Stark effect, dipole & quadrupole polarizability. Electric fields : Stark effect, dipole & quadrupole polarizability. We are often interested in the effect of an external electric field on the energy levels and wavefunction of H and other one-electron

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field:

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: SPIN 1/2 PARTICLE Stern-Gerlach experiment The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: A silver atom

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

Molecules in Magnetic Fields

Molecules in Magnetic Fields Molecules in Magnetic Fields Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Prob (solution by Michael Fisher) 1

Prob (solution by Michael Fisher) 1 Prob 975 (solution by Michael Fisher) We begin by expressing the initial state in a basis of the spherical harmonics, which will allow us to apply the operators ˆL and ˆL z θ, φ φ() = 4π sin θ sin φ =

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

Angular Momentum set II

Angular Momentum set II Angular Momentum set II PH - QM II Sem, 7-8 Problem : Using the commutation relations for the angular momentum operators, prove the Jacobi identity Problem : [ˆL x, [ˆL y, ˆL z ]] + [ˆL y, [ˆL z, ˆL x

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Ket space as a vector space over the complex numbers

Ket space as a vector space over the complex numbers Ket space as a vector space over the complex numbers kets ϕ> and complex numbers α with two operations Addition of two kets ϕ 1 >+ ϕ 2 > is also a ket ϕ 3 > Multiplication with complex numbers α ϕ 1 >

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x = 0,

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number:

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number: Spin. Historical Spectroscopy of Alkali atoms First expt. to suggest need for electron spin: observation of splitting of expected spectral lines for alkali atoms: i.e. expect one line based on analogy

More information

Perturbation Theory 1

Perturbation Theory 1 Perturbation Theory 1 1 Expansion of Complete System Let s take a look of an expansion for the function in terms of the complete system : (1) In general, this expansion is possible for any complete set.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 ANSWERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 ANSWERS Reading Assignment: Bernath, Chapter 5 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, 994 Problem Set # ANSWERS The following handouts also contain useful information:

More information

Problem 1: A 3-D Spherical Well(10 Points)

Problem 1: A 3-D Spherical Well(10 Points) Problem : A 3-D Spherical Well( Points) For this problem, consider a particle of mass m in a three-dimensional spherical potential well, V (r), given as, V = r a/2 V = W r > a/2. with W >. All of the following

More information

3. Quantum Mechanics in 3D

3. Quantum Mechanics in 3D 3. Quantum Mechanics in 3D 3.1 Introduction Last time, we derived the time dependent Schrödinger equation, starting from three basic postulates: 1) The time evolution of a state can be expressed as a unitary

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. 1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. (a) Compute the electric part of the Maxwell stress tensor T ij (r) = 1 {E i E j 12 } 4π E2 δ ij both inside

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

3 Angular Momentum and Spin

3 Angular Momentum and Spin In this chapter we review the notions surrounding the different forms of angular momenta in quantum mechanics, including the spin angular momentum, which is entirely quantum mechanical in nature. Some

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split Electron Spin Electron spin hypothesis Solution to H atom problem gave three quantum numbers, n,, m. These apply to all atoms. Experiments show not complete description. Something missing. Alkali metals

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

A.1 Alkaline atoms in magnetic fields

A.1 Alkaline atoms in magnetic fields 164 Appendix the Kohn, virial and Bertrand s theorem, with an original approach. Annex A.4 summarizes elements of the elastic collisions theory required to address scattering problems. Eventually, annex

More information

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found.

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. In applying quantum mechanics to 'real' chemical problems, one is usually faced with a Schrödinger

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Lecture #6 NMR in Hilbert Space

Lecture #6 NMR in Hilbert Space Lecture #6 NMR in Hilbert Space Topics Review of spin operators Single spin in a magnetic field: longitudinal and transverse magnetiation Ensemble of spins in a magnetic field RF excitation Handouts and

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

On Electron Paramagnetic Resonance in DPPH

On Electron Paramagnetic Resonance in DPPH On Electron Paramagnetic Resonance in DPPH Shane Duane ID: 08764522 JS Theoretical Physics 5th Dec 2010 Abstract Electron Paramagnetic Resonance (EPR) was investigated in diphenyl pecryl hydrazyl (DPPH).

More information

Physics 70007, Fall 2009 Answers to Final Exam

Physics 70007, Fall 2009 Answers to Final Exam Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg,

More information

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Hyperfine effects in atomic physics are due to the interaction of the atomic electrons with the electric and magnetic multipole

More information

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions Quantum Mechanical perators and Wavefunctions "well behaved" functions (φ), have the following properties must be continuous (no "breaks") must have continuous derivatives (no "kinks") must be normalizable.

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

In the following, we investigate the time-dependent two-component wave function ψ(t) = ( )

In the following, we investigate the time-dependent two-component wave function ψ(t) = ( ) Ph.D. Qualifier, Quantum mechanics DO ONLY 3 OF THE 4 QUESTIONS Note the additional material for questions 1 and 3 at the end. PROBLEM 1. In the presence of a magnetic field B = (B x, B y, B z ), the dynamics

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 14, 015 1:00PM to 3:00PM Modern Physics Section 3. Quantum Mechanics Two hours are permitted for the completion of this

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 14, 2015 3:10PM to 5:10PM Modern Physics Section 4. Relativity and Applied Quantum Mechanics Two hours are permitted

More information

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal.

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Lecture 5: continued But what happens when free (i.e. unbound charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Ĥ = 1 2m (ˆp qa(x, t2 + qϕ(x, t,

More information

MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS. Janusz Adamowski AGH University of Science and Technology, Kraków, Poland

MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS. Janusz Adamowski AGH University of Science and Technology, Kraków, Poland MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS Janusz Adamowski AGH University of Science and Technology, Kraków, Poland 1 The magnetism of materials can be derived from the magnetic properties of atoms.

More information

Solutions Final exam 633

Solutions Final exam 633 Solutions Final exam 633 S.J. van Enk (Dated: June 9, 2008) (1) [25 points] You have a source that produces pairs of spin-1/2 particles. With probability p they are in the singlet state, ( )/ 2, and with

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s.

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. Lecture 9 Title: - coupling Page- It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. For large Z atoms,

More information

Light-Matter Interactions

Light-Matter Interactions Light-Matter Interactions Paul Eastham February 15, 2012 The model = Single atom in an electromagnetic cavity Mirrors Single atom Realised experimentally Theory: Jaynes Cummings Model Rabi oscillations

More information

takes the values:, +

takes the values:, + rof. Dr. I. Nasser hys- (T-) February, 4 Angular Momentum Coupling Schemes We have so far considered only the coupling of the spin and orbital momentum of a single electron by means of the spin-orbit interaction.

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

1 Recall what is Spin

1 Recall what is Spin C/CS/Phys C191 Spin measurement, initialization, manipulation by precession10/07/08 Fall 2008 Lecture 10 1 Recall what is Spin Elementary particles and composite particles carry an intrinsic angular momentum

More information

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects Method: Rayleigh-Schrödinger Perturbation Theory Step 1: Find the eigenvectors ψ n and eigenvalues ε n

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory 1. Introduction 64-311 Laboratory Experiment 11 NMR Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. This experiment will introduce to

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

9. Transitions between Magnetic Levels Spin Transitions Between Spin States. Conservation of Spin Angular Momentum

9. Transitions between Magnetic Levels Spin Transitions Between Spin States. Conservation of Spin Angular Momentum 9. Transitions between Magnetic Levels pin Transitions Between pin tates. Conservation of pin Angular Momentum From the magnetic energy diagram derived in the previous sections (Figures 14, 15 and 16),

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Friday May 15th, 2014, 14-17h Examiners: Prof. J. Cline, Prof. H. Guo, Prof. G. Gervais (Chair), and Prof. D. Hanna INSTRUCTIONS

More information

ZEEMAN EFFECT: p...(1). Eigenfunction for this Hamiltonian is specified by

ZEEMAN EFFECT: p...(1). Eigenfunction for this Hamiltonian is specified by ZEEMAN EFFECT: Zeeman Effect is a magneto-otical henomenon discovered by Zeeman in 1896. He observed that when an atom (light soce) is laced in an external magnetic field, the sectral lines it emits are

More information

64-311/5: Atomic and Molecular Spectra

64-311/5: Atomic and Molecular Spectra 64-311-Questions.doc 64-311/5: Atomic and Molecular Spectra Dr T Reddish (Room 89-1 Essex Hall) SECTION 1: REVISION QUESTIONS FROM 64-310/14 ε ο = 8.854187817 x 10-1 Fm -1, h = 1.0545766 x 10-34 Js, e

More information

The Spin (continued). February 8, 2012

The Spin (continued). February 8, 2012 The Spin continued. Magnetic moment of an electron Particle wave functions including spin Stern-Gerlach experiment February 8, 2012 1 Magnetic moment of an electron. The coordinates of a particle include

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

where A and α are real constants. 1a) Determine A Solution: We must normalize the solution, which in spherical coordinates means

where A and α are real constants. 1a) Determine A Solution: We must normalize the solution, which in spherical coordinates means Midterm #, Physics 5C, Spring 8. Write your responses below, on the back, or on the extra pages. Show your work, and take care to explain what you are doing; partial credit will be given for incomplete

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field 1 Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha

More information

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad NMR Spectroscopy for 1 st B.Tech Lecture -1 Indian Institute of Technology, Dhanbad by Dr. R P John & Dr. C. Halder INTRODUCTION Nucleus of any atom has protons and neutrons Both Proton and Neutron has

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information