1. Expand each of the following functions into a canonical sum-of-products expression.

Size: px
Start display at page:

Download "1. Expand each of the following functions into a canonical sum-of-products expression."

Transcription

1 CHAPTER 4 PROLEMS 1. Expand each of the following functions into a canonical sum-of-products expression. (a) F(x, y, z) = xy + y z + x (b) F(w, x, y, z) = x y + wxy + w yz (c) F(A,,C,D) = AC + CD + C D (d) F(A,,C,D) = A + CD + D 2. Expand each of the following functions into a canonical product-of-sums expression. (a) F(x, y, z) = (x + y )(x + z ) (b) F(w, x, y, z) = (x + y + z )(w + z) 3. Find the minterm and maxterm list forms for each of the following functions. (a) F(A,,C,D) = A + C D + A' D (b) F(A,,C,D) = (A + + C') (A + C' + D') (A' + D) (c) F(A,,C,D) = ( A + )(C + + D)(C + D) (d) F(A,,C,D) = ( + C )(A + + C )D (e) F(A,,C,D,E) = (A + )( + C + D + E)(C + E ) (f) F(A,,C,D,E) = (A )D + C DE + AD 4. Find the minterm and maxterm list forms for the complement of each of the functions in Problem Given f(w,x,y,z) = m(0, 1, 2, 4, 6, 8, 10, 12, 14), find (a) the canonical sum-of-products expression for f. (b) the canonical product-of-sums expression for f. (c) the simplest sum-of-products expression for f. (d) the simplest product-of-sums expression for f. 6. Find the minterm list form for F(A,D,,C) if F(A,,C,D) = m(0, 1, 3, 5, 7, 9, 10, 13, 14) 7. Find the minterm and maxterm list forms for f(a,b,c,d) if a b = 11 (both a and b are 1) never occur in input states. f(a,b,c,d) = a' b + a c d + a' d' + c' d 8. Given f(w,x,y,z) = m (1,2,4,5,7,11,12,15) and g(w,x,y,z) = m (0,1,2,7,8,9,12,14,15), 1

2 find the minterm list forms for (a) f (b) g (c) f g (d) f + g, (e) f g (f) f g (g) f + g (h) f g 9. Simplify each of the following expressions to a sum-of-products expression. (a) (b) (c) a' b' c a (a b + c') (a' b 1) (a b )+ (c c' 0) (a + d e) (a + b') 10. Find the minterm list form for each of the following functions. (a) (b) (c) f(a,b,c,d) = a'b b'cd cd f(a,b,c,d) = (a' + b) (c + d) (a + c + d ) f(a,b,c,d) = 1 bcd acd 11. Given F(A,,C,D) = (A C D) + D + A CD find all the sub-function of F with A and D as expansion variables. Express each sub-function as a simplest sum-of-products expression. 12. Find the simplest sum-of-products expression for F(A,,C,D,E) using the following sub-functions. F D = 00 = A + E F D = 01 = AE F D = 10 = 0 F D = 11 = A(C + E ) 13. Find the simplest sum-of-products expression for the sub-function F AC = 00 of a 5- variable function F(A,,C,D,E) if F ACD = 000 = E F ACD = 001 = + E 14. Find the minterm list form for F(A,,C,D,E) using the following sub-functions. F A = 00 = DE + C D F A = 01 = (C + D )E F A = 10 = C + D E F AD = 101 = C F AD = 111 = C + E 15. Given in Figure P4.1 is the timing diagrams of a oolean function F(A,,C), find the simplest product-of-sums expression for F. 2

3 A C F Figure P Find the simplest sum-of-products expressions for X, Y, and Z in each of the logic circuits in Figure P4.2. Figure P4.2 Circuit (a) a b c X Y Z Circuit (b) a b c d X Y Z Circuit (c) a b c d X Y Z 3

4 17. Find the simplest sum-of-products and product-of-sums expressions for the logic circuits in Figure P4.3 without eliminating the internal and output inversions. Figure P4.3 A C D D C F 18. Minimize the number of internal and output inversions for the circuit in Figure P.4.3 and then determine the simplest sum-of-products expression for F. 19. A switching circuit has four inputs a, b, c, d and an output /V. The input combination abcd is a (6, 3, 1, 1) weighted-code given in the rightmost column of Table 2.3. /V is an active-low output which is asserted if and only if the input combination is a valid (6, 3, 1, 1) weighted code. Construct a truth table for /V and find the simplest sum-of-products and simplest product-of-sums expressions for /V. 20. A switching circuit has four inputs a, b, c, d and an output V. The input combination abcd is the reflected code given in Table 2.4. V is an active-high output which is asserted if and only if the input combination is a valid reflected code. Find the minterm and maxterm list forms for V. 21. A switching circuit has four inputs a, b, c, d and four outputs W, X, Y, Z. The input combination abcd is an excess-3 code and the output combination WXYZ is the reflected code given in Table 2.4. Find the minterm and maxterm list forms for W, X, Y, and Z. 4

5 ANSWERS TO CHAPTER 4 PROLEMS 1. (a) xy z +xy z + x y z + x y z + x yz + x yz (b) w x y z + w x y z + wx y z + wx y z + wxy z + wxy z + w x yz + w xyz (c) ACD + ACD + A CD + A CD + A C D + A C D + A C D + AC D (d) A C D + A C D + A CD + A CD + A CD + A CD + A C D + A CD + A C D + A CD + AC D + ACD 2. (a) (x + y + z )(x + y + z)(x +y + z )(x +y + z ) (b) (w +x+y +z )(w+x+y +z )(w+x +y +z)(w+x +y+z)(w+x+y +z)(w+x+y+z) 3. (a) m (3,5,7,11,12,13,14,15) = M (0,1,2,4,6,8,9,10 ) (b) m (0,1,4,5,6,13,15) = M (2,3,7,8,9,10,11,12,14) (c) M (0,1,2,3,4,6,10,12,14) = m(5,7,8,9,11,13,15) (d) M (1,2,3,5,6,7,9,11,13,14,15) = m(0,4,8,10,12) (e) M(5,7,8,13,15,16-24,29,31) = m(0-4,6,9-12,14,25-28,30) (f) m(8,9,11,12.13,16,17,20.21,24,25,27,28,29) = M(0-7,10,14,15,18,19,22,23,26,30,31) 4. (a) m (0,1,2,4,6,8,9,10) = M(3,5,7,11,12,13,14,15) (b) m (2,3,7,8,9,10,11,12,14) = M(0,1,4,5,6,13,15) (c) m (0,1,2,3,4,6,10,12,14) = M(5,7,8,9,11,13,15) (d) m (1,2,3,5,6,7,9,11,13,14,15) = M(0,4,8,10,12) (e) m (5,7,8,13,15,16-24,29,31) = M(0-4,6,9-12,14,25-28,30) (f) M(8,9,11,12.13,16,17,20.21,24,25,27,28,29) = m (0-7,10,14,15,18,19,22,23,26,30,31) 5. (a) w x y z + w x y z + w x yz + w xy z + w xyz + wx y z + wx yz + wxy z +wxyz (b) (w+x+y +z )(w+x +y+z )(w+x +y +z )(w +x+y+z )(w +x+y +z ) (w +x +y+z )(w +x +y +z) (c) w x y + z (d) (w + z ) (x + z ) (y + z ) 6. F(A,D,,C) = m(0,4,5,6,7,9,11,12,14) 7. m (0,1,2,4,5,6,7,9,11) + d(12,13,14,15) = M(3,8,10) D(12,13,14,15) 8. (a) f g = m(1,2,7,12,15) (b) f + g = m(0,1,2,4,5,7,8,9,11,12,14,15) (c) f g = m (0,8,9,14) (d) f + g = (f g) = m (0,3,4,5,6,8,9,10,11,13,14) 5

6 (e) f g = f g + f g = m(0,8,9,14) + m(4,5,11) = m(0,4,5,8,9,11,14) 9. (a) a' b c' + a b' c' + a' b' c + a b c (b) a' c' + a b' c (c) a + b + d e 10. (a) m(2,3,4,5,7,10,11,14) (b) m(1,3,5,6,8,13,14,15) (c) m(0,1,2,3,4,5,6,8,9,11,12,13) 11. F AD=00 = C, F AD=01 = + C, F AD=10 =, F AD=11 = + C 12. F = D (A + E ) + D(AE ) + D (0) + DA(C + E ) = A D + D E + ADE + ACD 13. F AC=00 = E + D 14. The correct given sub-functions are as follows: (corrections in red) F A = 00 = DE + C D F A = 01 = (C + D )E F A = 10 = C + D E F AD = 110 = C F AD = 111 = C + E F = A DE + A C D + A CE + A D E + A C + A D E + ACD + ACD + ADE = A DE + A C D + A CE + A D E + A C + A D E + AC + ADE = A DE + A C D + A CE + A D E + AC + A D E + AC + ADE = A E ( D + C + D ) + A C D + AC + A D E + AC + ADE = A E ( D + C + CD+ D ) + A C D + AC + A D E + AC + ADE (Consensus Th.) = A E ( D + CD + D ) + A C D + AC + A D E + AC + ADE (Consensus Th.) = A DE + A CDE + A D E + A C D + AC + A D E + AC + ADE = A DE + CDE + A D E + A C D + AC + A D E + AC + ADE 15. f = M(0,3,4,6) = ( A + + C )( + C ) ( A + C ) 16. Circuit (a) x = a b + ab y = a bc z = b c + bc Circuit (b) x = a b y = a b + c z = 1 Circuit (c) x = ab y = ab + c + d z = c + d 17. F = (A + + C ) (A + D) ( + D) (C + D) = A D + D + C D + A C 6

7 D C A F (c) (a) (b) F(x,y) y Figure x 4.4 Logic symbol for NAND 18 F = A D + D + C D + A C A C D D C F 19. Let the inputs of the (6,3,1,1) weighted code be A,,C,D. Simplest SOP /V = C D +AC Simplest POS /V = (A + C )( + C )(C + D) 20. V(a,b,c,d) = m (0,1,2,3,6,8,9,10,11,14) = M (4,5,7,12,13,15) 21. W(a,b,c,d) = m (8,9,10,11,12) + d(0,1,2,13,14,15) = M (3,4,5,6,7) D(0,1,2,13,14,15) X(a,b,c,d) = m (7,8) + d(0,1,2,13,14,15) = M (3,4,5,6,9,10,11,12) D(0,1,2,13,14,15) Y(a,b,c,d) = m (5,6,7,8,9,10) + d(0,1,2,13,14,15) = M (3,4,11,12) D(0,1,2,13,14,15) Z(a,b,c,d) = m (4,5,10,11) + d(0,1,2,13,14,15) = M (3,6,7,8,9,12) D(0,1,2,13,14,15) 7

Answers to Problems. For Fundamentals of Logic Design second edition (corrected version)

Answers to Problems. For Fundamentals of Logic Design second edition (corrected version) Answers to Problems For Fundamentals of Logic Design second edition (corrected version) 3 Answers to hapter Problems. (a) 5.875 (b) 38.5 (c) 53.5 (d) 574.75 (e) 4.4535 (f) 474.5. (a) = 33 9 (b) = A 6 (c)

More information

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Chapter 2 - Part 1 2 Chapter 2 - Part 1 3 Chapter 2 - Part 1 4 Chapter 2 - Part

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

Karnaugh Maps Objectives

Karnaugh Maps Objectives Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

ELC224C. Karnaugh Maps

ELC224C. Karnaugh Maps KARNAUGH MAPS Function Simplification Algebraic Simplification Half Adder Introduction to K-maps How to use K-maps Converting to Minterms Form Prime Implicants and Essential Prime Implicants Example on

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Optimizations and Tradeoffs. Combinational Logic Optimization

Optimizations and Tradeoffs. Combinational Logic Optimization Optimizations and Tradeoffs Combinational Logic Optimization Optimization & Tradeoffs Up to this point, we haven t really considered how to optimize our designs. Optimization is the process of transforming

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE

Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Today s Topics Boolean algebra applications in logic

More information

CHAPTER 5 KARNAUGH MAPS

CHAPTER 5 KARNAUGH MAPS CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps

More information

Signals and Systems Digital Logic System

Signals and Systems Digital Logic System Signals and Systems Digital Logic System Prof. Wonhee Kim Chapter 2 Design Process for Combinational Systems Step 1: Represent each of the inputs and outputs in binary Step 1.5: If necessary, break the

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

Digital Logic Design. Combinational Logic

Digital Logic Design. Combinational Logic Digital Logic Design Combinational Logic Minterms A product term is a term where literals are ANDed. Example: x y, xz, xyz, A minterm is a product term in which all variables appear exactly once, in normal

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

Combinational Logic Design Principles

Combinational Logic Design Principles Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits Computer Organization I Lecture 13: Design of Combinational Logic Circuits Overview The optimization of multiple-level circuits Mapping Technology Verification Objectives To know how to optimize the multiple-level

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Ch1: Digital Systems and Binary Numbers Ch2: Ch3: Gate-Level Minimization Ch4: Combinational Logic Ch5: Synchronous Sequential Logic Ch6: Registers and Counters Switching Theory & Logic Design Prof. Adnan

More information

Lecture 7: Karnaugh Map, Don t Cares

Lecture 7: Karnaugh Map, Don t Cares EE210: Switching Systems Lecture 7: Karnaugh Map, Don t Cares Prof. YingLi Tian Feb. 28, 2019 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) 1

More information

This form sometimes used in logic circuit, example:

This form sometimes used in logic circuit, example: Objectives: 1. Deriving of logical expression form truth tables. 2. Logical expression simplification methods: a. Algebraic manipulation. b. Karnaugh map (k-map). 1. Deriving of logical expression from

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

Section 4.1 Switching Algebra Symmetric Functions

Section 4.1 Switching Algebra Symmetric Functions Section 4.1 Switching Algebra Symmetric Functions Alfredo Benso Politecnico di Torino, Italy Alfredo.benso@polito.it Symmetric Functions A function in which each input variable plays the same role in determining

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

More information

CHAPTER 3 BOOLEAN ALGEBRA

CHAPTER 3 BOOLEAN ALGEBRA CHAPTER 3 BOOLEAN ALGEBRA (continued) This chapter in the book includes: Objectives Study Guide 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operations 3.3 The Consensus

More information

Chapter 4: Combinational Logic Solutions to Problems: [1, 5, 9, 12, 19, 23, 30, 33]

Chapter 4: Combinational Logic Solutions to Problems: [1, 5, 9, 12, 19, 23, 30, 33] Chapter 4: Combinational Logic Solutions to Problems: [, 5, 9, 2, 9, 23, 3, 33] Problem: 4- Consider the combinational circuit shown in Fig. P4-. (a) Derive the Boolean expressions for T through T 4. Evaluate

More information

UNIT 3 BOOLEAN ALGEBRA (CONT D)

UNIT 3 BOOLEAN ALGEBRA (CONT D) UNIT 3 BOOLEAN ALGEBRA (CONT D) Spring 2011 Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE Estd-1984 KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE 641 006 QUESTION BANK UNIT I PART A ISO 9001:2000 Certified 1. Convert (100001110.010) 2 to a decimal number. 2. Find the canonical SOP for the function

More information

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function Question Paper Digital Electronics (EE-204-F) MDU Examination May 2015 1. (a) represent (32)10 in (i) BCD 8421 code (ii) Excess-3 code (iii) ASCII code (b) Design half adder using only NAND gates. ( c)

More information

Karnaugh Map & Boolean Expression Simplification

Karnaugh Map & Boolean Expression Simplification Karnaugh Map & Boolean Expression Simplification Mapping a Standard POS Expression For a Standard POS expression, a 0 is placed in the cell corresponding to the product term (maxterm) present in the expression.

More information

Standard Expression Forms

Standard Expression Forms ThisLecture will cover the following points: Canonical and Standard Forms MinTerms and MaxTerms Digital Logic Families 24 March 2010 Standard Expression Forms Two standard (canonical) expression forms

More information

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April Objective - Get familiar with the Xilinx ISE webpack tool - Learn how to design basic combinational digital components -

More information

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata Simplification of Boolean Functions Dept. of CSE, IEM, Kolkata 1 Simplification of Boolean Functions: An implementation of a Boolean Function requires the use of logic gates. A smaller number of gates,

More information

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept.

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept. hapter 2: Princess Sumaya Univ. omputer Engineering Dept. Basic Definitions Binary Operators AND z = x y = x y z=1 if x=1 AND y=1 OR z = x + y z=1 if x=1 OR y=1 NOT z = x = x z=1 if x=0 Boolean Algebra

More information

ENG2410 Digital Design Combinational Logic Circuits

ENG2410 Digital Design Combinational Logic Circuits ENG240 Digital Design Combinational Logic Circuits Fall 207 S. Areibi School of Engineering University of Guelph Binary variables Binary Logic Can be 0 or (T or F, low or high) Variables named with single

More information

Combinational Logic Fundamentals

Combinational Logic Fundamentals Topic 3: Combinational Logic Fundamentals In this note we will study combinational logic, which is the part of digital logic that uses Boolean algebra. All the concepts presented in combinational logic

More information

Chapter 2: Boolean Algebra and Logic Gates

Chapter 2: Boolean Algebra and Logic Gates Chapter 2: Boolean Algebra and Logic Gates Mathematical methods that simplify binary logics or circuits rely primarily on Boolean algebra. Boolean algebra: a set of elements, a set of operators, and a

More information

CS 226: Digital Logic Design

CS 226: Digital Logic Design CS 226: Digital Logic Design 0 1 1 I S 0 1 0 S Department of Computer Science and Engineering, Indian Institute of Technology Bombay. 1 of 29 Objectives In this lecture we will introduce: 1. Logic functions

More information

Computer Organization I Test 1/Version 1 CMSC 2833 Autumn 2007

Computer Organization I Test 1/Version 1 CMSC 2833 Autumn 2007 . Print your name on your scantron in the space labeled NAME. 2. Print CMSC 2833 in the space labeled SUBJECT. 3. Print the date, 9-20-2007, in the space labeled DATE. 4. Print your CRN, 2393, in the space

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 06 October 24, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms Chapter 2 (Lect 2) Canonical and Standard Forms Sum of Minterms Product of Maxterms Standard Form Sum of products Product of sums Other Logic Operators Logic Gates Basic and Multiple Inputs Positive and

More information

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT):

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT): ENGI 386 Digital Logic II. COMBINATIONAL LOGIC DESIGN Combinational Logic output of digital system is only dependent on current inputs (i.e., no memory) (a) Boolean Algebra - developed by George Boole

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

DIGITAL LOGIC DESIGN

DIGITAL LOGIC DESIGN DIGITAL LOGIC DESIGN NUMBERS SYSTEMS AND CODES Any number in one base system can be converted into another base system Types 1) decimal to any base 2) Any base to decimal 3) Any base to Any base Complements

More information

EE 110 Practice Problems for Exam 1: Solutions, Fall 2008

EE 110 Practice Problems for Exam 1: Solutions, Fall 2008 EE Practice Problems for Exam : Solutions, Fall 28. ircle T (true) or F (false) for each of these oolean equations. (a). T FO + = (b). T FO + = ( + )( + ) (c). TO F = (d). TO F () = () (e). TO F + + =

More information

Homework Solution #1. Chapter 2 2.6, 2.17, 2.24, 2.30, 2.39, 2.42, Grading policy is as follows: - Total 100

Homework Solution #1. Chapter 2 2.6, 2.17, 2.24, 2.30, 2.39, 2.42, Grading policy is as follows: - Total 100 Homework Solution #1 Chapter 2 2.6, 2.17, 2.24, 2.30, 2.39, 2.42, 2.48 Grading policy is as follows: - Total 100 Exercise 2.6 (total 10) - Column 3 : 5 point - Column 4 : 5 point Exercise 2.17 (total 25)

More information

Chapter 2: Switching Algebra and Logic Circuits

Chapter 2: Switching Algebra and Logic Circuits Chapter 2: Switching Algebra and Logic Circuits Formal Foundation of Digital Design In 1854 George Boole published An investigation into the Laws of Thoughts Algebraic system with two values 0 and 1 Used

More information

/ M Morris Mano Digital Design Ahmad_911@hotmailcom / / / / wwwuqucscom Binary Systems Introduction - Digital Systems - The Conversion Between Numbering Systems - From Binary To Decimal - Octet To Decimal

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate

More information

Logic Gate Level. Part 2

Logic Gate Level. Part 2 Logic Gate Level Part 2 Constructing Boolean expression from First method: write nonparenthesized OR of ANDs Each AND is a 1 in the result column of the truth table Works best for table with relatively

More information

3. PRINCIPLES OF COMBINATIONAL LOGIC

3. PRINCIPLES OF COMBINATIONAL LOGIC Principle of ombinational Logic -. PRINIPLES OF OMINTIONL LOGI Objectives. Understand the design & analysis procedure of combinational logic.. Understand the optimization of combinational logic.. efinitions

More information

Textbook: Digital Design, 3 rd. Edition M. Morris Mano

Textbook: Digital Design, 3 rd. Edition M. Morris Mano : 25/5/ P-/70 Tetbook: Digital Design, 3 rd. Edition M. Morris Mano Prentice-Hall, Inc. : INSTRUCTOR : CHING-LUNG SU E-mail: kevinsu@yuntech.edu.tw Chapter 3 25/5/ P-2/70 Chapter 3 Gate-Level Minimization

More information

Digital Circuit And Logic Design I. Lecture 4

Digital Circuit And Logic Design I. Lecture 4 Digital Circuit And Logic Design I Lecture 4 Outline Combinational Logic Design Principles (2) 1. Combinational-circuit minimization 2. Karnaugh maps 3. Quine-McCluskey procedure Panupong Sornkhom, 2005/2

More information

Chapter 3. Boolean Algebra. (continued)

Chapter 3. Boolean Algebra. (continued) Chapter 3. Boolean Algebra (continued) Algebraic structure consisting of: set of elements B binary operations {+, -} unary operation {'} Boolean Algebra such that the following axioms hold:. B contains

More information

BOOLEAN ALGEBRA TRUTH TABLE

BOOLEAN ALGEBRA TRUTH TABLE BOOLEAN ALGEBRA TRUTH TABLE Truth table is a table which represents all the possible values of logical variables / statements along with all the possible results of the given combinations of values. Eg:

More information

Combinatorial Logic Design Principles

Combinatorial Logic Design Principles Combinatorial Logic Design Principles ECGR2181 Chapter 4 Notes Logic System Design I 4-1 Boolean algebra a.k.a. switching algebra deals with boolean values -- 0, 1 Positive-logic convention analog voltages

More information

Chapter-2 BOOLEAN ALGEBRA

Chapter-2 BOOLEAN ALGEBRA Chapter-2 BOOLEAN ALGEBRA Introduction: An algebra that deals with binary number system is called Boolean Algebra. It is very power in designing logic circuits used by the processor of computer system.

More information

Solutions to Assignment No 5 Digital Techniques Fall 2007

Solutions to Assignment No 5 Digital Techniques Fall 2007 Solutions to Assignment No 5 Digital Techniques Fall 2007 André Deutz October 19, 2007 1 Simplifying and Manipulating Boolean Expressions 1. Simplification (a) Simplify each of the following expressions,

More information

ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN VALUES

ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN VALUES EC 216(R-15) Total No. of Questions :09] [Total No. of Pages : 02 II/IV B.Tech. DEGREE EXAMINATIONS, DECEMBER- 2016 First Semester ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology

More information

MODULAR CIRCUITS CHAPTER 7

MODULAR CIRCUITS CHAPTER 7 CHAPTER 7 MODULAR CIRCUITS A modular circuit is a digital circuit that performs a specific function or has certain usage. The modular circuits to be introduced in this chapter are decoders, encoders, multiplexers,

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and Boolean Algebra) Acknowledgements: Lecture material adapted from Chapter 2 of R. Katz, G. Borriello, Contemporary Logic Design (second edition), Pearson

More information

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman CS 121 Digital Logic Design Chapter 2 Teacher Assistant Hanin Abdulrahman 1 2 Outline 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra. 2.4 Basic Theorems and Properties 2.5 Boolean Functions

More information

Digital Circuit And Logic Design I. Lecture 3

Digital Circuit And Logic Design I. Lecture 3 Digital Circuit And Logic Design I Lecture 3 Outline Combinational Logic Design Principles (). Introduction 2. Switching algebra 3. Combinational-circuit analysis 4. Combinational-circuit synthesis Panupong

More information

EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系. September 2004

EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系. September 2004 EEA051 - Digital Logic 數位邏輯 吳俊興高雄大學資訊工程學系 September 2004 Boolean Algebra (formulated by E.V. Huntington, 1904) A set of elements B={0,1} and two binary operators + and Huntington postulates 1. Closure

More information

COE 202: Digital Logic Design Combinational Logic Part 2. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Combinational Logic Part 2. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Combinational Logic Part 2 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Minterms and Maxterms From truth table to Boolean expression

More information

CHAPTER * 2-2.* Pearson Education Limited Problem Solutions, Global Edition Chapter 2. Verification of DeMorgan s Theorem

CHAPTER * 2-2.* Pearson Education Limited Problem Solutions, Global Edition Chapter 2. Verification of DeMorgan s Theorem HPTER 2 2-.* a) XYZ = X + Y + Z Verification of DeMorgan s Theorem Pearson Education Limited 206. X Y Z XYZ XYZ X + Y + Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b) X + YZ = ( X + Y) ( X + Z) The Second

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 1. Developed by George Boole in 1847 2. Applied to the Design of Switching Circuit by Claude Shannon in 1939 Department of Communication Engineering, NCTU 1 2.1 Basic Operations

More information

Logic Design. Chapter 2: Introduction to Logic Circuits

Logic Design. Chapter 2: Introduction to Logic Circuits Logic Design Chapter 2: Introduction to Logic Circuits Introduction Logic circuits perform operation on digital signal Digital signal: signal values are restricted to a few discrete values Binary logic

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates CSA051 - Digital Systems 數位系統導論 Chapter 2 Boolean Algebra and Logic Gates 吳俊興國立高雄大學資訊工程學系 Chapter 2. Boolean Algebra and Logic Gates 2-1 Basic Definitions 2-2 Axiomatic Definition of Boolean Algebra 2-3

More information

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering Sp 6 Reg. No. Question Paper Code : 27156 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Computer Science and Engineering CS 6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Basic Definitions A binary operator defined on a set S of elements is a rule that assigns, to each pair of elements from S, a unique element from S. The most common

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

Chapter 2 Combinational

Chapter 2 Combinational Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations HOANG Trang Reference: 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean

More information

Heuristic Minimization of Two Level Circuits

Heuristic Minimization of Two Level Circuits Heuristic Minimization of Two Level Circuits Sungho Kang Yonsei University Outline Local Search Checking for Equivalence and Tautology Choosing the Right Direction Identifying Essential Implicants 2 Local

More information

CSE20: Discrete Mathematics for Computer Science. Lecture Unit 2: Boolan Functions, Logic Circuits, and Implication

CSE20: Discrete Mathematics for Computer Science. Lecture Unit 2: Boolan Functions, Logic Circuits, and Implication CSE20: Discrete Mathematics for Computer Science Lecture Unit 2: Boolan Functions, Logic Circuits, and Implication Disjunctive normal form Example: Let f (x, y, z) =xy z. Write this function in DNF. Minterm

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Combinational Logic Design Using a Truth Table Minterm and Maxterm Expansions General Minterm and

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 2.1 Introduction We will use variables like x or y to represent inputs and outputs (I/O) of a switching circuit. Since most switching circuits are 2 state devices (having only 2

More information

Cover Sheet for Lab Experiment #3

Cover Sheet for Lab Experiment #3 The University of Toledo EECS:1100 R2 Digital Logic Design Dr. Anthony D. Johnson Cover Sheet for Lab Experiment #3 Student Names Course Section Anthony Phillips 003 Alexander Beck 003 Report turned in

More information

Chapter 2 : Boolean Algebra and Logic Gates

Chapter 2 : Boolean Algebra and Logic Gates Chapter 2 : Boolean Algebra and Logic Gates By Electrical Engineering Department College of Engineering King Saud University 1431-1432 2.1. Basic Definitions 2.2. Basic Theorems and Properties of Boolean

More information

Functions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways:

Functions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: Boolean Algebra (1) Functions Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: An expression is finite but not unique f(x,y)

More information

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS What will we learn? 2 Logic functions and circuits Boolean Algebra Logic gates and Synthesis CAD tools and VHDL Read Section 2.9 and 2.0 Terminology 3 Digital

More information

INSTITUTEOFAERONAUTICALENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTEOFAERONAUTICALENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTEOFAERONAUTICALENGINEERING (Autonomous) Dundigal, Hyderabad - 50004 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch DIGITAL LOGIC DESIGN A040 II B.

More information

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes Page 1 of 10 School of Computer Science 60-265-01 Computer Architecture and Digital Design Winter 2009 Semester Midterm Examination # 1 Wednesday, February 25, 2009 Student Name: First Name Family Name

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Huntington Postulates 1. (a) Closure w.r.t. +. (b) Closure w.r.t.. 2. (a) Identity element 0 w.r.t. +. x + 0 = 0 + x = x. (b) Identity element 1 w.r.t.. x 1 =

More information