Dr. Abdulla Eid. Section 3.8 Derivative of the inverse function and logarithms 3 Lecture. Dr. Abdulla Eid. MATHS 101: Calculus I. College of Science

Size: px
Start display at page:

Download "Dr. Abdulla Eid. Section 3.8 Derivative of the inverse function and logarithms 3 Lecture. Dr. Abdulla Eid. MATHS 101: Calculus I. College of Science"

Transcription

1 Section 3.8 Derivative of the inverse function and logarithms 3 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 19

2 Topics 1 Inverse Functions (1 lecture). 2 Logarithms. 3 Derivative of the inverse function (1 lecture). 4 Logarithmic differentiation (1 lecture). (University of Bahrain) Logarithmic Differentiation 2 / 19

3 2- Logarithmic Function Consider the exponential function f (x) = a x. Question: Does f (x) has an inverse? Why? Answer: Yes, by the horizontal line test. f 1 (x) is called logarithmic function base a and it is denoted by Note: (The fundamental equations) f 1 (x) = log a x 1 f (f 1 )(x) = x, so we have a log a x = x. 2 f 1 (f (x)) = x, so we have log a a x = x. log a x = y if and only if }{{} logarithmic form x = a y }{{} exponential form If a = e = (Euler number), then we simply write log e as ln ell en and it is called the natural logarithm. (University of Bahrain) Logarithmic Differentiation 3 / 19

4 Properties of Logarithms 1 log a (m n) = log a m + log a n. 2 log a ( m n ) = log a m log a n. 3 log a m r = r log a m. 4 log a 1 = 0. 5 log a a = 1. 6 (change of bases) log a m = log b m log b a. Exercise 1 Use the fundamental equations to prove these six properties of the logarithms. (University of Bahrain) Logarithmic Differentiation 4 / 19

5 Example 2 (Expansion) Write the following expression as sum or difference of logarithms 1 ln( x ) = ln x ln(wz 2 )=ln x (ln w + ln z 2 )=ln x ln w 2 ln z. wz 2 2 ln( x+1 x+5 )4 = 4 ln( x+1 x+5 )=4( ln(x + 1) ln(x + 5)). x 3 ln( ) = ln x ln x (x 2 )(x+3) 2 ln(x + 3) 4 = 4 ln x ln x 4 ln(x + 3) = 1 2 ln x 2 ln x 4 ln(x + 3) = ln x 4 ln(x + 3). 3 2 (1) log 3 ( ) (2) log 2( x5 y 2 ) Exercise 3 Write each of the following expression as sum or difference of logarithms: x+1 (4) ln x 2. (3) log( x2 z wy 2 ) (University of Bahrain) Logarithmic Differentiation 5 / 19

6 Example 4 Write each of the following logarithm in terms of natural logarithm. 1 log 3 x = ln x ln 3. 2 log 6 7 = ln 7 ln 6. 3 log 2 y = ln y ln 2. (University of Bahrain) Logarithmic Differentiation 6 / 19

7 The derivative of the inverse function Strategy: Goal: We want to find d ( dx f 1 (x) ). Write y = f 1 (x), we want to find y f (y) = f (f 1 (x)) f (y) = x f (y) y = 1 y = 1 f (y) = 1 f (f 1 (x)) (University of Bahrain) Logarithmic Differentiation 7 / 19

8 Geometric Interpretation * Note that d ( f 1 (x) ) = dx 1 f (f 1 (x)) so the slope of f 1 is reciprocal to the slope of f. Geometrically, (University of Bahrain) Logarithmic Differentiation 8 / 19

9 Example 5 Let f (x) = x 3 3x 2 1. Find d dx (f (x)) and d ( dx f 1 (x) ) at the point (3, 1) Solution: d dx (f (x)) = 3x 2 6x d dx (f (x)) (3, 1) = 3(3)2 6(3) = 9 d dx d ( f 1 (x) ) = 1 dx f (y) 1 = 3y 2 6y ( f 1 (x) ) (3, 1) = 1 3(3) 2 6(3) = 1 9 (University of Bahrain) Logarithmic Differentiation 9 / 19

10 Exercise 6 Let f (x) = x + e x. What is the value of f 1 (1). Find (f 1 ) (1). (University of Bahrain) Logarithmic Differentiation 10 / 19

11 Derivative of ln Example 7 Find d dx (ln x). Solution: y = ln x e y = x e y y = 1 y = 1 e y y = 1 x Exercise 8 Find y if y = log a x. (Hint: Use the change of base formula to change it to ln) (University of Bahrain) Logarithmic Differentiation 11 / 19

12 Recall The Chain Rule Theorem 9 (f (g(x))) = f (g(x)) g (x) (f (g(x))) = derivative of outer (inner) (derivative of inner) (University of Bahrain) Logarithmic Differentiation 12 / 19

13 Example 10 Find y for each of the following: 1 f (x) = ln x 2 = ln x 2 y = 1 2x = 2 x 2 x 2 f (x) = ln(2x + 3) = ln (2x + 3) y = 1 (2x+3) 2 3 f (x) = x ln x y = (1) ln x + x 1 x = ln x f (x) = ln(ln x) = ln (ln x) y = 1 (ln x) 1 x. 5 f (x) = ln(sin x) = ln (sin x) y = 1 cos x = cot x. (sin x) 6 f (x) = sin(ln x) = sin (ln x) y = cos (ln x) 1 (x). Exercise 11 Find the derivative of the following functions: 1 y = ln(csc x cot x) 2 y = ln x 1+ln x 3 y = ln ln ln x (University of Bahrain) Logarithmic Differentiation 13 / 19

14 Derivative using the properties of Logarithms Example 12 Find the derivative of 1 f (x) = ln x 2017 Solution: First we re write the function in terms using the properties of the ln to get a simplified function: Hence f (x) = 2017 ln x f (x) = x (University of Bahrain) Logarithmic Differentiation 14 / 19

15 Exercise 13 Using the chain rule, find the derivative of the function of the previous example without using the properties of the ln, i.e., find f (x) for f (x) = ln(x 2017 ) (University of Bahrain) Logarithmic Differentiation 15 / 19

16 Derivative using the properties of Logarithms Example 14 Find the derivative of 1 f (x) = ln 3 x 3 1 x 3 +1 Solution: First we re write the function in terms using the properties of the ln to get a simplified function: ( x f (x) = 3 ) ln x = 1 ( ln(x 3 1) ln(x 3 + 1) ) 3 (University of Bahrain) Logarithmic Differentiation 16 / 19

17 Continue... We write the inner function in blue and the outer function in red and we apply the chain rule. derivative of outer (inner) (derivative of inner) f (x) = 1 ( ln(x 3 1) ln(x 3 + 1) ) 3 f (x) = 1 ( 1 3 x 3 1 (3x 2 ) 1 ) x (3x 2 ) (University of Bahrain) Logarithmic Differentiation 17 / 19

18 Exercise 15 Using the chain rule, find the derivative of the function of the previous example without using the properties of the ln, i.e., find f (x) for f (x) = ln x x (University of Bahrain) Logarithmic Differentiation 18 / 19

19 Example 16 Find d4 y dx 4 Solution: for y = 5 ln x y = 5 1 x = 5x 1 y = 5x 2 y = 10x 3 y (4) = 30x 4 = 30 x 4 (University of Bahrain) Logarithmic Differentiation 19 / 19

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 23 Motivation Goal: We want to derive rules to find the derivative

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 1 Motivation Goal: We want to derive rules to find the derivative of

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Math 1 Lecture 23. Dartmouth College. Wednesday

Math 1 Lecture 23. Dartmouth College. Wednesday Math 1 Lecture 23 Dartmouth College Wednesday 11-02-16 Contents Reminders/Announcements Last Time Derivatives of Logarithmic and Exponential Functions Examish Exercises Reminders/Announcements WebWork

More information

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

Logarithmic Functions

Logarithmic Functions Metropolitan Community College The Natural Logarithmic Function The natural logarithmic function is defined on (0, ) as ln x = x 1 1 t dt. Example 1. Evaluate ln 1. Example 1. Evaluate ln 1. Solution.

More information

Differentiation by taking logarithms

Differentiation by taking logarithms Differentiation by taking logarithms In this unit we look at how we can use logarithms to simplify certain functions before we differentiate them. In order to master the techniques explained here it is

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.3 Concavity and Curve Sketching 1.5 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Concavity 1 / 29 Concavity Increasing Function has three cases (University of Bahrain)

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

Computing Taylor series

Computing Taylor series TOPIC 9 Computing Taylor series Exercise 9.. Memorize the following x X e x cos x sin x X X X +x + x + x 3 +... xk +x + x + 6 x3 +... ( ) k (k)! xk ( ) k (k + )! xk+ x x +! x... For which values of x do

More information

Differentiation by taking logarithms

Differentiation by taking logarithms Differentiation by taking logarithms mc-ty-difftakelogs-2009-1 In this unit we look at how we can use logarithms to simplify certain functions before we differentiate them. In order to master the techniques

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over,

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over, The Derivative of a Function Measuring Rates of Change of a function y f(x) f(x 0 ) P Q Secant line x 0 x x Average rate of change of with respect to over, " " " " - Slope of secant line through, and,

More information

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 12: Differentiation SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 12: Differentiation Lecture 12.1: The Derivative Lecture

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Honors Calculus II [ ] Midterm II

Honors Calculus II [ ] Midterm II Honors Calculus II [3-00] Midterm II PRINT NAME: SOLUTIONS Q]...[0 points] Evaluate the following expressions and its. Since you don t have a calculator, square roots, fractions etc. are allowed in your

More information

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.1 Relative Extrema 3 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Extrema 1 / 16 Application of Differentiation One of the most important applications of differential

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

Section 3.3 Product and Quotient rules 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.3 Product and Quotient rules 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.3 Product and Quotient rules 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Differentiation Rules 1 / 12 Motivation Goal: We want to derive rules to find the derivative

More information

Semester University of Sheffield. School of Mathematics and Statistics

Semester University of Sheffield. School of Mathematics and Statistics University of Sheffield School of Mathematics and Statistics MAS140: Mathematics (Chemical) MAS15: Civil Engineering Mathematics MAS15: Essential Mathematical Skills & Techniques MAS156: Mathematics (Electrical

More information

Exponential Functions:

Exponential Functions: Exponential Functions: An exponential function has the form f (x) = b x where b is a fixed positive number, called the base. Math 101-Calculus 1 (Sklensky) In-Class Work January 29, 2015 1 / 12 Exponential

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c.

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c. MATH 6 WINTER 06 University Calculus I Worksheet # 8 Mar. 06-0 The topic covered by this worksheet is: Derivative of Inverse Functions and the Inverse Trigonometric functions. SamplesolutionstoallproblemswillbeavailableonDL,

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

Chapter 2. First-Order Differential Equations

Chapter 2. First-Order Differential Equations Chapter 2 First-Order Differential Equations i Let M(x, y) + N(x, y) = 0 Some equations can be written in the form A(x) + B(y) = 0 DEFINITION 2.2. (Separable Equation) A first-order differential equation

More information

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II Section 13.3 Concavity and Curve Sketching College of Science MATHS 104: Mathematics for Business II (University of Bahrain) Concavity 1 / 18 Concavity Increasing Function has three cases (University of

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B Lecture The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then y = f (u) u The Chain Rule

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

REVERSE CHAIN RULE CALCULUS 7. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Reverse Chain Rule 1/12 Adrian Jannetta

REVERSE CHAIN RULE CALCULUS 7. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Reverse Chain Rule 1/12 Adrian Jannetta REVERSE CHAIN RULE CALCULUS 7 INU05/55 (MATHS 2) Dr Adrian Jannetta MIMA CMath FRAS Reverse Chain Rule /2 Adrian Jannetta Reversing the chain rule In differentiation the chain rule is used to get the derivative

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

1. There are 8 questions spanning 9 pages total (including this cover page). Please make sure that you have all 9 pages before starting.

1. There are 8 questions spanning 9 pages total (including this cover page). Please make sure that you have all 9 pages before starting. Instructor: K. Rotz Name: Solution PUID: 00000-00000 Instructions and tips: 1. There are 8 questions spanning 9 pages total (including this cover page). Please make sure that you have all 9 pages before

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

A special rule, the chain rule, exists for differentiating a function of another function. This unit illustrates this rule.

A special rule, the chain rule, exists for differentiating a function of another function. This unit illustrates this rule. The Chain Rule A special rule, the chain rule, exists for differentiating a function of another function. This unit illustrates this rule. In order to master the techniques explained here it is vital that

More information

MATH 124. Midterm 2 Topics

MATH 124. Midterm 2 Topics MATH 124 Midterm 2 Topics Anything you ve learned in class (from lecture and homework) so far is fair game, but here s a list of some main topics since the first midterm that you should be familiar with:

More information

Lecture 22: Integration by parts and u-substitution

Lecture 22: Integration by parts and u-substitution Lecture 22: Integration by parts and u-substitution Victoria LEBED, lebed@maths.tcd.ie MA1S11A: Calculus with Applications for Scientists December 1, 2017 1 Integration vs differentiation From our first

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

function independent dependent domain range graph of the function The Vertical Line Test

function independent dependent domain range graph of the function The Vertical Line Test Functions A quantity y is a function of another quantity x if there is some rule (an algebraic equation, a graph, a table, or as an English description) by which a unique value is assigned to y by a corresponding

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

The AP exams will ask you to find derivatives using the various techniques and rules including

The AP exams will ask you to find derivatives using the various techniques and rules including Student Notes Prep Session Topic: Computing Derivatives It goes without saying that derivatives are an important part of the calculus and you need to be able to compute them. You should know the derivatives

More information

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ.

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ. Math 7A Practice Midterm III Solutions Ch. 6-8 (Ebersole,.7-.4 (Stewart DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Topics Covered in Calculus BC

Topics Covered in Calculus BC Topics Covered in Calculus BC Calculus BC Correlation 5 A Functions, Graphs, and Limits 1. Analysis of graphs 2. Limits or functions (including one sides limits) a. An intuitive understanding of the limiting

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

MAT137 Calculus! Lecture 19

MAT137 Calculus! Lecture 19 MAT137 Calculus! Lecture 19 Today: L Hôpital s Rule 11.5 The Indeterminate Form (0/0) 11.6 The Indeterminate Form ( / ) + other Indeterminate Forms Test 2: Friday, Nov. 25. If you have a conflict, let

More information

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

MATH1013 Calculus I. Derivatives II (Chap. 3) 1 MATH1013 Calculus I Derivatives II (Chap. 3) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology October 16, 2013 2013 1 Based on Briggs, Cochran and Gillett: Calculus

More information

This format is the result of tinkering with a mixed lecture format for 3 terms. As such, it is still a work in progress and we will discuss

This format is the result of tinkering with a mixed lecture format for 3 terms. As such, it is still a work in progress and we will discuss Version 1, August 2016 1 This format is the result of tinkering with a mixed lecture format for 3 terms. As such, it is still a work in progress and we will discuss adaptations both to the general format

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f Warm-Up: Solve sinx = 2 for x 0,2π 5 (a) graphically (approximate to three decimal places) y (b) algebraically BY HAND EXACTLY (do NOT approximate except to verify your solutions) x x 0,2π, xscl = π 6,y,,

More information

MAT01A1: Inverse Functions

MAT01A1: Inverse Functions MAT01A1: Inverse Functions Dr Craig 27 February 2018 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

MATH 104 FINAL EXAM SOLUTIONS. x dy dx + y = 2, x > 1, y(e) = 3. Answer: First, re-write in standard form: dy dx + 1

MATH 104 FINAL EXAM SOLUTIONS. x dy dx + y = 2, x > 1, y(e) = 3. Answer: First, re-write in standard form: dy dx + 1 MATH 4 FINAL EXAM SOLUTIONS CLAY SHONKWILER () Solve the initial value problem x dy dx + y =, x >, y(e) =. Answer: First, re-write in standard form: dy dx + x y = x. Then P (x) = x and Q(x) = x. Hence,

More information

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 is a fast-paced and thorough tour of precalculus mathematics, where the choice of topics is primarily motivated by the conceptual and technical knowledge

More information

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

MAT137 - Week 8, lecture 1

MAT137 - Week 8, lecture 1 MAT137 - Week 8, lecture 1 Reminder: Problem Set 3 is due this Thursday, November 1, at 11:59pm. Don t leave the submission process until the last minute! In today s lecture we ll talk about implicit differentiation,

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

Monday, 6 th October 2008

Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns 1/19 Class test next week... MA211 Lecture 9: 2nd order differential eqns 2/19 This morning

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

Solutions to Math 41 First Exam October 15, 2013

Solutions to Math 41 First Exam October 15, 2013 Solutions to Math 41 First Exam October 15, 2013 1. (16 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether

More information

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy)

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy) Math 7 Activit: Implicit & Logarithmic Differentiation (Solutions) Implicit Differentiation. For each of the following equations, etermine x. a. tan x = x 2 + 2 tan x] = x x x2 + 2 ] = tan x] + tan x =

More information

Topics from Algebra and Pre-Calculus. (Key contains solved problems)

Topics from Algebra and Pre-Calculus. (Key contains solved problems) Topics from Algebra and Pre-Calculus (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the calculator, except on p. (8) and

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then f (u) u The Chain Rule with the Power

More information

Announcements. Topics: Homework: - sections 1.4, 2.2, and 2.3 * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 1.4, 2.2, and 2.3 * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 1.4, 2.2, and 2.3 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007 MATH 220 Midterm Thurs., Sept. 20, 2007 Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the eam and nothing else. Calculators

More information

Purdue University Study Guide for MA Credit Exam

Purdue University Study Guide for MA Credit Exam Purdue University Study Guide for MA 60 Credit Exam Students who pass the credit exam will gain credit in MA60. The credit exam is a twohour long exam with 5 multiple choice questions. No books or notes

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.3 DIFFERENTIATION 3 (Elementary techniques of differentiation) by A.J.Hobson 10.3.1 Standard derivatives 10.3.2 Rules of differentiation 10.3.3 Exercises 10.3.4 Answers to

More information

SOLUTIONS FOR THE PRACTICE EXAM FOR THE SECOND MIDTERM EXAM

SOLUTIONS FOR THE PRACTICE EXAM FOR THE SECOND MIDTERM EXAM SOLUTIONS FOR THE PRACTICE EXAM FOR THE SECOND MIDTERM EXAM ANDREW J. BLUMBERG 1. Notes This practice exam has me problems than the real exam will. To make most effective use of this document, take the

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

8 + 6) x 2 ) y = h(x)

8 + 6) x 2 ) y = h(x) . a. Horizontal shift 6 left and vertical shift up. Notice B' is ( 6, ) and B is (0, 0). b. h(x) = 0.5(x + 6) + (Enter in a grapher to check.) c. Use the graph. Notice A' to see h(x) crosses the x-axis

More information

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1.

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1. MATH 222 LEC SECOND MIDTERM EXAM THU NOV 8 PROBLEM ( 5 points ) Find the standard-form equation for the hyperbola which has its foci at F ± (±2, ) and whose asymptotes are y ± 3 x The calculations b a

More information

Exercise Sheet 2: Foundations of Differential Calculus

Exercise Sheet 2: Foundations of Differential Calculus D-ERDW, D-HEST, D-USYS Mathematics I Fall 2015 Dr. Ana Cannas Exercise Sheet 2: Foundations of Differential Calculus 1. Let the function f(x) be x 2 1, 1 x < 0, 2x, 0 < x < 1, f(x) = 1, x = 1, 2x + 4,

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB 017-018 Summer Assignment Congratulations! You have been accepted into Advanced Placement Calculus AB for the next school year. This course will count as a math credit at Freedom High School

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables

More information

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x) Name AP Calculus Date Supplemental Review 1 Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Math 142 (Summer 2018) Business Calculus 6.1 Notes

Math 142 (Summer 2018) Business Calculus 6.1 Notes Math 142 (Summer 2018) Business Calculus 6.1 Notes Antiderivatives Why? So far in the course we have studied derivatives. Differentiation is the process of going from a function f to its derivative f.

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information