An alternative way to write Fermat s equation and notes on an elementary proof of FLT

Size: px
Start display at page:

Download "An alternative way to write Fermat s equation and notes on an elementary proof of FLT"

Transcription

1 A alteratve way to wrte Ferat s equato ad otes o a eleetary roof of FLT C. Sloae Vctora Uversty, NZ (chrssloae70@gal.co) (Feb 08) Abstract We dscovered a way to wrte the equato x +y -z =0 frst studed by Ferat, owers of 3 other varables defed as; the su t = x+y-z, the roduct (xyz) ad aother ter r = x +yz-xt-t. Oce x +y -z s wrtte owers of t, r ad (xyz) we foud that 3 cases of a re factor q of x +yz dvded t. We realzed that fro ths alteratve for of Ferat s equato f all cases of q dvded t that ths would lead to a cotradcto ad solve Ferat s Last Theore. Itrgued by ths, we the dscovered that the fourth case, q=3s+ also dvdes t whe usg a lea that uquely defes a asect of Ferat s equato resultg the followg theore: If x + y - z = 0 ad suose x, y,z are arwse co - re the ay re factor q of (x + yz) wll dvde t,where t = x+ y - z. Coyrght Chrs Sloae 08

2 ON FERMAT S LAST THEOREM Itroducto There have bee thousads of attets to solve Ferat s Last Theore (FLT) usg Eleetary Nuber Theory (ENT) over the cetures. Naturally whe cosderg a roble that ca be easly stated ad uderstood oe would assue a relatvely easy roof ENT would exst. However, oe were foud wth the equato as t s wrtte, wth the exceto of Adrew Wle s roof usg oder uber theory techques. Whe 993 Adrew Beal cojectured that there were oly coo factor solutos to the geeral case of FLT aely x a +y b -z c =0 whe a,b,c> oe the assued that there were coo factor solutos to FLT but obvously these solutos would cacel out ad be o-exstet the secal case. We therefore wodered what would be a good way of showg coo factors or ore secfcally what ter s re coosto would gve coo factors f they shared a re? We foud 3 good caddates x +yz, y +xz, ad z -xy because f they shared a re factor (q) wth owers of x, y, z or xy, xz, yz or xyz the we get coo factor solutos q. We ca t see how to use ths wth Ferat s equato as t s wrtte but whe we were tryg to factor x +yz to the =3,5,7 equato we tally foud a searato of the ters (x+y-z) ad (xyz). We the wodered whether ths was ossble for all. What we wated to do was see f we ca ut ths equato ters of( x+y-z) ad (xyz), or ore secfcally owers of (x+y-z) ad owers of (xyz) ad deed we could f we troduce a ew ter we call the syetrc r= x +yz-xt-t whch haes to have a x +yz cooet. For exale we have Ferat s equato for =7, x y z 0 ad the ew reresetato we have for =7, t 56t r 35( xyz )t 35r t 35( xyz )t r 7tr 7( xyz ) t 7r ( xyz ) 0 Oe ca see ths s wrtte owers of the 3 ters t, r,(xyz) ad these ters coletely relace the owers of x, y ad z to becoe the arguets or varables the roble. We the studed ths ew equato ad realsed that f we showed all the re factors of x +yz or y +xz, or z -xy dvded t we could solve Ferat s Last theore because ths leads to a cotradcto x +yz t but x yz t FLT as the case ot. We frst show that t 0od3 ad recogzed that f we take a re factor (q) of x +yz we ca easly show that for oe case of q ad two sub-cases of q aely, q 3s+ q=s+, s M3 q=3s+, s M whe s re () we get t 0odq or we get coo factor solutos for these cases. The 4th case q=3s k + s ore dffcult but we develo ethods to deal wth t. We use a lea (lea 5) that defes a artcular roerty of Ferat s equato aely; x+y=c, z-y=a, z-x=b. The, alog wth the ossble solutos whe q=3s+, we show that these q s ust also dvde t. We further geeralze to all k usg a exoetato ethod that cobed wth lea 5 shows all q(k) dvde t. We therefore ed u wth t 0odq for all ossble cases of q. Whe we look at our ew reresetato of Ferat s equato, we ca show that wth the decoosto of, q( q ) q( q ) q( q ) q( q ) x yz q 3 q q 3...q where q s re ad q(q ) the hghest ower dvdg x +yz, that these hgher ower ters ust also dvde t but we have that x yz t whch obvously elates teger solutos. Reark: The rese behd solvg ths roble s qute sle - all we are showg s all the re factors of a artcular ter dvde t or we get coo factor solutos, resultg the theore; If x + y - z = 0 ad suose x, y,z are arwse co - re the ay re factor q of (x + yz) wll dvde t where t=x+y-z Coyrght Chrs Sloae 08

3 3 ON FERMAT S LAST THEOREM Hstorcal Note: Although, FLT s a acet roble t s oly relatvely recetly (30 years) that we have foud the geeralzed verso of the roble alost certaly has oly coo factor solutos. If acet atheatcas had kow ths, they would have realsed that coo factor solutos to the secal case would ot exst ad would be a good way of solvg FLT. It s dffcult to fd coo factor ethods workg wth three deedet varables. However chagg the for of Ferat s equato to cororate secfc ters lke x +yz creates a evroet fredly to coo factor aroaches. Wth ths alteratve verso of Ferat s equato also ukow to atheatcas utl ow, the the roble ay ot be outsde the reals of eleetary uber theory after all.. Deftos We defe the deedet varable t as, Aother way of wrtg t s to let, x y C, z y A, z x B. t= x+y-z (.0) t = A B+ C x = A+ t y = B + t z = C - t (.0) (.03) (.04) (.05) We defe the syetrc r geeral as, We ca also wrte ths as, r(v) = x + yz - xt + vt = y + xz - yt + vt = z - xy + zt + vt r(v) = xz + yz - xy + vt (.06) (.07) I ths work we wll oly be usg v= -, The syetrc arts are defed as, r(-) or r = xz + yz - xy - t (.08) We ca use ay of I ths work we wll use, r(x / t) = x + yz, r(y / t)= y + xz, r(-z / t) = z - xy, r(0) = xz + yz - xy (.09) r( x / t ) x yz, r ( y / t ) y xz, r( z / t ) z - xy, to cota our re factors q r(x / t)or r' = x + yz (.0) We use catalzato whe referg to these deftos x, y, z. e x x, y y, z z Hece, T = x + y - z (.) R = x z + y z - x y -T (.) R' = x + y z (.3) Coyrght Chrs Sloae 08

4 4 ON FERMAT S LAST THEOREM Reark: M stads for ultle of at soe laces ths work. We derve the ew for of Ferat s equato usg cobatoral arguets. Ths roof s qute log ad as oe kows cobatoral roofs take a log te to work through (over 4 ages ths stace). Hece ot to dstract the reader wth ths cubersoe roof we wll state the results Theore. ad Corollary, for brevty. Oe ca use a calculator or couter to check the valdty of these equatos for ay ut. If oe requres the rgorous roof lease see extract Proosto We ca wrte x y ( z ) ters of (xyz), r ad t Startg wth, x y z ( A t ) ( B t ) (C t ) We tally factor A +BC-At-t ths dervato ad covert back to x +yz-xt-t. I geeral we ed u gettg for ad l; odd eve # eve odd ( 3 ) ( 5 ) ( ) ( 5 ) ( ) ( 3#) ( 5#) ( ) ((... )t xyzr!! 0! ( )!!! #!!( )! ( 5 ) ( 7 ) ( 7 ) ( 7 ) ( 7 ) ( 5#) ( 7 #) ( 7 ) (... )t ( xyz ) 3 r! 3! 0! ( )! 3!! #! 3!( )! ( ) ( 4 ) ( ( 3 ) ( 4 ) ( ( 6 ) ( ( 3 ) ( )( )...( ) ( )( )...( ) (...!! 0! ( )!!! ( #) ( ( 4#) ( ( 3 ) ( )( )...( ) 3 ))t ( xyz ) r (.4) ( #)!!! odd odd * eve, eve ( ) ( 4 ) ( ) ( 4 ) ( ) ( *) ( 3*) ( ) ((... )t r! 0! 0! ( )! 0!! *! 0!( )! ( 4 ) ( 6 ) ( 4 ) ( 6 ) ( 4 ) ( 3*) ( 5*) ( 4 ) (... )t ( xyz ) r...!! 0! ( )!!! *!!( )! ( ) ( 4 ) ( ( 3 ) ( 4 ) ( ( 6 ) ( ( 3 ) ( )( )...( ) ( )( )...( ) (...!! 0! ( )!!! ( *) ( ( 3*) ( ( 3 ) ( )( )...( ) ))t ( xyz ) ( * )!!! Ths gves, r ( s ) 3 3 / ( )/ ( )! t x y ( z ) ( )t ( xyz ) r s ( s )!! s!( )! od 3 ters for (.6) (.5) Coyrght Chrs Sloae 08

5 5 ON FERMAT S LAST THEOREM Therefore we ca wrte, Theore. t deedet equato v = -, ( > 0) ( - s - - ) 3-3- / ( - )/ ( )! x y ( z ) (- ) (- ) ( )t ( xyz ) r (.7) s 0 0 ( - s )!! s!( )! od Where r s the v= - syetrc x +yz-xt-t 3 Makg / ( )/ 3 ( s )! 0 s 0 0 ( s )!! s!( )! x y ( z ) ( ) ( ) ( )t ( xyz ) r (.8) od Corollary ( 3) 4 ( 4 )( 5 ) z x ( z x ) ( z x ) zx ( z x ) z x ( z x ) z x! 3! 4 ( )( )... / / / /... ( z x )z x! ( =eve) 3 ( )( )... ( )/ ( )/... ( z x )z x ( )! ( =odd) (. 9 ) Corollary!!!! x y ( x y ) x y xy x y x y... ( )!!( )! ( )!!!( )!!!! / / x y x y... x y ( eve )!( )! ( )!!!!! ( )/ ( )/... x y ( odd ) (. 0 ) ( ) ( )!! Coyrght Chrs Sloae 08

6 6 ON FERMAT S LAST THEOREM Frst Exales v = x y z ( t 6t r 6xyzt 5t r 4xyzt r 0t r 3( xyz ) t 36xyzt r 5r t 0( xyz ) t r 4xyzt r ( xyz ) t 6t r 9t ( xyz ) r 6txyzr t( xyz ) r r 6( xyz ) r 3( xyz ) )( xyz ) x y z ( t 5t r 5xyzt 0t r 5xyzt r 0t r 0( xyz ) t 5xyzt r 5r t 5( xyz ) t r 5xyztr ( xyz ) t r 5( xyz ) r )( xyz ) x y z ( t 4t r 4xyzt 6r t 8xyzrt 4r t ( xyz ) t 4xyztr r 4( xyz ) r )( xyz ) x y z ( t 3t r 3xyzt 3t r 3xyztr r 3( xyz ) )( xyz ) 4 x y z ( t t r xyzt r )( xyz ) x y z ( t r )( xyz ) x y z 3 x y z t x y z 3t r x y z 4t 3tr 3xyz x y z 7t 8t r 4xyzt r x y z t 5t r 0xyzt 5r t 5xyzr x y z 8t 30t r 8xyzt 5r t xyztr r 3( xyz ) x y z 9t 56t r 35xyzt 35r t 35xyzt r 7tr 7( xyz ) t 7r xyz x y z 47t 04t r 64xyzt 80r t 80xyzt r 4t r 0( xyz ) t 4xyztr r 8( xyz ) r x y z 76t 89t r 7xyzt 7r t 80xyzt r 66t r 45( xyz ) t 8xyzt r 9tr 7( xyz ) rt 9xyzr 3( xyz ) x y z 3t 340t r 0xyzt 355r t 380xyzt r 70t r 00( xyz ) t 0xyzt r 35t r 90( xyz ) rt 40xyztr 3 5 0( xyz ) t r 5r ( xyz ) x y z 99t 605t r 374xyzt 75r t 78xyzt r 407t r 09( xyz ) t 56xyzt r 0t r 4( xyz ) rt xyzt r 33( xyz ) t r t 66r ( xyz ) t xyzr ( xyz ) r... Couter Verfcato. Oe ay care to verfy these results by couter where t = x+y-z ad r =x +yz-xt-t =y +xz-yt-t =z -xy+zt-t There are ay corollares but otable corollares requred for FLT are as follows: Corollary 3 Whe s a ultle of 3 the the equato eds wth ±3(xyz) /3 3 Fro (. 7 ) wth 0, we have 0 the 3 hece, -(+) ( )! ( )! 3 ( xyz ) 3( xyz ) -3 0!!( )!! Coyrght Chrs Sloae 08

7 7 ON FERMAT S LAST THEOREM Corollary 4 For =M3- or =M3+ ad l=0 the the coeffcets of (xyz) r or (xyz) r resectvely s ± 3 Fro (. 7 ) wth 0, we have the 3 hece, -(+) ( )! ( )! ( xyz ) r ( xyz ) r ( xyz ) r ( xyz ) r -3 0!!( )!! 3 the 3 4 -(+) ( )! ( )! ( xyz ) r ( xyz ) r ( xyz ) r ( xyz ) r -3 0!!( )!!! Corollary 5 For =M3+ ad l= the the coeffcet of (xyz) t s ± ad for =M3- ad l= the the coeffcet of (xyz) t s ±(+3)/ ( )/3 ( ) ( )! (3 ) The t sequece for x y ( z) t( xyz) r (.) 3 0 eve( odd)!!( )! odd eve (3) for 0 we get, ( ) ( )!! t( xyz) t( xyz) 3!!!( )! The t sequece for x y ( z) ( )/3 ( ) ( ) ( )! ( )! (3) ( ( ) ( )) t( xyz) r (.) eve( eve)!!( )! 0!!( )! odd odd (3) for 0 we get, ( ) ( ) ( )! ( )! ( ( ) (! 3 )) t ( xyz) ( ) t ( xyz) ( ) t ( xyz) 3 3!!!!( )! 0!!( )! Corollary 6 The total su of the exoets each ter add to ( > 0) ad ( < 0) f we clude the x,y,z degree (xyz) = 3, r = ad t = as a weghtg factor. 3 Equato (.7) the total su s 3 3 We therefore have for = M3, loe (xyz) /3 ters (Corollary 3) For =M3-we have ( xyz ) 3 t ad ( xyz ) 3 r ters > 0 ad vce versa < 0. For =M3+ we 4 4 have ( xyz ) 3 t ad ( xyz ) 3 r ters > 0 (Corollares 4,5) Coyrght Chrs Sloae 08

8 8 ON FERMAT S LAST THEOREM Corollary 7 The frst ter coeffcet s gve by the Lucas sequece over ad for = (re) s cogruet to od, all the other ters are cogruet to 0od. The frst ter coeffcet s geerated fro the Lucas fucto ad hece L s cogruet to od f s re [] We have whe ad 0 fro th. / s0 ( s)! t s!(( s)! Ths s a forula for the Lucas sequece hece ad for, L s cogruet to od f s re [] We ca see fro. that f the the deoator factorals are always less tha sof the there s a ter the uerator hece all ters whe are cogruret to 0 od Corollary 8 We ca aly the t, r, (xyz) reresetato to ay three varable equato of the for Ax a +By b - Cz c =D f we ake T equal the equato questo T=D ad X=Ax a,y=by b, Z=Cz c T deedet equato, ( s ) 3 3 ( )! / ( ) / X Y ( Z ) ( ) ( ) ( )T ( XYZ ) R (.3) 0 s ( s )!! s!( )! od Where X,Y,Z reresets the ters the equato ad R X YZ XT For exale FLT we have that T= x y z 0 sot s 0 ad R x y z x T T x y z Hece, T Y XZ YT T Z XY ZT T ( s ) ( )! 3 / ( ) / 3 ( x ) ( y ) ( z ) ( ) ( ) ( )T ( x y z ) R 0 s ( s )!! s!( )! od Hece f T 0 the we ecessarly have 0 ad we get the T deedet equato ( ) 3 / 3 ( )! ( ) ( x ) ( R ) 3 0(, eve ) 0!!( )! (, odd ) ( x ) ( y ) ( z ) y z Where R x y z (.4) (.5) Lea If x yz q ad x y z the x y z q y x z q z x y 0 od q 0 od 0 0 od, 0 od, x y z ca be factored to x yz sce s odd hece x y z 0 od q Wth x y z 0 the x y z x ( z y ) y z x z y ( z x hece f 0 od so ust 0 od x y z q y x z q Slarly, x y z x ( z y ) y z z ( x y ) x y z x y hece f 0 od so ust 0 od x y z q z x y q ) y x z Coyrght Chrs Sloae 08

9 9 ON FERMAT S LAST THEOREM Lea If x, y, z 0 od q ad x y - z 0, ad where q 0 s a re factor of ay of the syetrc arts R x y z 0 od q or R y x z 0 od q or R z x y 0 od q we ca wrte; g x od q 3 3 g y od q 3 3 g z od q Where g s defe d as the ultlcatve rtve root set geerator q has a rtve root g ad we use the rtve root as the geerator of the ultlcatve set of tegers od ulo q or g geerates all resdues od q, for 0 q Lets choose a g actg o x such that the resdue s od q hece, g x od q Wth x y z y x z z x y 0 od q fro lea we have g x g y z 0 od q x g y z 0 od q ad wth g y z 0 od q hece, x g y 0 od q g y 0od q ad wth, g z y 3 x g z 0 od q 3 3 g z 0od q Therefore, a 0 od q g x od q (.6) 3 3 g y od q (.7) 3 3 g z od q (.8) we have x y odq, z y od q, z x od q (.9) Lea 3 If g x od q the, g y od q ad g z od q therefore g y, g z od q Whe g x od q, g y od q, g z od q the, ( g y )( g y g y ) 0 od q, ( g z )( g z g z ) 0 od q. If g y od q or g z od q, the g z od q or y od q resectvely fro g x g y g z 0 The fro g x g y z 0 od q we get 3 0 od q whch t s ot hece g y od q, g z od q, P Lea 4 We have quadratc cogrueces y ad z wth uque solutos for y, z 3 3 We ca wrte y z 0 od q, ( y z )( y y z z ) 0 od q If y z od q the g y od q, g z od q fro g x +g y -g z =0, 4g y 4g x z 0 od q, ad g x 0 od q, whch s a cotradcto 3 0 od q hece y z od q so y y z z 0 od q. So we have quadratc cogrueces y ad z wth uque solutos for y, z Coyrght Chrs Sloae 08

10 0 ON FERMAT S LAST THEOREM Ferat s Last Theore x +y -z = 0 has o o zero teger (ad hece ratoal) solutos whe >. Make re ( ). We assue that x, y, z have o coo dvsors for f they dd we could factor the out ad fd a ew soluto to the equato. If oe of x, y, z M 3 the the other varables ust be od 3 to satsfy x +y -z 0.e. (M3) ( M 3 ) ( M 3 ) 0 x y - z t 0 od 3 (5.0) If x, y, z M 3 the oly ( M 3 ) ( M 3 ) ( M 3 ) 0 s allowed, hece t M 3 M 3 M 3 M 3 t 0 od 3 (5.0) x, y, z 0 ad t x y z so f x y z the z x y d ad x y ( x y d ) 0 a equalty, hece t 0 Wth z x, y ad r' x yz r' 0 ad r' s odd as oe of x, y, z ust be eve ad t s eve. Furtherore, x yz t.e ( z y t ) yz t. We ca also show ths for r( y / t ), r( z / t ). ( 5. 03) Usg r' x yz, lets ake q a re decoosto factor of r' whch s odd 3 Proosto 5 For all the cases of q we show that t 0 od q or x, y, z share coo factor q or we get a cotradcto odulo q. If q 3 the t 0 od q as above, otherwse We eed to defe cases (lus sub -cases) whe q 3 : ) q 3s (5.05) b) q s, s M 3 (5.06) c) q 3s, s M (5.07) ) q 3s (5.08) Case. Wrte l uq v ad ake u v. Ths s a exteto of Bezoult's lea where q, are co-re or f q the GCD s ( v M ). Hece, l v q v v q q (5.09) Choose v such that v( q ) q l where l M 3 ad fro our ( T deedet) reresetato (Corollary 8) wth T 0 l 5 l 7 l 7 l 9 l l 3 ( l 3) ( )( ) ( l 9) ( )( )( )( ) l5 l l l ( x ) ( y ) ( z ) 0 l( xyz ) (( R ) ( xyz ) ( R ) 4 ( xyz ) ( R ) 3! 5! ( l ( )) ( l ( 4 )) ( l ( 3 )) ( )( )...( ) l3 ( )... ( xyz ) ( R ) ) (5.0)! LHS t od q.e. ( x y z ) Mq t Mq t od q f x, y, z Mq (fro Ferat's lttle theore) RHS 0 od q. ( R x y z 0x 0 Mr ) t 0 od q (5.) Reark : If oe of x, y, z cota q the so do the other varables ad we have a coo factor soluto whch ust factor out. Coyrght Chrs Sloae 08

11 ON FERMAT S LAST THEOREM Case b) Wrte l uq v ad ake u v 3, l v 3 q v v q 3 q (5.) l vs 3q where s s eve 3 l s odd M3 hece fro (C.9), T 0. l 5 l 7 l 7 l 9 l l 3 ( l3) ( )( ) ( l9) ( )( )( )( ) l5 l l l ( x ) ( y ) ( z ) 0 l( xyz) (( R) ( xyz) ( R) 4 ( xyz) ( R) 3! 5! ( l ( )) ( l ( 4)) ( l (3 )) ( )( )...( ) l3 ( )... ( xyz) ( R) ) (5.3)! LHS x y z odq f x, y, z Mq RHS 0 od q Hece we get coo factor solutos ths case. Case c) Wrte l uq v ad ake u v, l v3s q where s s eve q M3 l s odd M 3. -3( xyz) 0 od q (5.4) l v q v v q q (5.5) l 5 l 7 l 7 l 9 l l 3 ( l 3 ) ( )( ) ( l 9 ) ( )( )( )( ) l5 l l l 4 ( x ) ( y ) ( z ) 0 l( xyz ) (( R ) ( xyz ) ( R ) ( xyz ) ( R ) 3! 5! ( l ( )) ( l ( 4 )) ( l ( 3 )) ( )( )...( ) l3 ( )... ( xyz ) ( R ) ) (5.6)! LHS t od q f x, y, z Mq RHS 0 od q t 0 od q (5.7) Case ) Wth q 3s, we ca factor r' fro R x ( yz ) by Lea For case we eed to uquely defe x +y -z =0 as oosed to x +y -z 0odq. Ths s doe va ths lea 5 Lea 5, If x +y -z =0 the Case ) We ca wrte x+y=c, z-y=a, z-x=b f x +y -z =0 f does ot dvde x,y,z Case ) If oe of x,y,z=m the we ca wrte z-y= - a,z-x= - b,x+y= - c resectvely Case ) Wth factor out x y C therefore C ust dvde z Make z cw where c s ay coo dvsor of ( x y) ad z Fro Corollory (see extract ) we have, - -3 ( - 3) -5 x y z ( x y){( x y) - ( x y) xy ( x y) x y...! ( -)/ ( -)/... ( x y )} z Hece, ( x y ) c otherwse xy would share all coo factors wth z (excludg ) whch s ot ossble the secal case. Therefore, f does ot dvde C the x y C c ad z cw ad z s dvsable by all of x y Slarly, z - y A ust dvde x ad fro Corollory (see extract ) z - y A a ad x au ad z - x B b ad y bv for a, b, c 0 (5.) Coyrght Chrs Sloae 08

12 ON FERMAT S LAST THEOREM Furtherore, f oe of A, B, C cota the we have, x au A t a t ad a / t (5.3) y bv B t b t ad b / t (5.4) z cw C - t c t ad c / t (5.5) Furtherore, ( x y) z M hece C z M but C z t / t Moreover we ow ca wrte, A B C -t Hece, a b c t abc (5.6) Case ) If dvdes, say C, ad hece z the we have C c However, the other ters A, B wll ot cota otherwse we have a coo factor. Because we have a coeffcet the last ter of corollary the shared coo factor betwee x y ad z does ot eed to be to the ower but oe less So lets say 5 ad x y ad z w So fro corollary w {( ) ( ) xy x y } w {( 5 ) 4 ( 5 ) xy x y } hece w M ad tur xy M gvg coo factor solutos - Therefore, x y c where c s the other shared factors as above. If g x od q, g y od q, g z odq ad q 3s the fro lea 3, 4 ether: or s s s g z y odq ad g x z odq ad g y x od q (5.7) s s s g z y od q ad g x z od q ad g y x od q (5.8) Lea 6 s(4) s(7) We ca also wrte g (3l) s There ust exst oe 3l such that g z y odq Wrte, s g z y od q g z y od q g z y od q z y odq for l 0,,...( ) etc. for each of these cogrueces. s s( ) g z y od q s(3( ) ) g z y Factorg we get, od q s s( ) s( ) ( g z y)( g z g z y... y ) 4s 4 s( ) 4 s( ) ( g z y)( g z g z y... y ) s(3 ) s(3 )( ) s(3 )( ) ( g z y)( g z g z y... y ) We have rows wth each oe havg a uque soluto otherwse we get coo factor solutos f they share the sae soluto. Sce there are at ost uque solutos the secod brackets there ust be oe soluto the frst braket o ay artcular row. Coyrght Chrs Sloae 08

13 3 ON FERMAT S LAST THEOREM Lkewse for the other relatos so we ca wrte a table as follows; Table g s s s s g z y od q g x z od q g y x od q 4s 4s 4s g z y od q g x z od q g y x od q 7s 7s 7s g z y od q g x z od q g y x od q s s g z y od q g x z od q g 3 y x od q s or g s (3 ) s (3 ) s (3 ) s g z y od q g x z od q g y x od q g s s s z y od q g x z od q g y x od q 5s 5s 5s g z y od q g x z od q g y x od q 8s 8s 8s g z y od q g x z od q g y x od q s s g 4 z y od q g 5 x z od q g 6 y x od q s (3 ) s (3 ) s (3 ) s g z y od q g x z od q g y x od q Lea 7: Whe oe of x +yz 0odq, y +xz 0odq, z -xy 0odq the two of the solutos to lea 6 ust fall o the sae row. There are a uber of ways to show ths. We have x yz 0 od q hece we have, g x y od q for soe g f x, y, z Mq g x g yz 0 od q y( x g z) 0 od q so we have g y xod q ad g x z od q (so 3 the to table) For y xz 0 od q, 3 For z xy 0 od q, For x +yz ad our two lea 7 solutos beg o the sae row, they ust be o the s or s row. because by lea5 take together we have g ls (x+y) (x-z)odq g ls c -b odq But we ust have a g c -bodq f a,b,c Mq hece rasg both sdes to eas l=m There s oly oe exoet o each of the tables f s M ad ths occurs /3 artto ots; s ad s. For Case of lea 5 deedg o whch x,y,z s dvsble by we choose a decoosto ter such that we have two of a,b,c gvg the /3, /3 artto ots; If x=m the choose x +yz If y=m the choose y +xz Coyrght Chrs Sloae 08

14 4 ON FERMAT S LAST THEOREM If z=m the choose z -xy These /3, /3 ots ea t 0odq as follows. We work out what a s ters of b ad c for exale. Ths s deedet o what the frst colu soluto s ad s oly deedet o the s or s soluto gve by lea 5 ad 7 Wrte s s g z g x a od q s ss s ( ) ( ) od g g z g z x a q ad wrte s s g z g y c od q s ss s ( ) ( ) od g g z g z y c q s s g b g a a c od q (5.9) s s (Hece t s deedet of ) but g c b od q 4s ( g ) a ( g ) c od q (5.30) s s s 3s Now ( g )( g ) g od q sce g od q Next we have fro (5.9) 4s 4s s s s s g b g a g a b od q b g a od q or g b a od q Hece we ca wrte; s g ( t) t od q s s g a c od q (5.3) 4s s s ( g ) b g ( g ) a od q (5.3) s s s g a g b g c c a b od q ( g )t 0 od q ad sce ( g ) 0 od q t 0 od q (5.33) Therefore, t ust also be dvsble by q=3s+, s M. However, ths s ot ecessarly true whe q=3s + for >. To geeralze to all we do the followg. Coyrght Chrs Sloae 08

15 5 ON FERMAT S LAST THEOREM Startg wth q 3s we ca wrte fro the lea 6 s s s g z y od q g x z od q g y x od q 4s 4s 4s g z y od q g x z od q g y x od q g z yod q g Lea 8 If q 3s ad x y z 0 the we also have x y z 0 Table 7s 7s 7s x z od q g y x od q s s 3s g z y od q g x z od q g y x od q (3 ) s (3 ) s (3 ) s g z y od q g x z od q g y x od q s Assue the g soluto ad,, are solutos resectvely. 3 Oe ca see f q 3s we have the exoets of Fro lea 5 we have x au, y bv, z cw g beg ultles of s There s o loss of geeralty f we wrte g x z dq where d 0 od a or d 0 od u, sce x au ad f z M ( a, u) they would share coo factors a, u. s Moreover, there ust exst a such that g od q for soe, 0 od q where s the resdue od q whereby rsg t to we have zod q Exale, f z od5 the f 5 s Also wthout loss of geeralty we ca wrte, g hq ( h 0 od a or h 0 od q) s We ca add g h to both sdes for h 0,,..., 0 a or 0 u thereby gvg us, Hece, where ' h g ( h ) ( h g h ) q (5.34) s s s s g h g h q z f q ( ') ( ( ) ) ' (5.35) We ca get all resdues od a or od u o the RHS by adjustg h such that f ' d od a or f ' d od u because z, g, q 0 od a or 0 od u (Note: f a g or u g the choose aother rtve root as q s ow large 3s ad has ay rtve roots) Therefore, f we ake the resdue d od a or d od u we have s s g x g Moreover, sce x au the Ma or Mu Exale : s Let 5, 5, 7, od5, 5 od, (0,,, 3, 4, 5, 6) 0,,, 3, 4, 5, 6 od ' Maq, or Muq (5.36) q a z d q f h g a ( 0 q) (5 od 7) q, ( q) ( od 7) q, ( q) (4 od 7) q, ( 3 q) (od 7) q, a a ( 4 q) (6 od 7) q, ( 5 q) (3 od 7) q, ( 6 q) (0 od 7) q Hece f d d ' a 5 the we choose ( 0 q) 5 od a, 3 Furtherore, we ca get all resdues the coefcets of the a, a, a... a ters od a (that beg d ', d ''...etc.) 3 or u, u, u... u od u by addg ultles of a, u resectvely ad sce d ' (0,... a ) od a we ca ake ' '... ' s s M a or a a gvg g x g ' ' a... ' a hece we ca ake x M a. Lkewse x Mu Exale:as above f we add 7 q, (0 7 ) to both sdes of [5.9] for ( 0 q) 5 od a, we get ((3 od 7)7 5 od 7) q, ((od 7)7 5 od 7) q, ((6 od 7)7 5 od 7) q, ((4 od 7)7 5 od 7) q, (( od 7)7 5 od 7) q, ((0 od 7)7 5 od 7 ) q Coyrght Chrs Sloae 08

16 6 ON FERMAT S LAST THEOREM So we ca add ultles of aq, a q... a q ad uq, u q... u q to both sdes of (5.34) to get the exoetato of x ( au) ( x ') where x ' s obvously less tha x or we could vew t as x s a ower. Reark, we ca do ths because we have g our table whch ca be elated (5.36). If we dd ot have the exoet the we could ot elate t leavg g ters eag a, u would ot ecessarly dvde x. Lkewse, we ca do ths for the other colus of table to get y ( bv) Hece, we ca wrte ( y '), z ( cw) ( z ') x ' y ' z ' 0 (5.37) Oe ca see fro Lea 5 x ' y ' c ', z ' y ' a ', z ' x ' b ' ad a ', b ', c ' do ot ecessarly equal abc,, Now we have fro Lea that x y z y x z z x y ' x ' y z ' y ' x ' z ' z ' x ' y ' Therefore, we get x ' y ' z ' od q We have fro table ad lea 6 s s g x ' z ' od q, g y ' x ' od q However, ow M for we have z ' x ' b ', x ' y ' c ' whch s the sae as s so f we have ' ' od the ad ths s the / 3, / 3 soluto ots. Therefore ' ' ' ' 0 od ad t x y z 0 od q. g x z q M t x y z q We ca reeat ths for q 3s to gve x '' y '' z '' 0 etc.... q 3s x''' y''' z ''' 0 ad we get saller trles x ''' x '' x ' x etc. as creases. The above arguets hold for all therefore all q ' s dvde t Theore. If x y z 0 ad suose x, y, z are arwse co re the ay re factor q of ( x yz ) wll dv de t where t x y z Corollary 39 Theore. s vald for ay re factor q of ( y xz ) or ( z xy ) Ths follows fro the syetry of the roble ad ethods above Closg Arguet If we have coo factors, the secal case x + y - z 0 loses o geeralty assug that the greatest coo dvsor of x; y ad z s. Hece t ust cota all the re decoostos q of ( x yz ). We ca ow use 3 equalty arguets for exoet x y z cogruret to odulo 3, cogruret to odulo 3, ad exoet q. We eed our equato. res ad Corollares 9,5,8. We wll wrte hghest ower of q( q ) q( q ) q( q 3 ) q( q ) r x yz q q q 3...q q dvdg x yz. where q s re ad q( q ) s defed to be the Coyrght Chrs Sloae 08

17 7 ON FERMAT S LAST THEOREM Lea 9 : For exoet 3 cogruret to od ulo 3 ad q ex oet the t M r. If q( q ), q( q ), q( q )... q( q ) are all equal to the t M r but x yz t fro [5.03]. 3 Hece, we have a equalty ad cotradcto. Therefore oe or ore of q( q ), q( q ), q( q )... q( q ) Lets frstly assue q( q ) 3 x y z 3 Mq ( xyz ) t ( x yz xt t ) ( xyz ) ( xyz ) t Mq because the last ter ( x yz xt t ) ( xyz ) Mq t Mq ( xyz ) q x; y z t M r x yz t q( q ) t Mq t r 3 6 tr Mq 6 4 ( xyz ) t Mq t x yz x yz t q( q ) 4 t Mq 8 s becoe Mq hece, 8 ad 8 q( q ) q( q ) t Mq. q x yz q( q ) t q( q ) Fro corollares 9,5,8 we have 0 (5.38) Oe ca see hece because gves us coo factors ad the but hece we have a equalty ad cotradcto as before. Lets ake 3 we stll get so the the hgher ters or x y z Mq ( xyz ) t ( x yz xt t ) ( xyz ) we wrte, 0 (5.39) Hece, ad but hece we have a equalty ad cotradcto as before. Next ake 4 we stll get ad our hgher ter x y z Mq ( xyz ) t ( x yz xt t ) ( xyz ) t Mq ad we get our cotradcto aga. Therefore, for ay we get As creases owers creases owers so the ust the hgher ters cotag hgher t, r cobatos whch tur creases t ad we cotue to get the cotradcto as q( q ). Oe ca see ths s true for all q( q ), q( q ), q( q )... q( q ) so we ca coclude t M r whch s a cotradcto r t. 3 3 Lea 0: For exoet 3 cogruret to od ulo 3 ad q ex oet the t M r. If q( q ), q( q ), q( q )... q( q ) are all equal to the t M r but x yz t fro [5.03]. Hece we have a equalty ad cotradcto. Therefore oe or ore of q( q ), q( q ), q( q )... q( q ) Lets frstly assue q( q ) Fro corollares 9,5,8 we have x y z Mq ( xyz ) t ( xyz ) ( x yz xt t ) 0 (5.40) q( q ) t Mq t r 3 t r 6 Mq hece, xt Mq the last ter r but x gves us coo factor q x; y ad z so t Mq the t M r but x yz t hece we have a equalty ad cotradcto as before. Lets ake 3 we stll get ad hgher ters ad we wrte, 6 3 x y z Mq ( xyz ) t ( xyz ) ( x yz xt t ) 0 (5.4) 3 3 hece ad we get a cotradcto as before q( q ) t Mq xt Mq t Mq q( q q( q ), we get t Mq ) q xt Mq t Mq Next ake 4 we stll get ad hece ad ad we get a cotradcto aga Therefore, for ay 3 ad we get a cotradcto as ( q ). Oe ca see ths s true for all q( q ), q( q ), q( q )... q( q ) so we ca coclude t M r whch s a cotradcto r t. Fro Corollary 0, that the coeffcets of all ters are cogruret to 0 od excet the frst we eed to ake sure the cotradcto stll works for q or r cotas a ower of Coyrght Chrs Sloae 08

18 8 ON FERMAT S LAST THEOREM Lea For exoet 3 ad q the lea, are uchaged; t M r Fro corollary 0 the coeffcets of all ters are cogruret to 0 od excet the frst whch s cogruret to od so f t M the we dvde out leavg the relavet ed ters coeffcets equal to so we have the sae for of the equato but wth the frst ter t deshed by so that ter s M however ths ter s rrelevat the above arguets so our cotradcto holds ths case too. For 3 we get drectly 3xyz 0 od q f q 3 hece coo factor solutos aga. If q 3, ad sce t M3 the 3xyz M3 therefore, oe of x, y, z M3 ad the so ust the other varables hece share a coo factor 3. (5.4) Reark t 0 eve f x or y s egatve for we would just rearraged the equato for odd exoets.e f y s a egatve teger x y z becoes y z x ad x becoes the hgher ter but that case we would just wrte x z Wth 4 solved by Ferat we ca coclude there are o dscrete solutos to Ferat's equato for. Coyrght Chrs Sloae 08

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions Sebastá Martí Ruz Alcatos of Saradache Fucto ad Pre ad Core Fuctos 0 C L f L otherwse are core ubers Aerca Research Press Rehoboth 00 Sebastá Martí Ruz Avda. De Regla 43 Choa 550 Cadz Sa Sarada@telele.es

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers ELEMENTS OF NUMBER THEORY I the followg we wll use aly tegers a ostve tegers Ζ = { ± ± ± K} - the set of tegers Ν = { K} - the set of ostve tegers Oeratos o tegers: Ato Each two tegers (ostve tegers) ay

More information

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A Desty of dagoalzable square atrces Studet: Dael Cervoe; Metor: Saravaa Thyagaraa Uversty of Chcago VIGRE REU, Suer 7. For ths etre aer, we wll refer to V as a vector sace over ad L(V) as the set of lear

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

On the introductory notes on Artin s Conjecture

On the introductory notes on Artin s Conjecture O the troductory otes o Art s Cojecture The urose of ths ote s to make the surveys [5 ad [6 more accessble to bachelor studets. We rovde some further relmares ad some exercses. We also reset the calculatos

More information

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen Vol No : Joural of Facult of Egeerg & echolog JFE Pages 9- Uque Coo Fed Pot of Sequeces of Mags -Metrc Sace M. Ara * Noshee * Deartet of Matheatcs C Uverst Lahore Pasta. Eal: ara7@ahoo.co Deartet of Matheatcs

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

Fibonacci Identities as Binomial Sums

Fibonacci Identities as Binomial Sums It. J. Cotemp. Math. Sceces, Vol. 7, 1, o. 38, 1871-1876 Fboacc Idettes as Bomal Sums Mohammad K. Azara Departmet of Mathematcs, Uversty of Evasvlle 18 Lcol Aveue, Evasvlle, IN 477, USA E-mal: azara@evasvlle.edu

More information

IS 709/809: Computational Methods in IS Research. Simple Markovian Queueing Model

IS 709/809: Computational Methods in IS Research. Simple Markovian Queueing Model IS 79/89: Comutatoal Methods IS Research Smle Marova Queueg Model Nrmalya Roy Deartmet of Iformato Systems Uversty of Marylad Baltmore Couty www.umbc.edu Queueg Theory Software QtsPlus software The software

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures Lecture 8 A lttle bt of fu ath Read: Chapter 7 (ad 8) Fte Algebrac Structures Groups Abela Cyclc Geerator Group order Rgs Felds Subgroups Euclda Algorth CRT (Chese Reader Theore) 2 GROUPs DEFINITION: A

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

On the characteristics of partial differential equations

On the characteristics of partial differential equations Sur les caractérstques des équatos au dérvées artelles Bull Soc Math Frace 5 (897) 8- O the characterstcs of artal dfferetal equatos By JULES BEUDON Traslated by D H Delhech I a ote that was reseted to

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

Integral Generalized Binomial Coefficients of Multiplicative Functions

Integral Generalized Binomial Coefficients of Multiplicative Functions Uversty of Puget Soud Soud Ideas Summer Research Summer 015 Itegral Geeralzed Bomal Coeffcets of Multlcatve Fuctos Imauel Che hche@ugetsoud.edu Follow ths ad addtoal works at: htt://souddeas.ugetsoud.edu/summer_research

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory Chael Models wth Memory Chael Models wth Memory Hayder radha Electrcal ad Comuter Egeerg Mchga State Uversty I may ractcal etworkg scearos (cludg the Iteret ad wreless etworks), the uderlyg chaels are

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

Expanding Super Edge-Magic Graphs

Expanding Super Edge-Magic Graphs PROC. ITB Sas & Tek. Vol. 36 A, No., 00, 7-5 7 Exadg Suer Edge-Magc Grahs E. T. Baskoro & Y. M. Cholly, Deartet of Matheatcs, Isttut Tekolog Badug Jl. Gaesa 0 Badug 03, Idoesa Eals : {ebaskoro,yus}@ds.ath.tb.ac.d

More information

Computations with large numbers

Computations with large numbers Comutatos wth large umbers Wehu Hog, Det. of Math, Clayto State Uversty, 2 Clayto State lvd, Morrow, G 326, Mgshe Wu, Det. of Mathematcs, Statstcs, ad Comuter Scece, Uversty of Wscos-Stout, Meomoe, WI

More information

Application of Generating Functions to the Theory of Success Runs

Application of Generating Functions to the Theory of Success Runs Aled Mathematcal Sceces, Vol. 10, 2016, o. 50, 2491-2495 HIKARI Ltd, www.m-hkar.com htt://dx.do.org/10.12988/ams.2016.66197 Alcato of Geeratg Fuctos to the Theory of Success Rus B.M. Bekker, O.A. Ivaov

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Overview of the weighting constants and the points where we evaluate the function for The Gaussian quadrature Project two

Overview of the weighting constants and the points where we evaluate the function for The Gaussian quadrature Project two Overvew of the weghtg costats ad the pots where we evaluate the fucto for The Gaussa quadrature Project two By Ashraf Marzouk ChE 505 Fall 005 Departmet of Mechacal Egeerg Uversty of Teessee Koxvlle, TN

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

The Number of the Two Dimensional Run Length Constrained Arrays

The Number of the Two Dimensional Run Length Constrained Arrays 2009 Iteratoal Coferece o Mache Learg ad Coutg IPCSIT vol.3 (20) (20) IACSIT Press Sgaore The Nuber of the Two Desoal Ru Legth Costraed Arrays Tal Ataa Naohsa Otsua 2 Xuerog Yog 3 School of Scece ad Egeerg

More information

COMPUTERISED ALGEBRA USED TO CALCULATE X n COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM

COMPUTERISED ALGEBRA USED TO CALCULATE X n COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM U.P.B. Sc. Bull., Seres A, Vol. 68, No. 3, 6 COMPUTERISED ALGEBRA USED TO CALCULATE X COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM Z AND Q C.A. MURESAN Autorul

More information

ε. Therefore, the estimate

ε. Therefore, the estimate Suggested Aswers, Problem Set 3 ECON 333 Da Hugerma. Ths s ot a very good dea. We kow from the secod FOC problem b) that ( ) SSE / = y x x = ( ) Whch ca be reduced to read y x x = ε x = ( ) The OLS model

More information

The Strong Goldbach Conjecture: Proof for All Even Integers Greater than 362

The Strong Goldbach Conjecture: Proof for All Even Integers Greater than 362 The Strog Goldbach Cojecture: Proof for All Eve Itegers Greater tha 36 Persoal address: Dr. Redha M Bouras 5 Old Frakl Grove Drve Chael Hll, NC 754 PhD Electrcal Egeerg Systems Uversty of Mchga at A Arbor,

More information

A study of the sum of three or more consecutive natural numbers

A study of the sum of three or more consecutive natural numbers A study of the sum of three or more cosecutve atural umbers Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes Greece Abstract It holds that every product of atural

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES J. Nuber Theory 0, o., 9-9. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES Zhi-Hog Su School of Matheatical Scieces, Huaiyi Noral Uiversity, Huaia, Jiagsu 00, PR Chia Eail: zhihogsu@yahoo.co

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A OF THE ROMANIAN ACADEMY Volue 8, Nuber /27,.- MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM INVOLVING GENERALIZED d - TYPE-I -ET

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES Joural of Algebra Number Theory: Advaces ad Applcatos Volume 6 Number 6 Pages 5-7 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/.864/ataa_77 A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Journal Of Inequalities And Applications, 2008, v. 2008, p

Journal Of Inequalities And Applications, 2008, v. 2008, p Ttle O verse Hlbert-tye equaltes Authors Chagja, Z; Cheug, WS Ctato Joural Of Iequaltes Ad Alcatos, 2008, v. 2008,. 693248 Issued Date 2008 URL htt://hdl.hadle.et/0722/56208 Rghts Ths work s lcesed uder

More information

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1 D. L. Brcker, 2002 Dept of Mechacal & Idustral Egeerg The Uversty of Iowa CPL/XD 2/0/2003 page Capactated Plat Locato Proble: Mze FY + C X subject to = = j= where Y = j= X D, j =, j X SY, =,... X 0, =,

More information

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices Deartet of Matheatcs UNIVERSITY OF OSLO FORMULAS FOR STK4040 (verso Seteber th 0) A - Vectors ad atrces A) For a x atrx A ad a x atrx B we have ( AB) BA A) For osgular square atrces A ad B we have ( )

More information

A study of the sum three or more consecutive natural numbers

A study of the sum three or more consecutive natural numbers Fal verso of the artcle A study of the sum three or more cosecutve atural umbers Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes Greece Abstract It holds that

More information

Capacitated Plant Location Problem:

Capacitated Plant Location Problem: . L. Brcker, 2002 ept of Mechacal & Idustral Egeerg The Uversty of Iowa CPL/ 5/29/2002 page CPL/ 5/29/2002 page 2 Capactated Plat Locato Proble: where Mze F + C subect to = = =, =, S, =,... 0, =, ; =,

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Some identities involving the partial sum of q-binomial coefficients

Some identities involving the partial sum of q-binomial coefficients Some dettes volvg the partal sum of -bomal coeffcets Bg He Departmet of Mathematcs, Shagha Key Laboratory of PMMP East Cha Normal Uversty 500 Dogchua Road, Shagha 20024, People s Republc of Cha yuhe00@foxmal.com

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3 Adrew Powuk - http://www.powuk.com- Math 49 (Numercal Aalyss) Root fdg. Itroducto f ( ),?,? Solve[^-,] {{-},{}} Plot[^-,{,-,}] Cubc equato https://e.wkpeda.org/wk/cubc_fucto Quartc equato https://e.wkpeda.org/wk/quartc_fucto

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp THE PUBLISHIN HOUSE PROCEEDINS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/8, THE UNITS IN Stela Corelu ANDRONESCU Uversty of Pteşt, Deartmet of Mathematcs, Târgu Vale

More information

Theory study about quarter-wave-stack dielectric mirrors

Theory study about quarter-wave-stack dielectric mirrors Theor tud about quarter-wave-tack delectrc rror Stratfed edu tratted reflected reflected Stratfed edu tratted cdet cdet T T Frt, coder a wave roagato a tratfed edu. A we kow, a arbtrarl olared lae wave

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information