Explorations into the Lawn Mowing Problem: Specific Cases and General Trends

Size: px
Start display at page:

Download "Explorations into the Lawn Mowing Problem: Specific Cases and General Trends"

Transcription

1 Explorations into the Lawn Mowing Problem: Specific Cases and General Trends *, Vanessa Kleckner, and Amelia Stonesifer St. Olaf College September 25, 2012

2 Outline 1 Introduction 2 Results 3 Conclusions

3 The General Lawn Mowing Problem Suppose that we have a lawn, L,

4 The General Lawn Mowing Problem Suppose that we have a lawn, L, and a mower, M.

5 The General Lawn Mowing Problem Suppose that we have a lawn, L, and a mower, M. What is the most efficient way to mow L by moving M?

6 Our Lawn Mowing Problem Suppose that a lawn, L, is given, say a rectangular area in the plane

7 Our Lawn Mowing Problem Suppose that a lawn, L, is given, say a rectangular area in the plane and that M is a smaller oriented region, say a circle, with radius r.

8 Our Lawn Mowing Problem Suppose that a lawn, L, is given, say a rectangular area in the plane and that M is a smaller oriented region, say a circle, with radius r. Is there a most efficient path to cover L by moving M? If so, what is it?

9 Also called

10 Also called Geometric Milling Problem

11 Also called Geometric Milling Problem Covering Tour problem

12 Also called Geometric Milling Problem Covering Tour problem Applications in

13 Also called Geometric Milling Problem Covering Tour problem Applications in Automatic tool paths

14 Also called Geometric Milling Problem Covering Tour problem Applications in Automatic tool paths Automatic inspection systems

15 Polynomial Time Problems in the set P can be solved in polynomial time relative to the size of the problem.

16 Polynomial Time Problems in the set P can be solved in polynomial time relative to the size of the problem. These problems are tractable.

17 Polynomial Time Problems in the set P can be solved in polynomial time relative to the size of the problem. These problems are tractable. In P, solving and checking a solution in polynomial time are equivalent.

18 NP Hard NP problems have solutions which can be checked in polynomial time, but it can take longer to solve the problem.

19 NP Hard NP problems have solutions which can be checked in polynomial time, but it can take longer to solve the problem. NP-Hard problems can be algorithmically reduced to a NP-Complete problem.

20 NP Hard NP problems have solutions which can be checked in polynomial time, but it can take longer to solve the problem. NP-Hard problems can be algorithmically reduced to a NP-Complete problem. The Lawn Mowing problem can be simplified to the Traveling Salesman Problem, which is NP-Hard.

21 NP Hard NP problems have solutions which can be checked in polynomial time, but it can take longer to solve the problem. NP-Hard problems can be algorithmically reduced to a NP-Complete problem. The Lawn Mowing problem can be simplified to the Traveling Salesman Problem, which is NP-Hard. We must focus on specific cases rather than trying to find a general solution.

22 Definitions Mowing: a path that covers the lawn such that all points on the lawn are within a given width of the path. A mowing trajectory, denoted by m, is a 3-dimensional path that includes the angle turned as the height.

23 Definitions (a) A 2D mowing (b) Corresponding mowing trajectory

24 Conjectures 1 A mowing whose mowing trajectory achieves minimum height is also most efficient.

25 Conjectures 1 A mowing whose mowing trajectory achieves minimum height is also most efficient. 2 For a lawn with width 2r, the most efficient mowing is one that goes straight down the middle of the lawn.

26 Outline 1 Introduction 2 Results 3 Conclusions

27 Preliminary Fact Consider all mowings that use a fixed, finite set of turning angles θ = {θ 1, θ 2, θ 3,..., θ n }

28 Preliminary Fact Consider all mowings that use a fixed, finite set of turning angles θ = {θ 1, θ 2, θ 3,..., θ n } Theorem: There exists a mowing, m 0, such that h(m0 ) is minimal.

29 Existence of Minimum Height Proof: 1 Let h 0 = inf{h(m ) : m is a mowing trajectory}

30 Existence of Minimum Height Proof: 1 Let h 0 = inf{h(m ) : m is a mowing trajectory} 2 Let A be the finite set of all angles turned in the mowing.

31 Existence of Minimum Height Proof: 1 Let h 0 = inf{h(m ) : m is a mowing trajectory} 2 Let A be the finite set of all angles turned in the mowing. Let θ 0 = inf(a).

32 Existence of Minimum Height Proof: 1 Let h 0 = inf{h(m ) : m is a mowing trajectory} 2 Let A be the finite set of all angles turned in the mowing. Let θ 0 = inf(a). 3 Let D be the set of all differences of angles, so D = {d = θ i θ j : 1 i < j n}.

33 Existence of Minimum Height Proof: 1 Let h 0 = inf{h(m ) : m is a mowing trajectory} 2 Let A be the finite set of all angles turned in the mowing. Let θ 0 = inf(a). 3 Let D be the set of all differences of angles, so D = {d = θ i θ j : 1 i < j n}. Let d 0 = inf(d) > 0

34 Existence of Minimum Height Proof: 1 Let h 0 = inf{h(m ) : m is a mowing trajectory} 2 Let A be the finite set of all angles turned in the mowing. Let θ 0 = inf(a). 3 Let D be the set of all differences of angles, so D = {d = θ i θ j : 1 i < j n}. Let d 0 = inf(d) > 0 4 By definition of inf, there must be a mowing m 0 such that h 0 h(m0 ) < h 0 + d 0 2.

35 Existence of Minimum Height We want to show that h(m 0 ) = h 0

36 Existence of Minimum Height We want to show that h(m 0 ) = h 0 1 If m 1 is any mowing other than m 0, h 0 h(m 1 ).

37 Existence of Minimum Height We want to show that h(m 0 ) = h 0 1 If m 1 is any mowing other than m 0, h 0 h(m 1 ). 2 If h(m 1 ) < h 0 + d 0 2, then h(m 1 ) h(m 0 ) < d 0 2.

38 Existence of Minimum Height We want to show that h(m 0 ) = h 0 1 If m 1 is any mowing other than m 0, h 0 h(m 1 ). 2 If h(m 1 ) < h 0 + d 0 2, then h(m 1 ) h(m 0 ) < d But, d 0 is minimal, so h(m 1 ) = h(m 0 ) and h 0 = h(m 0 ).

39 Existence of Most Efficient Mowing Similar to minimum height proof.

40 Existence of Most Efficient Mowing Similar to minimum height proof. Uses a subsequence that converges in the Hausdorff metric.

41 Old Conjectures Revisited Conjecture: A mowing whose mowing trajectory achieves minimum height is also most efficient.

42 Old Conjectures Revisited Conjecture: A mowing whose mowing trajectory achieves minimum height is also most efficient.

43 Old Conjectures Revisited Counterexample: A mowing that achieves minimum height but not maximum efficiency

44 Old Conjectures Revisited Counterexample: A mowing that achieves minimum height but not maximum efficiency

45 Old Conjectures Revisited Conjecture: For a lawn L with width 2r, the most efficient mowing is the straight-line path, or the path goes straight down the middle of the lawn.

46 Old Conjectures Revisited Conjecture: For a lawn L with width 2r, the most efficient mowing is the straight-line path, or the path goes straight down the middle of the lawn. Clearly, this conjecture is true.

47 Old Conjectures Revisited Conjecture: For a lawn L with width 2r, the most efficient mowing is the straight-line path, or the path goes straight down the middle of the lawn.

48 Old Conjectures Revisited This T-path is a better solution for low turn cost.

49 Old Conjectures Revisited This T-path is a better solution for low turn cost.

50 Old Conjectures Revisited This T-path is a better solution for low turn cost. It takes a bit of a proof to show that this is the best solution for the one-strip lawn.

51 Two-Strip Lawn We suggested several possible mowings. We conjectured when each mowing would be most efficient.

52 Outline 1 Introduction 2 Results 3 Conclusions

53 Expanding our problem Potential future research:

54 Expanding our problem Potential future research: 1 Find relationship between length and width in two-strip lawn

55 Expanding our problem Potential future research: 1 Find relationship between length and width in two-strip lawn 2 Determine minimal height and maximal efficiency relationship

56 Expanding our problem Potential future research: 1 Find relationship between length and width in two-strip lawn 2 Determine minimal height and maximal efficiency relationship 3 Investigate most efficient starting points for lawn mower

57 Expanding our problem Ambitious research possibilities:

58 Expanding our problem Ambitious research possibilities: 1 Do not restrict turns to only π 2

59 Expanding our problem Ambitious research possibilities: 1 Do not restrict turns to only π 2 2 More strips of lawn and non-rectangular lawns

60 Thank you!

Research Collection. Grid exploration. Master Thesis. ETH Library. Author(s): Wernli, Dino. Publication Date: 2012

Research Collection. Grid exploration. Master Thesis. ETH Library. Author(s): Wernli, Dino. Publication Date: 2012 Research Collection Master Thesis Grid exploration Author(s): Wernli, Dino Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007343281 Rights / License: In Copyright - Non-Commercial

More information

Midterm Examination, Physics 1P21

Midterm Examination, Physics 1P21 Midterm Examination, Physics 1P21 Prof. S. Bose Feb. 25, 2015 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

This set of questions goes with the pages of applets and activities for Lab 09. Use the applets and activities there to answer the questions.

This set of questions goes with the pages of applets and activities for Lab 09. Use the applets and activities there to answer the questions. Page 1 of 5 Lab 09 Name: Start time: Number of questions: 11 This set of questions goes with the pages of applets and activities for Lab 09. Use the applets and activities there to answer the questions.

More information

Computational Complexity

Computational Complexity Computational Complexity (Lectures on Solution Methods for Economists II: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 18, 2018 1 University of Pennsylvania 2 Boston College Computational

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

Algebra II / Integrated Math III 2010

Algebra II / Integrated Math III 2010 Algebra II / Integrated Math III 2010 Sponsored by the Indiana Council of Teachers of Mathematics Indiana State Mathematics Contest This test was prepared by faculty at Indiana State University ICTM Website

More information

Pre-Calculus 11 Section 4.2

Pre-Calculus 11 Section 4.2 QUADRATIC EQUATIONS A general quadratic equation can be written in the form ax bx c 0. A quadratic equation has two solutions, called roots. These two solutions, or roots, may or may not be distinct, and

More information

PDF Created with deskpdf PDF Writer - Trial ::

PDF Created with deskpdf PDF Writer - Trial :: y 3 5 Graph of f ' x 76. The graph of f ', the derivative f, is shown above for x 5. n what intervals is f increasing? (A) [, ] only (B) [, 3] (C) [3, 5] only (D) [0,.5] and [3, 5] (E) [, ], [, ], and

More information

Factoring Quadratic Equations

Factoring Quadratic Equations Factoring Quadratic Equations A general quadratic equation can be written in the form ax bx c + + = 0. A quadratic equation has two solutions, called roots. These two solutions, or roots, may or may not

More information

September 14, 1999 Name The first 16 problems count 5 points each and the final 3 count 15 points each.

September 14, 1999 Name The first 16 problems count 5 points each and the final 3 count 15 points each. September 14, 1999 Name The first 16 problems count 5 points each and the final 3 count 15 points each. 1. Fill in the three character code you received via email in the box Multiple choice section. Circle

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Outline. Calculus for the Life Sciences. Crow Predation on Whelks. Introduction. Lecture Notes Optimization. Joseph M. Mahaffy,

Outline. Calculus for the Life Sciences. Crow Predation on Whelks. Introduction. Lecture Notes Optimization. Joseph M. Mahaffy, Calculus for the Life Sciences Lecture Notes Optimization Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

Problem Solving/Modeling

Problem Solving/Modeling Prepared by: Sa diyya Hendrickson Problem Solving/ I. General Strategies S1 S Understand the problem. It may be helpful to draw charts or diagrams. Identify the following: 1 What is given and record all

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

Algorithmic interpretations of fractal dimension. Anastasios Sidiropoulos (The Ohio State University) Vijay Sridhar (The Ohio State University)

Algorithmic interpretations of fractal dimension. Anastasios Sidiropoulos (The Ohio State University) Vijay Sridhar (The Ohio State University) Algorithmic interpretations of fractal dimension Anastasios Sidiropoulos (The Ohio State University) Vijay Sridhar (The Ohio State University) The curse of dimensionality Geometric problems become harder

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

July 18, Approximation Algorithms (Travelling Salesman Problem)

July 18, Approximation Algorithms (Travelling Salesman Problem) Approximation Algorithms (Travelling Salesman Problem) July 18, 2014 The travelling-salesman problem Problem: given complete, undirected graph G = (V, E) with non-negative integer cost c(u, v) for each

More information

Solving One- Step Equations Class Work

Solving One- Step Equations Class Work Solving One- Step Equations Class Work You will be able to solve one- step equations & justify your solutions, rearrange formulas to highlight a desired variable, and model and solve real world situations

More information

Year 12 Mathematics: Specialist Course Outline

Year 12 Mathematics: Specialist Course Outline MATHEMATICS LEARNING AREA Year 12 Mathematics: Specialist Course Outline Time Content area Topic Text Ref. Assessment SADLER Week 1 Preliminary U1 Prelim 1-2 Complex Numbers Factorising Polynomials Ch

More information

Who Has Heard of This Problem? Courtesy: Jeremy Kun

Who Has Heard of This Problem? Courtesy: Jeremy Kun P vs. NP 02-201 Who Has Heard of This Problem? Courtesy: Jeremy Kun Runtime Analysis Last time, we saw that there is no solution to the Halting Problem. Halting Problem: Determine if a program will halt.

More information

1 Implicit Differentiation

1 Implicit Differentiation MATH 1010E University Mathematics Lecture Notes (week 5) Martin Li 1 Implicit Differentiation Sometimes a function is defined implicitly by an equation of the form f(x, y) = 0, which we think of as a relationship

More information

D. To the right (Total 1 mark)

D. To the right (Total 1 mark) 1. An electron passes the north pole of a bar magnet as shown below. What is the direction of the magnetic force on the electron? A. Into the page B. Out of the page C. To the left D. To the right 2. A

More information

Solutions to Problem Sheet for Week 11

Solutions to Problem Sheet for Week 11 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week MATH9: Differential Calculus (Advanced) Semester, 7 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information

Graph Theory and Optimization Computational Complexity (in brief)

Graph Theory and Optimization Computational Complexity (in brief) Graph Theory and Optimization Computational Complexity (in brief) Nicolas Nisse Inria, France Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France September 2015 N. Nisse Graph Theory

More information

Disproof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Disproof Fall / 16

Disproof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Disproof Fall / 16 Disproof MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Disproof Fall 2014 1 / 16 Outline 1 s 2 Disproving Universal Statements: Counterexamples 3 Disproving Existence

More information

Linear Functions (I)

Linear Functions (I) 4. MAPPING BY ELEMENTARY FUNCTIONS There are many practical situations where we try to simplify a problem by transforming it. We investigate how various regions in the plane are transformed by elementary

More information

Math Contest Level 2 - March 6, Coastal Carolina University

Math Contest Level 2 - March 6, Coastal Carolina University Math Contest Level 2 - March 6, 2015 Coastal Carolina University 1. Which of one of the following points is on an asymptote to the hyperbola 16x 2 9y 2 = 144? a) (16, 9) b) (12, 16) c) (9, 4) d) (9, 16)

More information

NIL. Let M be R 3 equipped with the metric in which the following vector. fields, U = and. are an orthonormal basis.

NIL. Let M be R 3 equipped with the metric in which the following vector. fields, U = and. are an orthonormal basis. NIL KEVIN WHYTE Let M be R 3 equipped with the metric in which the following vector fields: U = x + y z V = y and W = z are an orthonormal basis. 1. Preliminaries Since we re given the metric via an orthonormal

More information

subgradient trajectories : the convex case

subgradient trajectories : the convex case trajectories : Université de Tours www.lmpt.univ-tours.fr/ ley Joint work with : Jérôme Bolte (Paris vi) Aris Daniilidis (U. Autonoma Barcelona & Tours) and Laurent Mazet (Paris xii) inequality inequality

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

1. 4(x - 5) - 3(2x - 5) = 6-5(2x + 1) 2. 3(2x - 3) + 4(3-2x) = 5(3x - 2) - 2(x + 1) x + 6 x x + 6x

1. 4(x - 5) - 3(2x - 5) = 6-5(2x + 1) 2. 3(2x - 3) + 4(3-2x) = 5(3x - 2) - 2(x + 1) x + 6 x x + 6x Math 15 - Payne Blitzer Final Exam Review Solve for x: 1. 4(x - 5) - 3(x - 5) = 6-5(x + 1). 3(x - 3) + 4(3 - x) = 5(3x - ) - (x + 1) 3. x + 1 = 9 4. 3x - = 10 5. (x - 4)(x + 4) = 4x 6. (x - )(x + 3) =

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 21: Introduction to NP-Completeness 12/9/2015 Daniel Bauer Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways

More information

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples Lecture 23 Computational Complexity 6.006 Fall 2011 Lecture 23: Computational Complexity Lecture Overview P, EXP, R Most problems are uncomputable NP Hardness & completeness Reductions Definitions: P =

More information

IS 709/809: Computational Methods for IS Research. Math Review: Algorithm Analysis

IS 709/809: Computational Methods for IS Research. Math Review: Algorithm Analysis IS 709/809: Computational Methods for IS Research Math Review: Algorithm Analysis Nirmalya Roy Department of Information Systems University of Maryland Baltimore County www.umbc.edu Topics Proof techniques

More information

MATH1013 Calculus I. Functions I 1

MATH1013 Calculus I. Functions I 1 1 Steward, James, Single Variable Calculus, Early Transcendentals, 7th edition, Brooks/Coles, 2012 Based on Briggs, Cochran and Gillett: Calculus for Scientists and Engineers: Early Transcendentals, Pearson

More information

Exercises involving contour integrals and trig integrals

Exercises involving contour integrals and trig integrals 8::9::9:7 c M K Warby MA364 Complex variable methods applications Exercises involving contour integrals trig integrals Let = = { e it : π t π }, { e it π : t 3π } with the direction of both arcs corresponding

More information

Applying Poncelet s Theorem to the Pentagon and the Pentagonal Star

Applying Poncelet s Theorem to the Pentagon and the Pentagonal Star Applying Poncelet s Theorem to the Pentagon and the Pentagonal Star Arthur Holshouser 3600 Bullard St Charlotte, NC, USA Stanislav Molchanov Department of Mathematics, University of North Carolina Charlotte,

More information

What Computers Can Compute (Approximately) David P. Williamson TU Chemnitz 9 June 2011

What Computers Can Compute (Approximately) David P. Williamson TU Chemnitz 9 June 2011 What Computers Can Compute (Approximately) David P. Williamson TU Chemnitz 9 June 2011 Outline The 1930s-40s: What can computers compute? The 1960s-70s: What can computers compute efficiently? The 1990s-:

More information

ECS 120 Lesson 24 The Class N P, N P-complete Problems

ECS 120 Lesson 24 The Class N P, N P-complete Problems ECS 120 Lesson 24 The Class N P, N P-complete Problems Oliver Kreylos Friday, May 25th, 2001 Last time, we defined the class P as the class of all problems that can be decided by deterministic Turing Machines

More information

1- If the pattern continues, how many dots will be in the 7th figure?

1- If the pattern continues, how many dots will be in the 7th figure? - If the pattern continues, how many dots will be in the 7th figure? A. 27 dots B. 26 dots C. 28 dots D. 25 dots 2- What is the value of ( ) ( )? 2 2 3 2 3 6 A. 3 B. 3 2 C. 3 D. 6 3- The product of two

More information

AP Calculus BC Summer Assignment. Please show all work either in the margins or on separate paper. No credit will be given without supporting work.

AP Calculus BC Summer Assignment. Please show all work either in the margins or on separate paper. No credit will be given without supporting work. AP Calculus BC Summer Assignment These problems are essential practice for AP Calculus BC. Unlike AP Calculus AB, BC students need to also be quite familiar with polar and parametric equations, as well

More information

1. 10 ( 2) ,,0.95, 1,

1. 10 ( 2) ,,0.95, 1, Pm 9 Final Exam Review Simplify the following +. ( + 7 ) ( ) + ( ). 9 + ( ) 8 ( ). 0 ( ) 7. 7 + 0. + 8 6. 7 8 8 7. + 8. + 6 9. 7 0 0. + 0. + 7 7. + 8 9. Order the following from least to greatest. Show

More information

Tractable & Intractable Problems

Tractable & Intractable Problems Tractable & Intractable Problems We will be looking at : What is a P and NP problem NP-Completeness The question of whether P=NP The Traveling Salesman problem again Programming and Data Structures 1 Polynomial

More information

The choice of origin, axes, and length is completely arbitrary.

The choice of origin, axes, and length is completely arbitrary. Polar Coordinates There are many ways to mark points in the plane or in 3-dim space for purposes of navigation. In the familiar rectangular coordinate system, a point is chosen as the origin and a perpendicular

More information

The P versus NP Problem. Ker-I Ko. Stony Brook, New York

The P versus NP Problem. Ker-I Ko. Stony Brook, New York The P versus NP Problem Ker-I Ko Stony Brook, New York ? P = NP One of the seven Millenium Problems The youngest one A folklore question? Has hundreds of equivalent forms Informal Definitions P : Computational

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Introduction to Vector Functions Spring 2012 1 / 14 Introduction In this section, we study

More information

Potential Energy & Conservation of Energy Physics

Potential Energy & Conservation of Energy Physics Potential Energy & Conservation of Energy Physics Work and Change in Energy If we rearrange the Work-Kinetic Energy theorem as follows Ki +Fcosφ d = Kf => Fcosφ d = Kf - Ki => Fcosφ d = K => Ki + ΣΣW =

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 9, 2014 Outline Sin, Cos and all that! A New Power Rule Derivatives

More information

THE BORSUK CONJECTURE. Saleem Watson California State University, Long Beach

THE BORSUK CONJECTURE. Saleem Watson California State University, Long Beach THE BORSUK CONJECTURE Saleem Watson California State University, Long Beach What is the Borsuk Conjecture? The Borsuk Conjecture is about cutting objects into smaller pieces. Smaller means smaller diameter

More information

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal =

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal = 8 CHAPTER 7 WORK, ENERGY, AND ENERGY RESOURCES generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the

More information

PreCalculus: Chapter 9 Test Review

PreCalculus: Chapter 9 Test Review Name: Class: Date: ID: A PreCalculus: Chapter 9 Test Review Short Answer 1. Plot the point given in polar coordinates. 3. Plot the point given in polar coordinates. (-4, -225 ) 2. Plot the point given

More information

MA 137 Calculus 1 with Life Science Applications. (Section 6.1)

MA 137 Calculus 1 with Life Science Applications. (Section 6.1) . MA 137 Calculus 1 with Life Science Applications (Section 6.1). Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky November 30, 2016 1/12 . The Area Problem We start

More information

Complex Analysis Slide 9: Power Series

Complex Analysis Slide 9: Power Series Complex Analysis Slide 9: Power Series MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Slide 9: Power Series 1 / 37 Learning Outcome of this Lecture We learn Sequence

More information

MAC1105-College Algebra

MAC1105-College Algebra MAC1105-College Algebra Chapter -Polynomial Division & Rational Functions. Polynomial Division;The Remainder and Factor Theorems I. Long Division of Polynomials A. For f ( ) 6 19 16, a zero of f ( ) occurs

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

Math 120 Winter Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities

Math 120 Winter Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities Math 120 Winter 2009 Handout 3: Finding a Formula for a Polynomial Using Roots and Multiplicities 1 A polynomial function is any function of the form: y = c 0 + c 1 x + c 2 x 2 +... + c n x n where the

More information

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 28 Magnetic Fields Copyright 28-1 Magnetic Fields and the Definition of B The Definition of B The Field. We can define a magnetic field B to be a vector quantity that exists when it exerts a force

More information

Chapter 0.B.3. [More than Just] Lines.

Chapter 0.B.3. [More than Just] Lines. Chapter 0.B.3. [More than Just] Lines. Of course you've studied lines before, so why repeat it one more time? Haven't you seen this stuff about lines enough to skip this section? NO! But why? It is true

More information

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization

15.081J/6.251J Introduction to Mathematical Programming. Lecture 24: Discrete Optimization 15.081J/6.251J Introduction to Mathematical Programming Lecture 24: Discrete Optimization 1 Outline Modeling with integer variables Slide 1 What is a good formulation? Theme: The Power of Formulations

More information

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. 1. Distance around a circle? circumference 2. Distance from one side of circle to the opposite

More information

Experiment 2. F r e e F a l l

Experiment 2. F r e e F a l l Suggested Reading for this Lab Experiment F r e e F a l l Taylor, Section.6, and standard deviation rule in Taylor handout. Review Chapters 3 & 4, Read Sections 8.1-8.6. You will also need some procedures

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Algorithms and Theory of Computation. Lecture 19: Class P and NP, Reduction

Algorithms and Theory of Computation. Lecture 19: Class P and NP, Reduction Algorithms and Theory of Computation Lecture 19: Class P and NP, Reduction Xiaohui Bei MAS 714 October 29, 2018 Nanyang Technological University MAS 714 October 29, 2018 1 / 26 Decision Problems Revisited

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

MHF 4U Unit 4 Polynomial Functions Outline

MHF 4U Unit 4 Polynomial Functions Outline MHF 4U Unit 4 Polynomial Functions Outline Day Lesson Title Specific Epectations Transforming Trigonometric Functions B.4,.5, 3. Transforming Sinusoidal Functions B.4,.5, 3. 3 Transforming Sinusoidal Functions

More information

Hamiltonian Graphs Graphs

Hamiltonian Graphs Graphs COMP2121 Discrete Mathematics Hamiltonian Graphs Graphs Hubert Chan (Chapter 9.5) [O1 Abstract Concepts] [O2 Proof Techniques] [O3 Basic Analysis Techniques] 1 Hamiltonian Paths and Circuits [O1] A Hamiltonian

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 4; January 15 2014 Previously The dominant force on the scale of the Universe is gravity Gravity is accurately described by the theory of general

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

Genetic Algorithm. Outline

Genetic Algorithm. Outline Genetic Algorithm 056: 166 Production Systems Shital Shah SPRING 2004 Outline Genetic Algorithm (GA) Applications Search space Step-by-step GA Mechanism Examples GA performance Other GA examples 1 Genetic

More information

Chapter 6 Randomization Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 6 Randomization Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 6 Randomization Algorithm Theory WS 2012/13 Fabian Kuhn Randomization Randomized Algorithm: An algorithm that uses (or can use) random coin flips in order to make decisions We will see: randomization

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 NEW SOUTH WALES Algorithms: COMP3121/3821/9101/9801 Aleks Ignjatović School of Computer Science and Engineering University of New South Wales LECTURE 9: INTRACTABILITY COMP3121/3821/9101/9801 1 / 29 Feasibility

More information

Quantum Complexity Theory. Wim van Dam HP Labs MSRI UC Berkeley SQUINT 3 June 16, 2003

Quantum Complexity Theory. Wim van Dam HP Labs MSRI UC Berkeley SQUINT 3 June 16, 2003 Quantum Complexity Theory Wim van Dam HP Labs MSRI UC Berkeley SQUINT 3 June 16, 2003 Complexity Theory Complexity theory investigates what resources (time, space, randomness, etc.) are required to solve

More information

Fractal Dimension and Lower Bounds for Geometric Problems

Fractal Dimension and Lower Bounds for Geometric Problems Fractal Dimension and Lower Bounds for Geometric Problems Anastasios Sidiropoulos (University of Illinois at Chicago) Kritika Singhal (The Ohio State University) Vijay Sridhar (The Ohio State University)

More information

HW 3 Solution Key. Classical Mechanics I HW # 3 Solution Key

HW 3 Solution Key. Classical Mechanics I HW # 3 Solution Key Classical Mechanics I HW # 3 Solution Key HW 3 Solution Key 1. (10 points) Suppose a system has a potential energy: U = A(x 2 R 2 ) 2 where A is a constant and R is me fixed distance from the origin (on

More information

P, NP, NP-Complete. Ruth Anderson

P, NP, NP-Complete. Ruth Anderson P, NP, NP-Complete Ruth Anderson A Few Problems: Euler Circuits Hamiltonian Circuits Intractability: P and NP NP-Complete What now? Today s Agenda 2 Try it! Which of these can you draw (trace all edges)

More information

The MATHEMATICAL ASSOCIATION OF AMERICA American Mathematics Competitions Presented by The Akamai Foundation. AMC 10 - Contest B. Solutions Pamphlet

The MATHEMATICAL ASSOCIATION OF AMERICA American Mathematics Competitions Presented by The Akamai Foundation. AMC 10 - Contest B. Solutions Pamphlet OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO The MATHEMATICAL ASSOCIATION OF AMERICA American Mathematics Competitions Presented by The Akamai Foundation 3 rd Annual American Mathematics Contest

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #23 Limits of Computing UC Berkeley EECS Sr Lecturer SOE Dan Researchers at CMU have built a system which searches the Web for images constantly and tries to decide

More information

DARE TO BE. FORMULA: e = distance between foci length of major axis VOCABULARY: ECCENTRIC. ellipse: eccentricity: focus (plural is foci): major axis:

DARE TO BE. FORMULA: e = distance between foci length of major axis VOCABULARY: ECCENTRIC. ellipse: eccentricity: focus (plural is foci): major axis: NAME: DATE: DARE TO BE ECCENTRIC INTRODUCTION: Have you ever heard the phrase dare to be different? Well that's what eccentricity is all about: deviating from the norm - or in other words, being different!

More information

Parabolas and lines

Parabolas and lines Parabolas and lines Study the diagram at the right. I have drawn the graph y = x. The vertical line x = 1 is drawn and a number of secants to the parabola are drawn, all centred at x=1. By this I mean

More information

Analysis of Algorithms. Unit 5 - Intractable Problems

Analysis of Algorithms. Unit 5 - Intractable Problems Analysis of Algorithms Unit 5 - Intractable Problems 1 Intractable Problems Tractable Problems vs. Intractable Problems Polynomial Problems NP Problems NP Complete and NP Hard Problems 2 In this unit we

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Approximation Algorithms Seminar 1 Set Cover, Steiner Tree and TSP Siert Wieringa siert.wieringa@tkk.fi Approximation Algorithms Seminar 1 1/27 Contents Approximation algorithms for: Set Cover Steiner

More information

Overview. 1 Introduction. 2 Preliminary Background. 3 Unique Game. 4 Unique Games Conjecture. 5 Inapproximability Results. 6 Unique Game Algorithms

Overview. 1 Introduction. 2 Preliminary Background. 3 Unique Game. 4 Unique Games Conjecture. 5 Inapproximability Results. 6 Unique Game Algorithms Overview 1 Introduction 2 Preliminary Background 3 Unique Game 4 Unique Games Conjecture 5 Inapproximability Results 6 Unique Game Algorithms 7 Conclusion Antonios Angelakis (NTUA) Theory of Computation

More information

Mathematics AQA Advanced Subsidiary GCE Core 1 (MPC1) January 2010

Mathematics AQA Advanced Subsidiary GCE Core 1 (MPC1) January 2010 Link to past paper on AQA website: http://store.aqa.org.uk/qual/gce/pdf/aqa-mpc1-w-qp-jan10.pdf These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are

More information

8 Mathematics Curriculum

8 Mathematics Curriculum New York State Common Core 8 Mathematics Curriculum G R A D E GRADE 8 MODULE 4 Table of Contents 1... 3 Topic A: Writing and Solving (8.EE.C.7)... 11 Lesson 1: Writing Equations Using Symbols... 13 Lesson

More information

Burnt Pancake Problem : New Results (New Lower Bounds on the Diameter and New Experimental Optimality Ratios)

Burnt Pancake Problem : New Results (New Lower Bounds on the Diameter and New Experimental Optimality Ratios) Burnt Pancake Problem : New Results (New Lower Bounds on the Diameter and New Experimental Optimality Ratios) Bruno Bouzy Paris Descartes University SoCS 06 Tarrytown July 6-8, 06 Outline The Burnt Pancake

More information

Further generalizations of the Fibonacci-coefficient polynomials

Further generalizations of the Fibonacci-coefficient polynomials Annales Mathematicae et Informaticae 35 (2008) pp 123 128 http://wwwektfhu/ami Further generalizations of the Fibonacci-coefficient polynomials Ferenc Mátyás Institute of Mathematics and Informatics Eszterházy

More information

x y = 1 x + 2y = 7 y = x + 1 y = 2x 4 Solve these simultaneous equations. 2x + 3y = 8 2x + 3y = 6 4x y = 6 3 = x + 2y Guided practice worksheet

x y = 1 x + 2y = 7 y = x + 1 y = 2x 4 Solve these simultaneous equations. 2x + 3y = 8 2x + 3y = 6 4x y = 6 3 = x + 2y Guided practice worksheet 7. Solving simultaneous equations Questions are targeted at the grades indicated Solve these simultaneous equations. + = = = + = 7 = = B + = + = 8 = + = 6 6 + = = + 7 + = = 8 + = = + 9 + = = 6 9 7. Solving

More information

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication. MATH 423/673 1 Curves Definition: The velocity vector of a curve α : I R 3 at time t is the tangent vector to R 3 at α(t), defined by α (t) T α(t) R 3 α α(t + h) α(t) (t) := lim h 0 h Note that the algebraic

More information

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations.

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. 1. Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. x + y = 5, z = 4 Choose the correct description. A. The circle with center (0,0, 4)

More information

Algorithms. Sudoku. Rubik s cube. Evaluating how good (how efficient) an algorithm is 3/4/17. Algorithms, complexity and P vs NP SURVEY

Algorithms. Sudoku. Rubik s cube. Evaluating how good (how efficient) an algorithm is 3/4/17. Algorithms, complexity and P vs NP SURVEY Algorithms, complexity and P vs NP SURVEY Can creativity be automated? Slides by Avi Wigderson + Bernard Chazelle (with some extras) Finding an efficient method to solve SuDoku puzzles is: 1: A waste of

More information

LECTURE 13. Last time: Lecture outline

LECTURE 13. Last time: Lecture outline LECTURE 13 Last time: Strong coding theorem Revisiting channel and codes Bound on probability of error Error exponent Lecture outline Fano s Lemma revisited Fano s inequality for codewords Converse to

More information

SOLUTIONS OF VARIATIONS, PRACTICE TEST 4

SOLUTIONS OF VARIATIONS, PRACTICE TEST 4 SOLUTIONS OF VARIATIONS, PRATIE TEST 4 5-. onsider the following system of linear equations over the real numbers, where x, y and z are variables and b is a real constant. x + y + z = 0 x + 4y + 3z = 0

More information

What is the computational cost of automating brilliance or serendipity? (P vs NP question and related musings) COS 116: 4/12/2006 Adam Finkelstein

What is the computational cost of automating brilliance or serendipity? (P vs NP question and related musings) COS 116: 4/12/2006 Adam Finkelstein What is the computational cost of automating brilliance or serendipity? (P vs NP question and related musings) COS 116: 4/12/2006 Adam Finkelstein Combination lock Why is it secure? (Assume it cannot be

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2017 Outline Geometric Series The

More information