Review. p q ~p v q Contrapositive: ~q ~p Inverse: ~p ~q Converse: q p

Size: px
Start display at page:

Download "Review. p q ~p v q Contrapositive: ~q ~p Inverse: ~p ~q Converse: q p"

Transcription

1 ~ v Contraositive: ~ ~ Inverse: ~ ~ Converse: Å Review ( Ú ) Ù ~( Ù ) ~( Ù ) ~ Ú ~ ~( Ú ) ~ Ù ~ is sufficient for is necessary for ~ ~ 1

2 Valid and Invalid Arguments CS 231 Dianna Xu 2

3 Associative Law: (Ù)Ùr Ù(Ùr) (Ú)Úr Ú(Úr) Distributive Law: Review Ù(Úr) (Ù)Ú(Ùr) Ú(Ùr) (Ú)Ù(Úr) Absortion Law: Ú ( Ù ) Ù ( Ú ) 3

4 Definitions An argument is a seuence of statements (statement forms). All statements in an argument excet for the last one, are called remises. (assumtions, hyotheses) The final statement is the conclusion. A valid argument means the conclusion is true if the remises are all true, with all combinations of variable truth values. 4

5 Examles All Greeks are human and all humans are mortal; therefore, all Greeks are mortal. Some men are athletes and some athletes are rich; therefore, some men are rich. Some men are swimmers and some swimmers are fish; therefore, some men are fish. 5

6 Modus Ponens \ 6

7 Modus Ponens examle Assume you are given the following two statements: you are in this class If you are in this class, you are a student Let = you are in this class Let = you are a student \ By Modus Ponens, you can conclude that you are a student. 7

8 Modus Ponens Consider ( Ù ( )) Ù( ) (Ù( )) T T T T T T F F F T F T T F T F F T F T \ 8

9 Modus Tollens Assume that we know: ~ and Recall that ~ ~ Thus, we know ~ and ~ ~ We can conclude ~ ~ ~ 9

10 Modus Tollens examle Assume you are given the following two statements: you are not a student if you are in this class, you are a student Let = you are in this class Let = you are a student ~ ~ By Modus Tollens, you can conclude that you are not in this class 10

11 Generalization & Secialization Generalization: If you know that is true, then Ú will ALWAYS be true \ Ú Secialization: If Ù is true, then will ALWAYS be true \ Ù 11

12 Examle of roof We have the hyotheses: r s t It is not sunny this afternoon and it is colder than yesterday We will go swimming only if it is sunny If we do not go swimming, then we will take a canoe tri If we take a canoe tri, then we will be home by sunset Does this imly that we will be home by sunset? ~ Ù r ~r s s t t 12

13 Examle of roof 1. ~ Ù 1 st hyothesis 2. ~ Secialization using ste 1 3. r 2 nd hyothesis 4. ~r Modus tollens using stes 2 & 3 5. ~r s 3 rd hyothesis 6. s Modus onens using stes 4 & 5 7. s t 4 th hyothesis 8. t Modus onens using stes 6 & 7 ~ Ù \ \ ~ 13

14 More rules of inference Conjunction: if and are true searately, then Ù is true \ Ù Elimination: If Ú is true, and is false, then must be true ~ ~ Transitivity: If is true, and r is true, then r must be true r \ r 14

15 Even more rules of inference Proof by division into cases: if at least one of or is true, then r must be true Contradiction rule: If ~ c is true, we can conclude (via the contra-ositive) Ú r r \ r ~ c Resolution: If Ú is true, and ~Úr is true, then Úr must be true Not in the textbook ~ r r 15

16 Examle of roof Given the hyotheses: If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on If the sailing race is held, then the trohy will be awarded The trohy was not awarded Can you conclude: It rained? (~r Ú ~f) (s Ù l) s t ~t r 16

17 Examle of roof 1. ~t 3 rd hyothesis 2. s t 2 nd hyothesis 3. ~s Modus tollens using stes 1 & 2 4. (~rú~f) (sùl) 1 st hyothesis 5. ~(sùl) ~ (~rú~f) Contraositive of ste 4 6. (~sú~l) (rùf) DeMorgan s law and double negation law 7. ~sú~l Generalization using ste 3 8. rùf Modus onens using stes 6 & 7 9. r Secialization using ste 8 \ Ù \ Ú \ ~ ~ 17

18 Fallacy of the converse Modus Badus Fallacy of affirming the conclusion Consider the following: ~ ~ Is this true? \ Ù( ) (Ù( )) T T T T T T F F F T F T T T F F F T F T Not a valid rule! 18

19 Modus Badus examle Assume you are given the following two statements: you are a student If you are in this class, you are a student Let = you are in this class Let = you are a student \ It is clearly wrong to conclude that if you are a student, you must be in this class 19

20 Fallacy of the inverse Modus Badus Fallacy of denying the hyothesis Consider the following: Is this true? ~ ~ ~Ù( )) (~Ù( )) ~ T T T F T T F F F T F T T T F F F T T T Not a valid rule! 20

21 Modus Badus examle Assume you are given the following two statements: you are not in this class if you are in this class, you are a student Let = you are in this class Let = you are a student ~ ~ You CANNOT conclude that you are not a student just because you are not taking Discrete Math 21

[Ch 3, 4] Logic and Proofs (2) 1. Valid and Invalid Arguments ( 2.3, 3.4) 400 lecture note #2. 1) Basics

[Ch 3, 4] Logic and Proofs (2) 1. Valid and Invalid Arguments ( 2.3, 3.4) 400 lecture note #2. 1) Basics 400 lecture note #2 [Ch 3, 4] Logic and Proofs (2) 1. Valid and Invalid Arguments ( 2.3, 3.4) 1) Basics An argument is a sequence of statements ( s1, s2,, sn). All statements in an argument, excet for

More information

KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE. Discrete Math Team

KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE. Discrete Math Team KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE Discrete Math Team 2 -- KS091201 MD W-04 Outline Valid Arguments Modus Ponens Modus Tollens Addition and Simplification More Rules

More information

The Logic of Compound Statements. CSE 2353 Discrete Computational Structures Spring 2018

The Logic of Compound Statements. CSE 2353 Discrete Computational Structures Spring 2018 CSE 2353 Discrete Comutational Structures Sring 2018 The Logic of Comound Statements (Chater 2, E) Note: some course slides adoted from ublisher-rovided material Outline 2.1 Logical Form and Logical Equivalence

More information

Introduction Logic Inference. Discrete Mathematics Andrei Bulatov

Introduction Logic Inference. Discrete Mathematics Andrei Bulatov Introduction Logic Inference Discrete Mathematics Andrei Bulatov Discrete Mathematics - Logic Inference 6-2 Previous Lecture Laws of logic Expressions for implication, biconditional, exclusive or Valid

More information

Rules of Inference. Agenda. Rules of Inference Dr Patrick Chan. p r. p q. q r. Rules of Inference for Quantifiers. Hypothetical Syllogism

Rules of Inference. Agenda. Rules of Inference Dr Patrick Chan. p r. p q. q r. Rules of Inference for Quantifiers. Hypothetical Syllogism Discr ete Mathem atic Chater 1: Logic and Proof 1.5 Rules of Inference Dr Patrick Chan School of Comuter Science and Engineering South China University of echnology Recall John is a co. John knows first

More information

Sec$on Summary. Valid Arguments Inference Rules for Propositional Logic. Inference Rules for Quantified Statements. Building Arguments

Sec$on Summary. Valid Arguments Inference Rules for Propositional Logic. Inference Rules for Quantified Statements. Building Arguments Section 1.6 Sec$on Summary Valid Arguments Inference Rules for Propositional Logic Building Arguments Inference Rules for Quantified Statements Building Arguments 2 Revisi$ng the Socrates Example We have

More information

Discrete Structures of Computer Science Propositional Logic III Rules of Inference

Discrete Structures of Computer Science Propositional Logic III Rules of Inference Discrete Structures of Computer Science Propositional Logic III Rules of Inference Gazihan Alankuş (Based on original slides by Brahim Hnich) July 30, 2012 1 Previous Lecture 2 Summary of Laws of Logic

More information

Review. Propositions, propositional operators, truth tables. Logical Equivalences. Tautologies & contradictions

Review. Propositions, propositional operators, truth tables. Logical Equivalences. Tautologies & contradictions Review Propositions, propositional operators, truth tables Logical Equivalences. Tautologies & contradictions Some common logical equivalences Predicates & quantifiers Some logical equivalences involving

More information

Chapter 1, Logic and Proofs (3) 1.6. Rules of Inference

Chapter 1, Logic and Proofs (3) 1.6. Rules of Inference CSI 2350, Discrete Structures Chapter 1, Logic and Proofs (3) Young-Rae Cho Associate Professor Department of Computer Science Baylor University 1.6. Rules of Inference Basic Terminology Axiom: a statement

More information

Rules Build Arguments Rules Building Arguments

Rules Build Arguments Rules Building Arguments Section 1.6 1 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments Rules of Inference for Quantified Statements Building Arguments for Quantified

More information

Rules of Inference. Arguments and Validity

Rules of Inference. Arguments and Validity Arguments and Validity A formal argument in propositional logic is a sequence of propositions, starting with a premise or set of premises, and ending in a conclusion. We say that an argument is valid if

More information

Why Proofs? Proof Techniques. Theorems. Other True Things. Proper Proof Technique. How To Construct A Proof. By Chuck Cusack

Why Proofs? Proof Techniques. Theorems. Other True Things. Proper Proof Technique. How To Construct A Proof. By Chuck Cusack Proof Techniques By Chuck Cusack Why Proofs? Writing roofs is not most student s favorite activity. To make matters worse, most students do not understand why it is imortant to rove things. Here are just

More information

Methods of Proof. 1.6 Rules of Inference. Argument and inference 12/8/2015. CSE2023 Discrete Computational Structures

Methods of Proof. 1.6 Rules of Inference. Argument and inference 12/8/2015. CSE2023 Discrete Computational Structures Methods of Proof CSE0 Discrete Computational Structures Lecture 4 When is a mathematical argument correct? What methods can be used to construct mathematical arguments? Important in many computer science

More information

CSCI-2200 FOUNDATIONS OF COMPUTER SCIENCE

CSCI-2200 FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI-2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 February 5, 2015 2 Announcements Homework 1 is due now. Homework 2 will be posted on the web site today. It is due Thursday, Feb. 12 at 10am in class.

More information

2. The Logic of Compound Statements Summary. Aaron Tan August 2017

2. The Logic of Compound Statements Summary. Aaron Tan August 2017 2. The Logic of Compound Statements Summary Aaron Tan 21 25 August 2017 1 2. The Logic of Compound Statements 2.1 Logical Form and Logical Equivalence Statements; Compound Statements; Statement Form (Propositional

More information

CHAPTER 1 - LOGIC OF COMPOUND STATEMENTS

CHAPTER 1 - LOGIC OF COMPOUND STATEMENTS CHAPTER 1 - LOGIC OF COMPOUND STATEMENTS 1.1 - Logical Form and Logical Equivalence Definition. A statement or proposition is a sentence that is either true or false, but not both. ex. 1 + 2 = 3 IS a statement

More information

CS 2740 Knowledge Representation. Lecture 4. Propositional logic. CS 2740 Knowledge Representation. Administration

CS 2740 Knowledge Representation. Lecture 4. Propositional logic. CS 2740 Knowledge Representation. Administration Lecture 4 Propositional logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square dministration Homework assignment 1 is out Due next week on Wednesday, September 17 Problems: LISP programming a PL

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 3 Logic: Rules of Inference 1 Outline Mathematical Argument Rules of Inference 2 Argument In mathematics, an argument is a sequence of propositions (called premises)

More information

Sec$on Summary. Valid Arguments Inference Rules for Propositional Logic. Inference Rules for Quantified Statements. Building Arguments

Sec$on Summary. Valid Arguments Inference Rules for Propositional Logic. Inference Rules for Quantified Statements. Building Arguments Section 1.6 Sec$on Summary Valid Arguments Inference Rules for Propositional Logic Building Arguments Inference Rules for Quantified Statements Building Arguments 2 Revisi$ng the Socrates Example We have

More information

CS0441 Discrete Structures Recitation 3. Xiang Xiao

CS0441 Discrete Structures Recitation 3. Xiang Xiao CS0441 Discrete Structures Recitation 3 Xiang Xiao Section 1.5 Q10 Let F(x, y) be the statement x can fool y, where the domain consists of all people in the world. Use quantifiers to express each of these

More information

Review: Potential stumbling blocks

Review: Potential stumbling blocks Review: Potential stumbling blocks Whether the negation sign is on the inside or the outside of a quantified statement makes a big difference! Example: Let T(x) x is tall. Consider the following: x T(x)

More information

DISCRETE MATH: LECTURE 6

DISCRETE MATH: LECTURE 6 DISCRETE MATH: LECTURE 6 DR. DANIEL FREEMAN 1) a. Does 3 = {3}? b. Is 3 {3}? c. Is 3 {3}? d. Does {3} = {3, 3, 3, 3}? e. Is {x Z x > 0} {x R x > 0}? 1. Chapter 1 review 2) a. When does (a, b) = (c, d)?

More information

Propositional Logic. Argument Forms. Ioan Despi. University of New England. July 19, 2013

Propositional Logic. Argument Forms. Ioan Despi. University of New England. July 19, 2013 Propositional Logic Argument Forms Ioan Despi despi@turing.une.edu.au University of New England July 19, 2013 Outline Ioan Despi Discrete Mathematics 2 of 1 Order of Precedence Ioan Despi Discrete Mathematics

More information

3 Rules of Inferential Logic

3 Rules of Inferential Logic 24 FUNDAMENTALS OF MATHEMATICAL LOGIC 3 Rules of Inferential Logic The main concern of logic is how the truth of some roositions is connected with the truth of another. Thus, we will usually consider a

More information

Discrete Mathematics Logics and Proofs. Liangfeng Zhang School of Information Science and Technology ShanghaiTech University

Discrete Mathematics Logics and Proofs. Liangfeng Zhang School of Information Science and Technology ShanghaiTech University Discrete Mathematics Logics and Proofs Liangfeng Zhang School of Information Science and Technology ShanghaiTech University Resolution Theorem: p q p r (q r) p q p r q r p q r p q p p r q r T T T T F T

More information

Resolution (7A) Young Won Lim 4/21/18

Resolution (7A) Young Won Lim 4/21/18 (7A) Coyright (c) 215 218 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

The Logic of Compound Statements cont.

The Logic of Compound Statements cont. The Logic of Compound Statements cont. CSE 215, Computer Science 1, Fall 2011 Stony Brook University http://www.cs.stonybrook.edu/~cse215 Refresh from last time: Logical Equivalences Commutativity of :

More information

Boolean Algebra and Proof. Notes. Proving Propositions. Propositional Equivalences. Notes. Notes. Notes. Notes. March 5, 2012

Boolean Algebra and Proof. Notes. Proving Propositions. Propositional Equivalences. Notes. Notes. Notes. Notes. March 5, 2012 March 5, 2012 Webwork Homework. The handout on Logic is Chapter 4 from Mary Attenborough s book Mathematics for Electrical Engineering and Computing. Proving Propositions We combine basic propositions

More information

software design & management Gachon University Chulyun Kim

software design & management Gachon University Chulyun Kim Gachon University Chulyun Kim 2 Outline Propositional Logic Propositional Equivalences Predicates and Quantifiers Nested Quantifiers Rules of Inference Introduction to Proofs 3 1.1 Propositional Logic

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

THE LOGIC OF COMPOUND STATEMENTS

THE LOGIC OF COMPOUND STATEMENTS THE LOGIC OF COMPOUND STATEMENTS All dogs have four legs. All tables have four legs. Therefore, all dogs are tables LOGIC Logic is a science of the necessary laws of thought, without which no employment

More information

Knowledge Representation. Propositional logic

Knowledge Representation. Propositional logic CS 2710 Foundations of AI Lecture 10 Knowledge Representation. Propositional logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Knowledge-based agent Knowledge base Inference engine Knowledge

More information

What is the decimal (base 10) representation of the binary number ? Show your work and place your final answer in the box.

What is the decimal (base 10) representation of the binary number ? Show your work and place your final answer in the box. Question 1. [10 marks] Part (a) [2 marks] What is the decimal (base 10) representation of the binary number 110101? Show your work and place your final answer in the box. 2 0 + 2 2 + 2 4 + 2 5 = 1 + 4

More information

Intro to Logic and Proofs

Intro to Logic and Proofs Intro to Logic and Proofs Propositions A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both. Examples: It is raining today. Washington

More information

Knowledge Representation. Propositional logic.

Knowledge Representation. Propositional logic. CS 1571 Introduction to AI Lecture 10 Knowledge Representation. Propositional logic. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Announcements Homework assignment 3 due today Homework assignment

More information

DISCRETE MATH: FINAL REVIEW

DISCRETE MATH: FINAL REVIEW DISCRETE MATH: FINAL REVIEW DR. DANIEL FREEMAN 1) a. Does 3 = {3}? b. Is 3 {3}? c. Is 3 {3}? c. Is {3} {3}? c. Is {3} {3}? d. Does {3} = {3, 3, 3, 3}? e. Is {x Z x > 0} {x R x > 0}? 1. Chapter 1 review

More information

A Quick Lesson on Negation

A Quick Lesson on Negation A Quick Lesson on Negation Several of the argument forms we have looked at (modus tollens and disjunctive syllogism, for valid forms; denying the antecedent for invalid) involve a type of statement which

More information

DISCRETE MATH: LECTURE 3

DISCRETE MATH: LECTURE 3 DISCRETE MATH: LECTURE 3 DR. DANIEL FREEMAN 1. Chapter 2.2 Conditional Statements If p and q are statement variables, the conditional of q by p is If p then q or p implies q and is denoted p q. It is false

More information

PSU MATH RELAYS LOGIC & SET THEORY 2017

PSU MATH RELAYS LOGIC & SET THEORY 2017 PSU MATH RELAYS LOGIC & SET THEORY 2017 MULTIPLE CHOICE. There are 40 questions. Select the letter of the most appropriate answer and SHADE in the corresponding region of the answer sheet. If the correct

More information

CS100: DISCRETE STRUCTURES. Lecture 5: Logic (Ch1)

CS100: DISCRETE STRUCTURES. Lecture 5: Logic (Ch1) CS100: DISCREE SRUCURES Lecture 5: Logic (Ch1) Lecture Overview 2 Statement Logical Connectives Conjunction Disjunction Propositions Conditional Bio-conditional Converse Inverse Contrapositive Laws of

More information

Analyzing Arguments with Truth Tables

Analyzing Arguments with Truth Tables Analyzing Arguments with Truth Tables MATH 100 Survey of Mathematical Ideas J. Robert Buchanan Department of Mathematics Fall 2014 Introduction Euler diagrams are useful for checking the validity of simple

More information

10/5/2012. Logic? What is logic? Propositional Logic. Propositional Logic (Rosen, Chapter ) Logic is a truth-preserving system of inference

10/5/2012. Logic? What is logic? Propositional Logic. Propositional Logic (Rosen, Chapter ) Logic is a truth-preserving system of inference Logic? Propositional Logic (Rosen, Chapter 1.1 1.3) TOPICS Propositional Logic Truth Tables Implication Logical Proofs 10/1/12 CS160 Fall Semester 2012 2 What is logic? Logic is a truth-preserving system

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Distinguish between a theorem, an axiom, lemma, a corollary, and a conjecture. Recognize direct proofs

More information

Discrete Mathematics Recitation Course 張玟翔

Discrete Mathematics Recitation Course 張玟翔 Discrete Mathematics Recitation Course 1 2013.03.07 張玟翔 Acknowledge 鄭安哲 TA 2012 About Myself English Name : Zak Chinese Name : 張玟翔 Mail:o0000032@yahoo.com.tw Lab: ED612 1-1 Propositional Logic 1-1 Ex.2

More information

A. Propositional Logic

A. Propositional Logic CmSc 175 Discrete Mathematics A. Propositional Logic 1. Statements (Propositions ): Statements are sentences that claim certain things. Can be either true or false, but not both. Propositional logic deals

More information

Mathacle. PSet ---- Algebra, Logic. Level Number Name: Date: I. BASICS OF PROPOSITIONAL LOGIC

Mathacle. PSet ---- Algebra, Logic. Level Number Name: Date: I. BASICS OF PROPOSITIONAL LOGIC I. BASICS OF PROPOSITIONAL LOGIC George Boole (1815-1864) developed logic as an abstract mathematical system consisting of propositions, operations (conjunction, disjunction, and negation), and rules for

More information

MACM 101 Discrete Mathematics I. Exercises on Propositional Logic. Due: Tuesday, September 29th (at the beginning of the class)

MACM 101 Discrete Mathematics I. Exercises on Propositional Logic. Due: Tuesday, September 29th (at the beginning of the class) MACM 101 Discrete Mathematics I Exercises on Propositional Logic. Due: Tuesday, September 29th (at the beginning of the class) SOLUTIONS 1. Construct a truth table for the following compound proposition:

More information

Section 1.3: Valid and Invalid Arguments

Section 1.3: Valid and Invalid Arguments Section 1.3: Valid and Invalid Arguments Now we have developed the basic language of logic, we shall start to consider how logic can be used to determine whether or not a given argument is valid. In order

More information

The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Summary Valid Arguments and Rules of Inference Proof Methods Proof Strategies Rules of Inference Section 1.6 Section Summary Valid Arguments

More information

Why Learning Logic? Logic. Propositional Logic. Compound Propositions

Why Learning Logic? Logic. Propositional Logic. Compound Propositions Logic Objectives Propositions and compound propositions Negation, conjunction, disjunction, and exclusive or Implication and biconditional Logic equivalence and satisfiability Application of propositional

More information

Proposition logic and argument. CISC2100, Spring 2017 X.Zhang

Proposition logic and argument. CISC2100, Spring 2017 X.Zhang Proposition logic and argument CISC2100, Spring 2017 X.Zhang 1 Where are my glasses? I know the following statements are true. 1. If I was reading the newspaper in the kitchen, then my glasses are on the

More information

Where are my glasses?

Where are my glasses? Proposition logic and argument CISC2100, Spring 2017 X.Zhang 1 Where are my glasses? I know the following statements are true. 1. If I was reading the newspaper in the kitchen, then my glasses are on the

More information

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference Math.3336: Discrete Mathematics Nested Quantifiers/Rules of Inference Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them.

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them. Proofs A mathematical system consists of axioms, definitions and undefined terms. An axiom is assumed true. Definitions are used to create new concepts in terms of existing ones. Undefined terms are only

More information

Propositional Logic. Jason Filippou UMCP. ason Filippou UMCP) Propositional Logic / 38

Propositional Logic. Jason Filippou UMCP. ason Filippou UMCP) Propositional Logic / 38 Propositional Logic Jason Filippou CMSC250 @ UMCP 05-31-2016 ason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 1 / 38 Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference

More information

With Question/Answer Animations. Chapter 1, Part III: Proofs

With Question/Answer Animations. Chapter 1, Part III: Proofs With Question/Answer Animations Chapter 1, Part III: Proofs Summary Valid Arguments and Rules of Inference Proof Methods Proof Strategies Section 1.6 Section Summary Valid Arguments Inference Rules for

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 9, 2009 Overview of ( 1.5-1.7, ~2 hours) Methods of mathematical argument (i.e., proof methods) can be formalized

More information

n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional)

n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional) Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.6) TOPICS Propositional Logic Logical Operators Truth Tables Implication Logical Equivalence Inference Rules What you should know about propositional

More information

Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic.

Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms)

More information

Proving Things. Why prove things? Proof by Substitution, within Logic. Rules of Inference: applying Logic. Using Assumptions.

Proving Things. Why prove things? Proof by Substitution, within Logic. Rules of Inference: applying Logic. Using Assumptions. 1 Proving Things Why prove things? Proof by Substitution, within Logic Rules of Inference: applying Logic Using Assumptions Proof Strategies 2 Why Proofs? Knowledge is power. Where do we get it? direct

More information

1 The Foundation: Logic and Proofs

1 The Foundation: Logic and Proofs 1 The Foundation: Logic and Proofs 1.1 Propositional Logic Propositions( ) a declarative sentence that is either true or false, but not both nor neither letters denoting propostions p, q, r, s, T: true

More information

Agenda. Introduction to Proofs Dr Patrick Chan School of Computer Science and Engineering South China University of Technology

Agenda. Introduction to Proofs Dr Patrick Chan School of Computer Science and Engineering South China University of Technology Discrete Mathematic Chapter 1: Logic and Proof 1.5 Rules of Inference 1.6 Introduction to Proofs Dr Patrick Chan School of Computer Science and Engineering South China University of echnology Agenda Rules

More information

Simplification by Truth Table and without Truth Table

Simplification by Truth Table and without Truth Table SUBJECT NAME SUBJECT CODE : MA 6566 MATERIAL NAME REGULATION : Discrete Mathematics : University Questions : R2013 UPDATED ON : April-May 2018 BOOK FOR REFERENCE To buy the book visit : Sri Hariganesh

More information

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 1. Translate each of the following English sentences into formal statements using the logical operators (,,,,, and ). You may also use mathematical

More information

Outline. Rules of Inferences Discrete Mathematics I MATH/COSC 1056E. Example: Existence of Superman. Outline

Outline. Rules of Inferences Discrete Mathematics I MATH/COSC 1056E. Example: Existence of Superman. Outline Outline s Discrete Mathematics I MATH/COSC 1056E Julien Dompierre Department of Mathematics and Computer Science Laurentian University Sudbury, August 6, 2008 Using to Build Arguments and Quantifiers Outline

More information

Anna University, Chennai, November/December 2012

Anna University, Chennai, November/December 2012 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2012 Fifth Semester Computer Science and Engineering MA2265 DISCRETE MATHEMATICS (Regulation 2008) Part - A 1. Define Tautology with an example. A Statement

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Distinguish between a theorem, an axiom, lemma, a corollary, and a conjecture. Recognize direct proofs

More information

Valid Reasoning. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing February, Outline Truth and Validity Valid Reasoning

Valid Reasoning. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing February, Outline Truth and Validity Valid Reasoning Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing February, 2018 Alice E. Fischer Reasoning... 1/23 1 Truth is not the same as Validity 2 Alice E. Fischer Reasoning... 2/23 Truth is not the

More information

Deductive and Inductive Logic

Deductive and Inductive Logic Deductive Logic Overview (1) Distinguishing Deductive and Inductive Logic (2) Validity and Soundness (3) A Few Practice Deductive Arguments (4) Testing for Invalidity (5) Practice Exercises Deductive and

More information

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement Tutorial - 1 1. Obtain the principal disjunctive normal form and principal conjunction form of the statement Let S P P Q Q R P P Q Q R A: P Q Q R P Q R P Q Q R Q Q R A S Minterm Maxterm T T T F F T T T

More information

Proof Tactics, Strategies and Derived Rules. CS 270 Math Foundations of CS Jeremy Johnson

Proof Tactics, Strategies and Derived Rules. CS 270 Math Foundations of CS Jeremy Johnson Proof Tactics, Strategies and Derived Rules CS 270 Math Foundations of CS Jeremy Johnson Outline 1. Review Rules 2. Positive subformulas and extraction 3. Proof tactics Extraction, Conversion, Inversion,

More information

Today s Lecture 2/25/10. Truth Tables Continued Introduction to Proofs (the implicational rules of inference)

Today s Lecture 2/25/10. Truth Tables Continued Introduction to Proofs (the implicational rules of inference) Today s Lecture 2/25/10 Truth Tables Continued Introduction to Proofs (the implicational rules of inference) Announcements Homework: -- Ex 7.3 pg. 320 Part B (2-20 Even). --Read chapter 8.1 pgs. 345-361.

More information

Simplification by Truth Table and without Truth Table

Simplification by Truth Table and without Truth Table SUBJECT NAME SUBJECT CODE : MA 6566 MATERIAL NAME REGULATION : Discrete Mathematics : University Questions : R2013 UPDATED ON : June 2017 (Scan the above Q.R code for the direct download of this material)

More information

1 The Foundation: Logic and Proofs

1 The Foundation: Logic and Proofs 1 The Foundation: Logic and Proofs 1.1 Propositional Logic Propositions( 명제 ) a declarative sentence that is either true or false, but not both nor neither letters denoting propositions p, q, r, s, T:

More information

PHI Propositional Logic Lecture 2. Truth Tables

PHI Propositional Logic Lecture 2. Truth Tables PHI 103 - Propositional Logic Lecture 2 ruth ables ruth ables Part 1 - ruth unctions for Logical Operators ruth unction - the truth-value of any compound proposition determined solely by the truth-value

More information

(Refer Slide Time: 02:20)

(Refer Slide Time: 02:20) Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 5 Logical Inference In the last class we saw about

More information

Chapter 1: The Logic of Compound Statements. January 7, 2008

Chapter 1: The Logic of Compound Statements. January 7, 2008 Chapter 1: The Logic of Compound Statements January 7, 2008 Outline 1 1.1 Logical Form and Logical Equivalence 2 1.2 Conditional Statements 3 1.3 Valid and Invalid Arguments Central notion of deductive

More information

CSC 125 :: Final Exam December 14, 2011

CSC 125 :: Final Exam December 14, 2011 1-5. Complete the truth tables below: CSC 125 :: Final Exam December 14, 2011 p q p q p q p q p q p q T T F F T F T F (6 9) Let p be: Log rolling is fun. q be: The sawmill is closed. Express these as English

More information

PROPOSITIONAL CALCULUS

PROPOSITIONAL CALCULUS PROPOSITIONAL CALCULUS A proposition is a complete declarative sentence that is either TRUE (truth value T or 1) or FALSE (truth value F or 0), but not both. These are not propositions! Connectives and

More information

Argument. whenever all the assumptions are true, then the conclusion is true. If today is Wednesday, then yesterday is Tuesday. Today is Wednesday.

Argument. whenever all the assumptions are true, then the conclusion is true. If today is Wednesday, then yesterday is Tuesday. Today is Wednesday. Logic and Proof Argument An argument is a sequence of statements. All statements but the first one are called assumptions or hypothesis. The final statement is called the conclusion. An argument is valid

More information

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another.

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. Math 0413 Appendix A.0 Logic Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. This type of logic is called propositional.

More information

Propositional Logic. Fall () Propositional Logic Fall / 30

Propositional Logic. Fall () Propositional Logic Fall / 30 Propositional Logic Fall 2013 () Propositional Logic Fall 2013 1 / 30 1 Introduction Learning Outcomes for this Presentation 2 Definitions Statements Logical connectives Interpretations, contexts,... Logically

More information

Predicate Logic & Quantification

Predicate Logic & Quantification Predicate Logic & Quantification Things you should do Homework 1 due today at 3pm Via gradescope. Directions posted on the website. Group homework 1 posted, due Tuesday. Groups of 1-3. We suggest 3. In

More information

CSC 125 :: Final Exam May 3 & 5, 2010

CSC 125 :: Final Exam May 3 & 5, 2010 CSC 125 :: Final Exam May 3 & 5, 2010 Name KEY (1 5) Complete the truth tables below: p Q p q p q p q p q p q T T T T F T T T F F T T F F F T F T T T F F F F F F T T 6-15. Match the following logical equivalences

More information

Test 1 Solutions(COT3100) (1) Prove that the following Absorption Law is correct. I.e, prove this is a tautology:

Test 1 Solutions(COT3100) (1) Prove that the following Absorption Law is correct. I.e, prove this is a tautology: Test 1 Solutions(COT3100) Sitharam (1) Prove that the following Absorption Law is correct. I.e, prove this is a tautology: ( q (p q) (r p)) r Solution. This is Modus Tollens applied twice, with transitivity

More information

Readings: Conjecture. Theorem. Rosen Section 1.5

Readings: Conjecture. Theorem. Rosen Section 1.5 Readings: Conjecture Theorem Lemma Lemma Step 1 Step 2 Step 3 : Step n-1 Step n a rule of inference an axiom a rule of inference Rosen Section 1.5 Provide justification of the steps used to show that a

More information

Discrete Structures & Algorithms. Propositional Logic EECE 320 // UBC

Discrete Structures & Algorithms. Propositional Logic EECE 320 // UBC Discrete Structures & Algorithms Propositional Logic EECE 320 // UBC 1 Review of last lecture Pancake sorting A problem with many applications Bracketing (bounding a function) Proving bounds for pancake

More information

Propositional Logic. Spring Propositional Logic Spring / 32

Propositional Logic. Spring Propositional Logic Spring / 32 Propositional Logic Spring 2016 Propositional Logic Spring 2016 1 / 32 Introduction Learning Outcomes for this Presentation Learning Outcomes... At the conclusion of this session, we will Define the elements

More information

Boolean Logic. CS 231 Dianna Xu

Boolean Logic. CS 231 Dianna Xu Boolean Logic CS 231 Dianna Xu 1 Proposition/Statement A proposition is either true or false but not both The sky is blue Lisa is a Math major x == y Not propositions: Are you Bob? x := 7 2 Boolean variables

More information

Inference in Propositional Logic

Inference in Propositional Logic Inference in Propositional Logic Deepak Kumar November 2017 Propositional Logic A language for symbolic reasoning Proposition a statement that is either True or False. E.g. Bryn Mawr College is located

More information

DISCRETE MATH: LECTURE Chapter 3.3 Statements with Multiple Quantifiers If you want to establish the truth of a statement of the form

DISCRETE MATH: LECTURE Chapter 3.3 Statements with Multiple Quantifiers If you want to establish the truth of a statement of the form DISCRETE MATH: LECTURE 5 DR. DANIEL FREEMAN 1. Chapter 3.3 Statements with Multiple Quantifiers If you want to establish the truth of a statement of the form x D, y E such that P (x, y) your challenge

More information

1) Let h = John is healthy, w = John is wealthy and s = John is wise Write the following statement is symbolic form

1) Let h = John is healthy, w = John is wealthy and s = John is wise Write the following statement is symbolic form Math 378 Exam 1 Spring 2009 Show all Work Name 1) Let h = John is healthy, w = John is wealthy and s = John is wise Write the following statement is symbolic form a) In order for John to be wealthy it

More information

(ÀB Ä (A Â C)) (A Ä ÀC) Á B. This is our sample argument. Formal Proofs

(ÀB Ä (A Â C)) (A Ä ÀC) Á B. This is our sample argument. Formal Proofs (ÀB Ä (A Â C)) (A Ä ÀC) Á B This is our sample argument. Formal Proofs From now on, formal proofs will be our main way to test arguments. We ll begin with easier proofs. Our initial strategy for constructing

More information

Solutions to Exercises (Sections )

Solutions to Exercises (Sections ) s to Exercises (Sections 1.11-1.12) Section 1.11 Exercise 1.11.1 (a) p q q r r p 1. q r Hypothesis 2. p q Hypothesis 3. p r Hypothetical syllogism, 1, 2 4. r Hypothesis 5. p Modus tollens, 3, 4. (b) p

More information

At least one of us is a knave. What are A and B?

At least one of us is a knave. What are A and B? 1. This is a puzzle about an island in which everyone is either a knight or a knave. Knights always tell the truth and knaves always lie. This problem is about two people A and B, each of whom is either

More information

ECOM Discrete Mathematics

ECOM Discrete Mathematics ECOM 2311- Discrete Mathematics Chapter # 1 : The Foundations: Logic and Proofs Fall, 2013/2014 ECOM 2311- Discrete Mathematics - Ch.1 Dr. Musbah Shaat 1 / 85 Outline 1 Propositional Logic 2 Propositional

More information

Collins' notes on Lemmon's Logic

Collins' notes on Lemmon's Logic Collins' notes on Lemmon's Logic (i) Rule of ssumption () Insert any formula at any stage into a proof. The assumed formula rests upon the assumption of itself. (ii) Double Negation (DN) a. b. ( Two negations

More information

CPSC 121: Models of Computation

CPSC 121: Models of Computation CPSC 121: Models of Computation Unit 4 Propositional Logic Proofs Based on slides by Patrice Belleville and Steve Wolfman Coming Up Pre-class quiz #5 is due Wednesday October 4th at 21:00 Assigned reading

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY MA DISCRETE MATHEMATICS

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY MA DISCRETE MATHEMATICS 1 MA6566 - DISCRETE MATHEMATICS UNIT I - LOGIC AND PROOFS Propositional Logic Propositional equivalences-predicates and quantifiers-nested Quantifiers- Rules of inference-introduction to Proofs-Proof Methods

More information

STUDY PROBLEMS FOR EXAM I CMSC 203 DISCRETE STRUCTURES. n (n +1)(2n +1), 6. j 2 = 1(1+1)(2 1+1) 6. k (k +1)(2k +1) 6

STUDY PROBLEMS FOR EXAM I CMSC 203 DISCRETE STRUCTURES. n (n +1)(2n +1), 6. j 2 = 1(1+1)(2 1+1) 6. k (k +1)(2k +1) 6 STUDY PROBLEMS FOR EXAM I CMSC 203 DISCRETE STRUCTURES DR. LOMONACO 1. Use the principle of mathematical induction to prove that P (n) : n (n +1)(2n +1), for all integers n 1. Answer: Proof (by weak induction):

More information