MATH 308 Differential Equations

Size: px
Start display at page:

Download "MATH 308 Differential Equations"

Transcription

1 MATH 308 Differential Equations Summer, 2014, SET 6 JoungDong Kim Set 6: Section 3.3, 3.4, 3.5, 3.6 Section 3.3 Complex Roots of the Characteristic Equation Recall that a second order ODE with constant coefficients; ay +by +cy = 0, (1) its characteristic equation is ar 2 +br +c = 0. (2) If the characteristic equation has two different roots r 1 and r 2, then the general solution is y = c 1 e r1t +c 2 e r2t. But in general, the equation (2) may have complex roots or repeated root. 1

2 is Characteristic equation with complex roots. If the roots of equation (2) are complex numbers, they must be Conjugate complex numbers, that Therefore, two solutions of equation (1) are r 1 = λ+iµ, r 2 = λ iµ. y 1 (t) = e (λ+iµ)t = e λt (cos(µt)+isin(µt)), y 2 (t) = e (λ iµ)t = e λt (cos(µt) isin(µt)). Unfortunately, the solutions y 1 and y 2 are complex-vlaued functions, whereas in general we would prefer to have real-valued solutions. Find a fundamental set of real-valued solutions. and y 1 +y 2 = 2e λt cosµt, y 1 y 2 = 2ie λt sinµt. Hence, we have obtained a pair of real-valued solutions u(t) = e λt cos(µt), v(t) = e λt sin(µt). These two real valued functions also solve the original equation (1). So the general solution of equation (1) can be written as, y = c 1 e λt cos(µt)+c 2 e λt sin(µt). Ex1) Find the general solution of the following equation, y +2y +2y = 0. 2

3 Ex2) Solve the initial value problem, 16y 8y +145y = 0, y(0) = 2, y (0) = 1. 3

4 Section 3.4 Repeated Roots; Reduction of Order In this section, we study the case of repeated roots of characteristic equation. Ex3) Solve the initial value problem, y +4y +4y = 0, y(0) = 1, y (0) = 0. 4

5 In general, if the characteristic equation has two repeated roots, r 1,2 = r 0, then the general solution of the second order ODE has the following form: y = c 1 e r0t +c 2 te r0t, c 1 and c 2 can be uniquely determined if two initial conditions are given. Ex4) Find the solution of the initial value problem, y y +0.25y = 0, y(0) = 2, y (0) = 1/3. 5

6 Solve this problem with a different initial condition y (0) = 2, compare two solutions by the graphs and explain why they behave so different as t increases. 6

7 Reduction of Order Let us recall the way that we seek the other special solution y = te 2t in Ex3. We start by guessing that the other solution is in the form as y = v(t)e 2t, plug this function into the equation and derive a new equation for v(t). This is a useful technique to look for solutions for second order linear ODE if one solution is given. Ex5) Given that y 1 (t) = t 1 is a solution of 2t 2 y +3ty y = 0, t > 0. Find another solution which is not linearly dependent with y 1. 7

8 Summary The structure of the general solutions solely depends on the characteristic equation. 1. If r 1 and r 2 are different real numbers. The general solution is y = c 1 e r 1t +c 2 e r 2t. 2. If r 1 and r 2 are two conjugate complex numbers, r 1,2 = λ±iµ. The general solution is y = c 1 e λt cos(µt)+c 2 e λt sin(µt). 3. If the coefficients are not constant, we can determine a different solution if one is already given. These two solutions form a fundamental set of solutions. 8

9 Section 3.5 Nonhomogeneous Equations: Method of Undetermined Coefficients. In section 3.5 and 3.6, we will study two methods for solving nonhomogeneous equations. We begin by looking at the structure of the general solutions for nonhomogeneous equations. Consider the general form of a nonhomogeneous linear second order ODE: Its corresponding homogeneous equation is: y +p(t)y +q(t)y = g(t). (3) y +p(t)y +q(t)y = 0. (4) Theorem 0.1. If Y 1 and Y 2 are two solutions of the nonhomogeneous equation (3), then their difference Y 1 Y 2 is a solution of the corresponding homogeneous equation (4). If we assume that y 1 and y 2 are a fundamental set of solutions of equation (4), then we have Y 1 Y 2 = c 1 y 1 +c 2 y 2. Theorem 0.2 (General Solution). The general solution of the nonhomogeneous equation (3) can be written in the form: y = c 1 y 1 +c 2 y 2 +Y p, where y 1 and y 2 are a fundamental set of solutions of the homogeneous equation (4), c 1 and c 2 are arbitrary constants, and Y p is some particular solution of the nonhomogeneous equation (3). This theorem actually gives us a strategy for finding all solutions of equation (3): 1. We first solve the homogeneous equation (4), find a fundamental set of solutions y 1 and y Find one solution Y p for the nonhomogeneous equation (3). And add together the functions found in the two preceding steps. 3. For given initial conditions, we can use the initial data to determine c 1 and c 2. 9

10 Method of undetermined coefficients. When the functions p(t) and q(t) are constants, we know how to find a fundamental set of solutions from previous sections. So the key to solve equation (3) is to find a special solution Y p. The first and easiest way to find such a solution is Guessing. However, it is more efficient if we have some rules in mind. This is the motivation of the method of undetermined coefficients. Ex6) Find a particular solution of y 3y 4y = 3e 2t. 10

11 Ex7) Find a particular solution of y 3y 4y = 2sint. 11

12 Ex8) Find a particular solution of y 3y 4y = 8e t cos(2t). 12

13 Ex9) Find a particular solution of y 3y 4y = 3e 2t +2sint 8e t cos(2t). 13

14 Ex10) Find a particular solution of y 3y 4y = 2e t. 14

15 The particular solution of ay +by +cy = g(t) is in the table given. Table 1: The particular solution of ay +by +cy = g(t). g(t) Y(t) P n (t) = a 0 t n +a 1 t n 1 + +a n t s (A 0 t n +A 1 t n 1 + +A n ) P n (t)e αt { t s (A 0 t n +A 1 t n 1 + +A n )e αt sinβt P n (t)e αt t s [(A 0 t n +A 1 t n 1 + +A n )e αt cosβt cosβt +(B 0 t n +B 1 t n 1 + +B n )e αt sinβt] Note: Here s is the smallest nonnegative integer (s = 0,1,or 2) that will ensure that no term in the guess Y(t) is a solution of the corresponding homogeneous equation. 15

16 Section 3.6 Variation of Parameters. The undetermined coefficients method can handle certain types of equations, such as the right hand side has to be the combination of polynomials, trig. functions, or exponential functions. Other than those functions, we cannot directly apply this method. In this section, we will study a much powerful and efficient method; Variation of parameters. The main feature of this method is that it is very general in the sense that as long as we know the fundamental set of solutions for the corresponding homogeneous equation, we can get the solution of the homogeneous equation instantly for arbitrary given right hand side function g(t). Consider the general form of a homogeneous linear second order ODE; Its corresponding homogeneous equation is y +p(t)y +q(t)y = g(t) (5) y +p(t)y +q(t)y = 0 (6) Assumption Let us assume that we know y 1, y 2 are the fundamental set of solutions for the homogeneous equation (6). In order to find all solutions for the nonhomogeneous equation (5), we need to find a special solution Y(t). Similar as the reduced order technique, we seek the solution Y(t) in a special form: Y(t) = u 1 (t)y 1 (t)+u 2 (t)y 2 (t), (7) where u 1 and u 2 are functions of t which are unknown at the moment. We need to set up some equation(s) to solve for u 1 and u 2. 16

17 Theorem 0.3. If in the equation (5), p, q, and g are continuous on an open interval I and t 0 is some point in I. Assume that y 1, y 2 are the fundamental set of solutions for the corresponding homogeneous equation (6), then a particular solution of equation (5) is t Y(t) = y 1 (t) t 0 y 2 (s)g(s) t W(y 1,y 2 )(s) ds+y 2(t) t 0 where t 0 is any conveniently chosen point in I. The general solution is y(t) = c 1 y 1 (t)+c 2 y 2 (t)+y(t). y 1 (s)g(s) W(y 1,y 2 )(s) ds, Ex11) Find a particular solution of y +4y = 3csct. 17

18 Ex12) Find a particular solution of t 2 y t(t+2)y +(t+2)y = 2t 3, t > 0, y 1 = t, y 2 = te t. 18

19 Summary The variation of parameters method is a relatively general method for nonhomogeneous linear second order ODE. It can be applied for the equations when p(t) and q(t) are not constant. However, the key assumption is that we know a fundamental set of solutions y 1 and y 2 for the corresponding homogeneous equation. This suggests us that to solve a nonhomogeneous equation, it suffices to solve the corresponding homogeneous equation. This principle is also true for many other types of ODE/PDE. 19

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order October 2 6, 2017 Second Order ODEs (cont.) Consider where a, b, and c are real numbers ay +by +cy = 0, (1) Let

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 5 JoungDong Kim Set 5: Section 3.1, 3.2 Chapter 3. Second Order Linear Equations. Section 3.1 Homogeneous Equations with Constant Coefficients. In this

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Second-Order Linear ODEs A second order ODE is called linear if it can be written as y + p(t)y + q(t)y = r(t). (0.1) It is called homogeneous if r(t) = 0, and nonhomogeneous otherwise. We shall assume

More information

Second Order Differential Equations Lecture 6

Second Order Differential Equations Lecture 6 Second Order Differential Equations Lecture 6 Dibyajyoti Deb 6.1. Outline of Lecture Repeated Roots; Reduction of Order Nonhomogeneous Equations; Method of Undetermined Coefficients Variation of Parameters

More information

6. Linear Differential Equations of the Second Order

6. Linear Differential Equations of the Second Order September 26, 2012 6-1 6. Linear Differential Equations of the Second Order A differential equation of the form L(y) = g is called linear if L is a linear operator and g = g(t) is continuous. The most

More information

Chapter 4: Higher Order Linear Equations

Chapter 4: Higher Order Linear Equations Chapter 4: Higher Order Linear Equations MATH 351 California State University, Northridge April 7, 2014 MATH 351 (Differential Equations) Ch 4 April 7, 2014 1 / 11 Sec. 4.1: General Theory of nth Order

More information

Exam II Review: Selected Solutions and Answers

Exam II Review: Selected Solutions and Answers November 9, 2011 Exam II Review: Selected Solutions and Answers NOTE: For additional worked problems see last year s review sheet and answers, the notes from class, and your text. Answers to problems from

More information

Higher Order Linear Equations Lecture 7

Higher Order Linear Equations Lecture 7 Higher Order Linear Equations Lecture 7 Dibyajyoti Deb 7.1. Outline of Lecture General Theory of nth Order Linear Equations. Homogeneous Equations with Constant Coefficients. 7.2. General Theory of nth

More information

Second Order Linear ODEs, Part II

Second Order Linear ODEs, Part II Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline Non-homogeneous Linear Equations 1 Non-homogeneous Linear Equations

More information

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS MATTHIAS GERDTS A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS Universität der Bundeswehr München Addresse des Autors: Matthias Gerdts Institut für Mathematik und Rechneranwendung Universität

More information

Lecture 9. Scott Pauls 1 4/16/07. Dartmouth College. Math 23, Spring Scott Pauls. Last class. Today s material. Group work.

Lecture 9. Scott Pauls 1 4/16/07. Dartmouth College. Math 23, Spring Scott Pauls. Last class. Today s material. Group work. Lecture 9 1 1 Department of Mathematics Dartmouth College 4/16/07 Outline Repeated Roots Repeated Roots Repeated Roots Material from last class Wronskian: linear independence Constant coeffecient equations:

More information

Second order linear equations

Second order linear equations Second order linear equations Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Second order equations Differential

More information

Homogeneous Equations with Constant Coefficients

Homogeneous Equations with Constant Coefficients Homogeneous Equations with Constant Coefficients MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 General Second Order ODE Second order ODEs have the form

More information

Math 20D: Form B Final Exam Dec.11 (3:00pm-5:50pm), Show all of your work. No credit will be given for unsupported answers.

Math 20D: Form B Final Exam Dec.11 (3:00pm-5:50pm), Show all of your work. No credit will be given for unsupported answers. Turn off and put away your cell phone. No electronic devices during the exam. No books or other assistance during the exam. Show all of your work. No credit will be given for unsupported answers. Write

More information

Study guide - Math 220

Study guide - Math 220 Study guide - Math 220 November 28, 2012 1 Exam I 1.1 Linear Equations An equation is linear, if in the form y + p(t)y = q(t). Introducing the integrating factor µ(t) = e p(t)dt the solutions is then in

More information

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients?

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? 1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? Let y = ay b with y(0) = y 0 We can solve this as follows y =

More information

A: Brief Review of Ordinary Differential Equations

A: Brief Review of Ordinary Differential Equations A: Brief Review of Ordinary Differential Equations Because of Principle # 1 mentioned in the Opening Remarks section, you should review your notes from your ordinary differential equations (odes) course

More information

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t.

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t. Calculus IV - HW 3 Due 7/13 Section 3.1 1. Give the general solution to the following differential equations: a y 25y = 0 Solution: The characteristic equation is r 2 25 = r 5r + 5. It follows that the

More information

Homework 9 - Solutions. Math 2177, Lecturer: Alena Erchenko

Homework 9 - Solutions. Math 2177, Lecturer: Alena Erchenko Homework 9 - Solutions Math 2177, Lecturer: Alena Erchenko 1. Classify the following differential equations (order, determine if it is linear or nonlinear, if it is linear, then determine if it is homogeneous

More information

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC First Order Equations Linear Equations y + p(x)y = q(x) Write the equation in the standard form, Calculate

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Lecture Notes for Math 21: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Shawn D. Ryan Spring 2012 1 Complex Roots of the Characteristic Equation Last Time: We considered the

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

First and Second Order Differential Equations Lecture 4

First and Second Order Differential Equations Lecture 4 First and Second Order Differential Equations Lecture 4 Dibyajyoti Deb 4.1. Outline of Lecture The Existence and the Uniqueness Theorem Homogeneous Equations with Constant Coefficients 4.2. The Existence

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Questions Example (3.5.3) Find a general solution of the differential equation y 2y 3y = 3te

More information

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Solutions to Homework 5, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y 4y = 48t 3.

Solutions to Homework 5, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y 4y = 48t 3. Solutions to Homework 5, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 Problem 1. Find a particular solution to the differential equation 4y = 48t 3. Solution: First we

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

Chapter 3: Second Order Equations

Chapter 3: Second Order Equations Exam 2 Review This review sheet contains this cover page (a checklist of topics from Chapters 3). Following by all the review material posted pertaining to chapter 3 (all combined into one file). Chapter

More information

Nonhomogeneous Equations and Variation of Parameters

Nonhomogeneous Equations and Variation of Parameters Nonhomogeneous Equations Variation of Parameters June 17, 2016 1 Nonhomogeneous Equations 1.1 Review of First Order Equations If we look at a first order homogeneous constant coefficient ordinary differential

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Shawn D. Ryan Spring 2012 1 Repeated Roots of the Characteristic Equation and Reduction of Order Last Time:

More information

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS)

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS) Name: November 8, 011 Worksheet # : Higher Order Linear ODEs (SOLUTIONS) 1. A set of n-functions f 1, f,..., f n are linearly independent on an interval I if the only way that c 1 f 1 (t) + c f (t) +...

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

Linear Second Order ODEs

Linear Second Order ODEs Chapter 3 Linear Second Order ODEs In this chapter we study ODEs of the form (3.1) y + p(t)y + q(t)y = f(t), where p, q, and f are given functions. Since there are two derivatives, we might expect that

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. General framework

LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. General framework Differential Equations Grinshpan LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. We consider linear ODE of order n: General framework (1) x (n) (t) + P n 1 (t)x (n 1) (t) + + P 1 (t)x (t) + P 0 (t)x(t) = 0

More information

Partial proof: y = ϕ 1 (t) is a solution to y + p(t)y = 0 implies. Thus y = cϕ 1 (t) is a solution to y + p(t)y = 0 since

Partial proof: y = ϕ 1 (t) is a solution to y + p(t)y = 0 implies. Thus y = cϕ 1 (t) is a solution to y + p(t)y = 0 since Existence and Uniqueness for LINEAR DEs. Homogeneous: y (n) + p 1 (t)y (n 1) +...p n 1 (t)y + p n (t)y = 0 Non-homogeneous: g(t) 0 y (n) + p 1 (t)y (n 1) +...p n 1 (t)y + p n (t)y = g(t) 1st order LINEAR

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

A First Course in Elementary Differential Equations: Problems and Solutions. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations: Problems and Solutions. Marcel B. Finan Arkansas Tech University c All Rights Reserved A First Course in Elementary Differential Equations: Problems and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 4 The Method of Variation of Parameters Problem 4.1 Solve y

More information

Lecture 10 - Second order linear differential equations

Lecture 10 - Second order linear differential equations Lecture 10 - Second order linear differential equations In the first part of the course, we studied differential equations of the general form: = f(t, y) In other words, is equal to some expression involving

More information

Section 4.7: Variable-Coefficient Equations

Section 4.7: Variable-Coefficient Equations Cauchy-Euler Equations Section 4.7: Variable-Coefficient Equations Before concluding our study of second-order linear DE s, let us summarize what we ve done. In Sections 4.2 and 4.3 we showed how to find

More information

Second Order Linear Equations

Second Order Linear Equations Second Order Linear Equations Linear Equations The most general linear ordinary differential equation of order two has the form, a t y t b t y t c t y t f t. 1 We call this a linear equation because the

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I February 23, 2017 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

20D - Homework Assignment 5

20D - Homework Assignment 5 Brian Bowers TA for Hui Sun MATH D Homework Assignment 5 November 8, 3 D - Homework Assignment 5 First, I present the list of all matrix row operations. We use combinations of these steps to row reduce

More information

Lecture 17: Nonhomogeneous equations. 1 Undetermined coefficients method to find a particular

Lecture 17: Nonhomogeneous equations. 1 Undetermined coefficients method to find a particular Lecture 17: Nonhomogeneous equations 1 Undetermined coefficients method to find a particular solution The method of undetermined coefficients (sometimes referred to as the method of justicious guessing)

More information

Math 201 Lecture 08 Undetermined Coefficients

Math 201 Lecture 08 Undetermined Coefficients Math 201 Lecture 08 Undetermined Coefficients Jan. 25, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in the UA Custom edition, the second number

More information

1 Differential Equations

1 Differential Equations Reading [Simon], Chapter 24, p. 633-657. 1 Differential Equations 1.1 Definition and Examples A differential equation is an equation involving an unknown function (say y = y(t)) and one or more of its

More information

Nonhomogeneous Linear Equations: Variation of Parameters Professor David Levermore 17 October 2004 We now return to the discussion of the general case

Nonhomogeneous Linear Equations: Variation of Parameters Professor David Levermore 17 October 2004 We now return to the discussion of the general case Nonhomogeneous Linear Equations: Variation of Parameters Professor David Levermore 17 October 2004 We now return to the discussion of the general case L(t)y = a 0 (t)y + a 1 (t)y + a 2 (t)y = b(t). (1.1)

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Example. Mathematics 255: Lecture 17. Example. Example (cont d) Consider the equation. d 2 y dt 2 + dy

Example. Mathematics 255: Lecture 17. Example. Example (cont d) Consider the equation. d 2 y dt 2 + dy Mathematics 255: Lecture 17 Undetermined Coefficients Dan Sloughter Furman University October 10, 2008 6y = 5e 4t. so the general solution of 0 = r 2 + r 6 = (r + 3)(r 2), 6y = 0 y(t) = c 1 e 3t + c 2

More information

Section 3.1 Second Order Linear Homogeneous DEs with Constant Coefficients

Section 3.1 Second Order Linear Homogeneous DEs with Constant Coefficients Section 3. Second Order Linear Homogeneous DEs with Constant Coefficients Key Terms/ Ideas: Initial Value Problems Homogeneous DEs with Constant Coefficients Characteristic equation Linear DEs of second

More information

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22]

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] HW2 Solutions MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, 2013 Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] Section 3.1: 1, 2, 3, 9, 16, 18, 20, 23 Section 3.2: 1, 2,

More information

Section 2.4 Linear Equations

Section 2.4 Linear Equations Section 2.4 Linear Equations Key Terms: Linear equation Homogeneous linear equation Nonhomogeneous (inhomogeneous) linear equation Integrating factor General solution Variation of parameters A first-order

More information

Math 54. Selected Solutions for Week 10

Math 54. Selected Solutions for Week 10 Math 54. Selected Solutions for Week 10 Section 4.1 (Page 399) 9. Find a synchronous solution of the form A cos Ωt+B sin Ωt to the given forced oscillator equation using the method of Example 4 to solve

More information

Linear Independence and the Wronskian

Linear Independence and the Wronskian Linear Independence and the Wronskian MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Operator Notation Let functions p(t) and q(t) be continuous functions

More information

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition MATH 3860 REVIEW FOR FINAL EXAM The final exam will be comprehensive. It will cover materials from the following sections: 1.1-1.3; 2.1-2.2;2.4-2.6;3.1-3.7; 4.1-4.3;6.1-6.6; 7.1; 7.4-7.6; 7.8. The following

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page Questions Example (3.6.) Find a particular solution of the differential equation y 5y + 6y = 2e

More information

Math 23: Differential Equations (Winter 2017) Midterm Exam Solutions

Math 23: Differential Equations (Winter 2017) Midterm Exam Solutions Math 3: Differential Equations (Winter 017) Midterm Exam Solutions 1. [0 points] or FALSE? You do not need to justify your answer. (a) [3 points] Critical points or equilibrium points for a first order

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 1 JoungDong Kim Set 1: Section 1.1, 1.2, 1.3, 2.1 Chapter 1. Introduction 1. Why do we study Differential Equation? Many of the principles, or laws, underlying

More information

Theory of Higher-Order Linear Differential Equations

Theory of Higher-Order Linear Differential Equations Chapter 6 Theory of Higher-Order Linear Differential Equations 6.1 Basic Theory A linear differential equation of order n has the form a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x) = b(x), (6.1.1)

More information

3.5 Undetermined Coefficients

3.5 Undetermined Coefficients 3.5. UNDETERMINED COEFFICIENTS 153 11. t 2 y + ty + 4y = 0, y(1) = 3, y (1) = 4 12. t 2 y 4ty + 6y = 0, y(0) = 1, y (0) = 1 3.5 Undetermined Coefficients In this section and the next we consider the nonhomogeneous

More information

Fall 2001, AM33 Solution to hw7

Fall 2001, AM33 Solution to hw7 Fall 21, AM33 Solution to hw7 1. Section 3.4, problem 41 We are solving the ODE t 2 y +3ty +1.25y = Byproblem38x =logt turns this DE into a constant coefficient DE. x =logt t = e x dt dx = ex = t By the

More information

REVIEW NOTES FOR MATH 266

REVIEW NOTES FOR MATH 266 REVIEW NOTES FOR MATH 266 MELVIN LEOK 1.1: Some Basic Mathematical Models; Direction Fields 1. You should be able to match direction fields to differential equations. (see, for example, Problems 15-20).

More information

Lecture 16. Theory of Second Order Linear Homogeneous ODEs

Lecture 16. Theory of Second Order Linear Homogeneous ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 16. Theory of Second Order Linear Homogeneous ODEs February 17, 2012 Konstantin Zuev (USC) Math 245, Lecture 16 February 17, 2012 1 / 12 Agenda

More information

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Variable Coefficient Nonhomogeneous Case

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Variable Coefficient Nonhomogeneous Case HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Variable Coefficient Nonhomogeneous Case David Levermore Department of Mathematics University of Maryland 15 March 2009 Because the presentation

More information

Lecture 2. Classification of Differential Equations and Method of Integrating Factors

Lecture 2. Classification of Differential Equations and Method of Integrating Factors Math 245 - Mathematics of Physics and Engineering I Lecture 2. Classification of Differential Equations and Method of Integrating Factors January 11, 2012 Konstantin Zuev (USC) Math 245, Lecture 2 January

More information

EXAM 2 MARCH 17, 2004

EXAM 2 MARCH 17, 2004 8.034 EXAM MARCH 7, 004 Name: Problem : /30 Problem : /0 Problem 3: /5 Problem 4: /5 Total: /00 Instructions: Please write your name at the top of every page of the exam. The exam is closed book, closed

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November 6 2017 Name: Student ID Number: I understand it is against the rules to cheat or engage in other academic misconduct

More information

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Constant coefficients systems

Constant coefficients systems 5.3. 2 2 Constant coefficients systems Section Objective(s): Diagonalizable systems. Real Distinct Eigenvalues. Complex Eigenvalues. Non-Diagonalizable systems. 5.3.. Diagonalizable Systems. Remark: We

More information

Math 216 Second Midterm 16 November, 2017

Math 216 Second Midterm 16 November, 2017 Math 216 Second Midterm 16 November, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

93 Analytical solution of differential equations

93 Analytical solution of differential equations 1 93 Analytical solution of differential equations 1. Nonlinear differential equation The only kind of nonlinear differential equations that we solve analytically is the so-called separable differential

More information

Section 8.2 : Homogeneous Linear Systems

Section 8.2 : Homogeneous Linear Systems Section 8.2 : Homogeneous Linear Systems Review: Eigenvalues and Eigenvectors Let A be an n n matrix with constant real components a ij. An eigenvector of A is a nonzero n 1 column vector v such that Av

More information

III Second Order Linear ODEs

III Second Order Linear ODEs III Second Order Linear ODEs Boyce & DiPrima, Chapter 3 H.J.Eberl - MATH*2170 0 III Second Order Linear ODEs III.0 Problem Formulation and First Examples Boyce & DiPrima, Chapter 3.2 H.J.Eberl - MATH*2170

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS

MIDTERM 1 PRACTICE PROBLEM SOLUTIONS MIDTERM 1 PRACTICE PROBLEM SOLUTIONS Problem 1. Give an example of: (a) an ODE of the form y (t) = f(y) such that all solutions with y(0) > 0 satisfy y(t) = +. lim t + (b) an ODE of the form y (t) = f(y)

More information

Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 2011

Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 2011 Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 211 (1) [6] Give the interval of definition for the solution of the initial-value problem d 4 y dt 4 + 7 1 t 2 dy dt

More information

Higher Order Linear Equations

Higher Order Linear Equations C H A P T E R 4 Higher Order Linear Equations 4.1 1. The differential equation is in standard form. Its coefficients, as well as the function g(t) = t, are continuous everywhere. Hence solutions are valid

More information

Homework #6 Solutions

Homework #6 Solutions Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly

More information

IV Higher Order Linear ODEs

IV Higher Order Linear ODEs IV Higher Order Linear ODEs Boyce & DiPrima, Chapter 4 H.J.Eberl - MATH*2170 0 IV Higher Order Linear ODEs IV.1 General remarks Boyce & DiPrima, Section 4.1 H.J.Eberl - MATH*2170 1 Problem formulation

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

Lecture 8: Ordinary Differential Equations

Lecture 8: Ordinary Differential Equations MIT-WHOI Joint Program Summer Math Review Summer 2015 Lecture 8: Ordinary Differential Equations Lecturer: Isabela Le Bras Date: 31 July 2015 Disclaimer: These notes are for the purposes of this review

More information

Ordinary Differential Equation Theory

Ordinary Differential Equation Theory Part I Ordinary Differential Equation Theory 1 Introductory Theory An n th order ODE for y = y(t) has the form Usually it can be written F (t, y, y,.., y (n) ) = y (n) = f(t, y, y,.., y (n 1) ) (Implicit

More information

Math 201 Lecture 09: Undetermined Coefficient Cont.

Math 201 Lecture 09: Undetermined Coefficient Cont. +B Math 201 Lecture 09: Undetermined Coefficient Cont. Jan. 27, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in the UA Custom edition, the second

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is. Review for Final Exam. Monday /09, :45-:45pm in CC-403. Exam is cumulative, -4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no

More information

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination I February 25, 2016 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit

More information

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES. MAT9 - Calculus III - Fall 4 Solution for Term Test - November 6, 4 Time allotted: 9 minutes. Aids permitted: None. Full Name: Last First Student ID: Email: @mail.utoronto.ca Instructions DO NOT WRITE

More information

Linear algebra and differential equations (Math 54): Lecture 20

Linear algebra and differential equations (Math 54): Lecture 20 Linear algebra and differential equations (Math 54): Lecture 20 Vivek Shende April 7, 2016 Hello and welcome to class! Last time We started discussing differential equations. We found a complete set of

More information

MIDTERM REVIEW AND SAMPLE EXAM. Contents

MIDTERM REVIEW AND SAMPLE EXAM. Contents MIDTERM REVIEW AND SAMPLE EXAM Abstract These notes outline the material for the upcoming exam Note that the review is divided into the two main topics we have covered thus far, namely, ordinary differential

More information

GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS

GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS Given a constant coefficient linear differential equation a + by + cy = g(t), where g is an exponential, a simple sinusoidal function, a polynomial,

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

Exam 2, Solution 4. Jordan Paschke

Exam 2, Solution 4. Jordan Paschke Exam 2, Solution 4 Jordan Paschke Problem 4. Suppose that y 1 (t) = t and y 2 (t) = t 3 are solutions to the equation 3t 3 y t 2 y 6ty + 6y = 0, t > 0. ( ) Find the general solution of the above equation.

More information

Math K (24564) - Lectures 02

Math K (24564) - Lectures 02 Math 39100 K (24564) - Lectures 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Second Order Linear Equations, B & D Chapter 4 Second Order Linear Homogeneous

More information

Non-homogeneous equations (Sect. 3.6).

Non-homogeneous equations (Sect. 3.6). Non-homogeneous equations (Sect. 3.6). We study: y + p(t) y + q(t) y = f (t). Method of variation of parameters. Using the method in an example. The proof of the variation of parameter method. Using the

More information

Section 9.8 Higher Order Linear Equations

Section 9.8 Higher Order Linear Equations Section 9.8 Higher Order Linear Equations Key Terms: Higher order linear equations Equivalent linear systems for higher order equations Companion matrix Characteristic polynomial and equation A linear

More information