CAIN SIMULATION STUDIES FOR e? e? COLLISIONS. Department of Physics, University of Tennessee, Knoxville, TN 37996

Size: px
Start display at page:

Download "CAIN SIMULATION STUDIES FOR e? e? COLLISIONS. Department of Physics, University of Tennessee, Knoxville, TN 37996"

Transcription

1 CAIN SIMULATION STUDIES FOR e? e? COLLISIONS ACHIM W. WEIDEMANN y Department of Physics, University of Tennessee, Knoxville, TN Disruption eects in e? e? collisions at a future linear collider aect the attainable luminosity; the angular spread of the disrupted beam particles may present a background in a detector. In this paper, I present simulations of the beam-beam interaction with the simulation code CAIN of relevance for these questions. 1. Introduction In an e + e? collider such as the proposed Next Linear Collider, 1 (NLC) the mutual attraction of the opposite-charged beams leads to a self-focusing eect enhancing the obtained luminosity, whereas in e? e? collisions the mutual disruption of the beams will decrease the luminosity. Furthermore, the disrupted beam particles might scatter on masks and the elements of the exit beam line and thus introduce backgrounds in a detector. An introduction to disruption in e? e? collisions and its eect on the attainable luminosity have been given at a previous workshop; 2 here I present more detailed simulations using the particle-in-cell code CAIN 3 which since has become available. 2. Parameters and Method For this study of electron-positron collisions at at center-of-mass energies of 1.0 and 0.5 TeV I choose as beam parameters those proposed for `at' beams in the Next Linear Collider, 1 with parameters as shown in this table: NLC-IIa NLC-Ib Nom. CMS Energy (TeV) Beam Energy (GeV) Bunch charge (10 10 ) Horiz. beta function at IP x (mm) Vert. beta function at IP y (mm) Horiz. emittance at IP x (m? rad) 4 4 Vert. emittance at IP y (m? rad) x at IP (nm) y at IP (nm) z (m) Work supported by the U.S. Department of Energy under Contract DE{FG05{91ER y Mail Address: SLAC, MS 94, P.O.B. 4349, Stanford, CA

2 In this CAIN study, each beam is simulated by 5000 macroparticles, and the beam-beam elds calculated in a mesh of 64 by 64 bins. The beams are tracked from?2:5 z to +2:5 z in 200 steps. 3. Angular Distributions Figures 1 and 2 show the vertical and horizontal beam proles (top and bottom) at the beginning of tracking, as the beam pulses overlap maximally, and after the collision (left to right). (The apparent asymmetry in the middle top gure each is an artifact of the display, and not real); Figure 1 is for e + e? collisions, and Figure 2 for e? e? collisions, respectively, both for 500 GeV incoming beams. Fig. 1. Electron-positron collisions at 1 TeV. The upper row shows the vertical, the lower one the horizontal beam prole, (from left to right before and after collision). The horizontal scale of the plots is 1000, the vertical 250nm (y, top row) or 1000nm (x, bottom row). One can see, that the nal beam particle distributions are indeed more spread out in space, as expected. Figure 3 shows the angular distributions of the particles emerging after the collision. These distributions are of relevance to assess, if the spent beam can leave the interaction region without hitting any beam pipe, mask, or the face of the exit quadrupole. In both types of collisions, the distribution of spent beam particles in the less focused horizontal (x-)direction is fairly similar, cutting o at less than 500 rad; in the more focused vertical (y-)direction, the spent beam particle distribution cuts o at about 180 rad in the e + e? case, and at about 850 rad for e? e?. I also considered vertical osets between the two beams, as they might occur during a deection scan (widely used at the Stanford Linear collider). Such an oset will, of course, reduce the luminosity and increase the angular spread of the spent beam more in the case of like-charged beams. In the case of an oset of 1 y, the range of 286

3 Fig. 2. Electron-electron collisions at 1 TeV. The upper row shows the vertical, the lower one the horizontal beam prole. Fig. 3. Final-particle angle distribution. Top Row, e + e?, bottom row, e? e? collisions, both at 1 TeV. Left to right: Scatter plot of horizontal (X') and vertical (Y') angle (in rad), histogram of vertical (Y'), horizontal (X') angle. 287

4 nal-particle vertical angles increases up to about 350 rad for for e + e? and 1000 rad for e? e? collisions. (The luminosities decreased by about 10% and 60% from their values at head-on collisions.) For head-on collisions of 250 GeV beams, the vertical angle cuto similarly increases from about 230 rad for e + e? to 500 rad for e + e?, and are about the same, about 350 rad, in the horizontal direction. Considering that { as planned for NLC { the aperture of the exit quadrupole is two meters away and has an inner radius of 7.5 mm, one can conclude that the bulk of the spent beam even in e? e? collisions will still enter the exit quadrupole and leave the interaction region without causing a serious background problem in a detector. 4. Luminosities and Beamstrahlung Spectra One obvious consequence of the repulsion of like-sign beams and the resultant disruption is a lesser luminosity for e? e? collisions. This CAIN simulation nds that the e? e? -luminosity is reduced by a factor of 3 for 500 GeV beams, and by a factor of 2.7 for 250 GeV beams compared to the e + e? luminosity, for the at beams whose parameters are given above. It might well be possible to enhance the e? e? luminosity by considering dierent beam parameters, for example round beams, or beams of dierent bunch length, but in this study I focus on the properties of e? e? collisions in the NLC interaction region as designed for e + e? collisions. Only a fraction of actual collisions will occur at the nominal center-of-mass energy of a NLC. Among the factors producing a spread in the energy distribution of the luminosity are the spread in the delivered beam energy (as produced by the machine lattice, expected to be a 0.5% eect at NLC), initial-state radiation, which is an irreducible eect and has to be accounted for in any physics analysis (leading to an energy loss of about 5% average, 12% r.m.s at the NLC), and beamstrahlung. Beamstrahlung is emitted as one bunch of beam particles passes through the electromagnetic eld of the counter-moving bunch, and will be only be considered here, as it might in principle be dierent for e + e? and e? e? collisions. In collisions of opposite-charged particles, the particles move to the core of the beam and therefore experience the weaker elds there, whereas the particles in e? e? collisions move outwards where they experience a larger eld strength. This CAIN simulation however nds that in both cases a similar number of beamstrahlung photons are emitted (1.6 photons per electron/positron at 1 TeV center-of-mass energy, 0.96 at 0.5 TeV). The fairly similar beamstrahlung spectra from this CAIN simulation are shown in Fig. 4. The luminosity spectra including beamstrahlung are shown in Fig. 5, for e + e? and e? e? collisions as well as those of beamstrahlung photons with electrons or positrons, and beamstrahlung with beamstrahlung photons. The latter two spectra are of relevance for calculations of detector backgrounds, such as e + e? pairs created by Bethe-Heitler (e! e e + e? ) and Breit-Wheeler (! e + e? ) processes, or hadrons (`minijets') from two-photon scattering. While 288

5 Fig. 4. Beamstrahlung spectra. Top Row, e + e?, bottom row, e? e? collisions, left column at 1 TeV, right, at 0.5 TeV CMS energy. Fig. 5. Luminosity spectra. Top Row, e + e?, bottom row, e? e? collisions, both at 1 TeV. Left to right: Spectra of e + e? (e? e? ), e?, and? Luminosities (per 10 GeV bin). 289

6 the rst two processes are included in CAIN, they were not considered in the present study. However, that the spectra are fairly similar for e + e? and e? e? collisions assures us that there is no obvious large dierence in the expected rates for these backgrounds. 5. Conclusions In this paper, I considered some particle distributions of interest for background studies and compared them for e + e? and e? e? collisions, using the same beam parameters in both cases. While the increased disruption eects in e? e? collisions are certainly noticeable, and cause both a a loss of luminosity compared to e + e? collisions and a wider spread of spent-beam particles, these eects are not so large as to make it signicantly more dicult to operate a NLC in a e? e? collision mode, even if no steps are taken to change the interaction region and machine lattice from that currently optimized for e + e? collisions. Acknowledgments I thank Clemens Heusch and Nora Rogers for organizing a stimulating and enjoyable workshop on the physics of e? e? collisions, which gave rise to this study. References 1. Zeroth-Order Design Report for the Next Linear Collider, SLAC Report 474, LBNL- PUB-5425, UCRL-ID (1996). 2. P. Chen, A. Spitkovsky, A.W. Weidemann, Int. J. Mod. Phys. A, 11, 1687 (1996). 3. The CAIN code and a manual, written by K. Yokoya, can be obtained at It supersedes and enhances the previously used program, ABEL, described in K. Yokoya, KEK-Report-85-9 (1985). 290

Positron. Damping. Ring. Access. Dump. Bypass. Transfer Line. Positron. Pre damping. Ring. 100 m

Positron. Damping. Ring. Access. Dump. Bypass. Transfer Line. Positron. Pre damping. Ring. 100 m ELECTRON-ELECTRON LUMINOSITY IN THE NEXT LINEAR COLLIDER A PRELIMINARY STUDY F. ZIMMERMANN, K.A. THOMPSON and R.H. HELM Stanford Linear Accelerator Center, Stanford University, CA 94309 In this paper,

More information

Positron. Damping. Ring. Access. Dump. Bypass. Transfer Line. Positron. Pre damping. Ring. 100 m

Positron. Damping. Ring. Access. Dump. Bypass. Transfer Line. Positron. Pre damping. Ring. 100 m SLAC{PUB{7711 November 1997 Electron-Electron Luminosity in the Next Linear Collider A Preliminary Study F. Zimmermann, K.A. Thompson and R.H. Helm Stanford Linear Accelerator Center, Stanford University,

More information

Simulation of Laser-Compton cooling of electron beams for future linear colliders. Abstract

Simulation of Laser-Compton cooling of electron beams for future linear colliders. Abstract Simulation of Laser-Compton cooling of electron beams for future linear colliders T. Ohgaki Lawrence Berkeley National Laboratory Berkeley, California 94720, USA and Venture Business Laboratory, Hiroshima

More information

Monochromatization Option for NLC Collisions

Monochromatization Option for NLC Collisions LCC-0134 SLAC-TN-04-003 February 19, 2004 Linear Collider Collaboration Tech Notes Monochromatization Option for NLC Collisions Andrei Seryi, Tor Raubenheimer Stanford Linear Accelerator Center Stanford

More information

BEAM-BEAM SIMULATIONS WITH GUINEA-PIG

BEAM-BEAM SIMULATIONS WITH GUINEA-PIG BEAM-BEAM SIMULATIONS WITH GUINEA-PIG D. Schulte, CERN, CH-1211 Geneva 23,Switzerland Abstract While the bunches in a linear collider cross once only, due to their small size they experience a strong beam-beam

More information

Study of Alternative Optics for the NLC Prelinac Collimation section

Study of Alternative Optics for the NLC Prelinac Collimation section LCC 0057 03/01 Linear Collider Collaboration Tech Notes Study of Alternative Optics for the NLC Prelinac Collimation section March 2001 Yuri Nosochkov, Pantaleo Raimondi, Tor Raubenheimer Stanford Linear

More information

Presented at the 5th International Linear Collider Workshop (LCWS 2000), Oct 24-28, 2000, Batavia, IL

Presented at the 5th International Linear Collider Workshop (LCWS 2000), Oct 24-28, 2000, Batavia, IL SLAC-PUB-10800 New NLC Final Focus Pantaleo Raimondi and Andrei Seryi Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 USA Abstract. A novel design of the Final Focus

More information

CAIN: Conglom6rat d ABEL et d Interactions Non-Lin6aires*

CAIN: Conglom6rat d ABEL et d Interactions Non-Lin6aires* SLAC-PUB-6583 July 1994 (A/E) CAN: Conglom6rat d ABEL et d nteractions Non-Lin6aires* P Chen, G Horton-Smith Stanjord Linear Accelerator Center, Stanford university, Stanford, CA 9~309 T Ohgaki Department

More information

Beam-beam Effects in Linear Colliders

Beam-beam Effects in Linear Colliders Beam-beam Effects in Linear Colliders Daniel Schulte D. Schulte Beam-beam effects in Linear Colliders 1 Generic Linear Collider Single pass poses luminosity challenge Low emittances are produced in the

More information

Interaction Regions with Increased Low-Betas. for a 2-TeV Muon Collider. Carol Johnstone, King-Yuen Ng

Interaction Regions with Increased Low-Betas. for a 2-TeV Muon Collider. Carol Johnstone, King-Yuen Ng Interaction Regions with Increased Low-Betas for a 2-TeV Muon Collider Carol Johnstone, King-Yuen Ng Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 Dejan Trbojevic Brookhaven National

More information

IPBI-TN June 30, 2004

IPBI-TN June 30, 2004 Spray Electron Beam for Tests of Linear Collider Forward Calorimeter Detectors in SLAC End Station A R. Arnold UMass Amherst, Amherst MA 01003 T. Fieguth Stanford Linear Accelerator Center Menlo Park,

More information

SLAC-PUB Work supported by the Department of Energy, contracts DE-

SLAC-PUB Work supported by the Department of Energy, contracts DE- Ion Eects in Future Circular and Linear Accelerators T. O. Raubenheimer Stanford Linear Accelerator Center, Stanford University, Stanford, CA, 9439 SLAC-PUB-95-6847 Work supported by Department of Energy

More information

Switch Parallel Beamlines. Resonant Storage Cavity

Switch Parallel Beamlines. Resonant Storage Cavity SLAC{PUB{7741 January 1998 Final-Focus System and Collision Schemes for a 5-TeV W-Band Linear Collider F. Zimmermann and D.H. Whittum Stanford Linear Accelerator Center, Stanford University, California

More information

Preliminary Design of m + m - Higgs Factory Machine-Detector Interface

Preliminary Design of m + m - Higgs Factory Machine-Detector Interface Fermilab Accelerator Physics Center Preliminary Design of m + m - Higgs Factory Machine-Detector Interface Nikolai Mokhov Y. Alexahin, V. Kashikhin, S. Striganov, I. Tropin, A. Zlobin Fermilab Higgs Factory

More information

3.5 / E [%] σ E s [km]

3.5 / E [%] σ E s [km] ZDR - Simulation Studies of the NLC Main Linacs R. Assmann, C. Adolphsen, K. Bane, K. Thompson, T. O. Raubenheimer Stanford Linear Accelerator Center, Stanford, California 9439 May 1996 Abstract This study

More information

A NOTE ON THE RELATIONSHIP BETWEEN THE EMITTANCE, THE BETA FUNCTION AND THE ENERGY IN A LINEAR COLLIDER

A NOTE ON THE RELATIONSHIP BETWEEN THE EMITTANCE, THE BETA FUNCTION AND THE ENERGY IN A LINEAR COLLIDER SLAC/AP-54 November 1986 (A?) A NOTE ON THE RELATIONSHIP BETWEEN THE EMITTANCE, THE BETA FUNCTION AND THE ENERGY IN A LINEAR COLLIDER JOHN REES Stanford Linear Accelerator Center Stanford University, Stanford,

More information

SBF Accelerator Principles

SBF Accelerator Principles SBF Accelerator Principles John Seeman SLAC Frascati Workshop November 11, 2005 Topics The Collision Point Design constraints going backwards Design constraints going forward Parameter relations Luminosity

More information

Quantum Suppression of Beamstrahlung for Future Linear Colliders

Quantum Suppression of Beamstrahlung for Future Linear Colliders LBNL-42092 ORATORY Quantum Suppression of Beamstrahlung for Future Linear Colliders Ming Xie Accelerator and Fusion Research Division June 1998 Presented at the 1998 European Particle Accelerator Conference,

More information

Note. Performance limitations of circular colliders: head-on collisions

Note. Performance limitations of circular colliders: head-on collisions 2014-08-28 m.koratzinos@cern.ch Note Performance limitations of circular colliders: head-on collisions M. Koratzinos University of Geneva, Switzerland Keywords: luminosity, circular, collider, optimization,

More information

Beam loss background and collimator design in CEPC double ring scheme

Beam loss background and collimator design in CEPC double ring scheme Beam loss background and collimator design in CEPC double ring scheme Sha Bai 9 th International Particle Accelerator Conference (IPAC 18), Vancouver, Canada, Apr 29-May 4, 2018. 2018-05-01 Outline Introduction

More information

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b LCLS{TN{98{2 March 1998 SLAC/AP{109 November 1997 Ion Eects in the LCLS Undulator 1 Frank Zimmermann Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Abstract I calculate the

More information

2 Closed Orbit Distortions A dipole kick j at position j produces a closed orbit displacement u i at position i given by q i j u i = 2 sin Q cos(j i ;

2 Closed Orbit Distortions A dipole kick j at position j produces a closed orbit displacement u i at position i given by q i j u i = 2 sin Q cos(j i ; LHC Project Note 4 March 2, 998 Jorg.Wenninger@cern.ch Quadrupole Alignment and Closed Orbits at LEP : a Test Ground for LHC J. Wenninger Keywords: CLOSED-ORBIT ALIGNMENT CORRECTORS Summary A statistical

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Linear Collider Beam Instrumentation Overview

Linear Collider Beam Instrumentation Overview Linear Collider Beam Instrumentation Overview Linear Collider R&D Opportunities Workshop May 31 st, 2002 SLAC Eric Torrence* University of Oregon *with M.Woods and D.Cinabro BI Overview Beam Energy Polarization

More information

A Photon Collider Experiment based on SLC

A Photon Collider Experiment based on SLC A Photon Collider Experiment based on SLC This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract

More information

Since the beam from the JNC linac is a very high current, low energy beam, energy loss induced in the material irradiated by the beam becomes very lar

Since the beam from the JNC linac is a very high current, low energy beam, energy loss induced in the material irradiated by the beam becomes very lar Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.255-263 Beam Dump for High Current Electron Beam at JNC H. Takei and Y. Takeda 1 Japan

More information

Colliders and the Machine Detector Interface

Colliders and the Machine Detector Interface Colliders and the Machine Detector Interface M. Sullivan SLAC National Accelerator Laboratory for the Hong Kong University of Science and Technology Jockey Club Institute for Advanced Study High Energy

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

Study of Pair-Monitor for ILC using Deep Learning

Study of Pair-Monitor for ILC using Deep Learning Study of Pair-Monitor for ILC using Deep Learning Yosuke Kobayashi Hitoshi Yamamoto, Tomoyuki Sanuki, Ryo Yonamine Tohoku University RCNP Project "Application of deep learning to accelerator experiments"

More information

Upstream Polarimetry with 4-Magnet Chicane

Upstream Polarimetry with 4-Magnet Chicane 2005 International Linear Collider Workshop Stanford, U.S.A. Upstream Polarimetry with 4-Magnet Chicane N. Meyners, V. Gharibyan, K.P. Schüler DESY, Hamburg, Germany We have extended an earlier polarimeter

More information

Simulation of PEP-II Accelerator Backgrounds Using TURTLE

Simulation of PEP-II Accelerator Backgrounds Using TURTLE Simulation of PEP-II Accelerator Backgrounds Using TURTLE R.J. Barlow, T. Fieguth, W. Kozanecki, S.A. Majewski, P. Roudeau, A. Stocchi To cite this version: R.J. Barlow, T. Fieguth, W. Kozanecki, S.A.

More information

Forward Region, Energy Spectrometer, Polarimeter. Snowmass Klaus Mönig

Forward Region, Energy Spectrometer, Polarimeter. Snowmass Klaus Mönig Forward Region, Energy Spectrometer, Polarimeter Klaus Mönig Snowmass 2005 1 Klaus Mönig MDI questions related to this talk 9) Is a 2 mrad crossing angle sufficiently small that it does not significantly

More information

Simulation of Laser-wires at CLIC using BDSIM

Simulation of Laser-wires at CLIC using BDSIM Simulation of Laser-wires at CLIC using BDSIM Grahame A. Blair, Royal Holloway Univ of London, UK. Abstract A laserwire system within the CLIC beam delivery system is simulated using Geant4. The issues

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Simulation of the ILC Collimation System using BDSIM, MARS15 and STRUCT

Simulation of the ILC Collimation System using BDSIM, MARS15 and STRUCT Simulation of the ILC Collimation System using BDSIM, MARS5 and STRUCT J. Carter, I. Agapov, G. A. Blair, L. Deacon, A. I. Drozhdin, N. V. Mokhov, Y. Nosochkov, A. Seryi August, 006 Abstract The simulation

More information

Compensation of the effects of a detector solenoid on the vertical beam orbit in a linear collider

Compensation of the effects of a detector solenoid on the vertical beam orbit in a linear collider PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 411 (25) Compensation of the effects of a detector solenoid on the vertical beam orbit in a linear collider Brett Parker* Brookhaven National

More information

Interaction Region Designs for Electron Colliders

Interaction Region Designs for Electron Colliders Interaction Region Designs for Electron Colliders M. Sullivan SLAC National Accelerator Laboratory 1 A Brief History of e+e- Colliders and Backgrounds The very first e+e- collider was AdA made here at

More information

Results from BABAR/PEP-II - One Year of Operations

Results from BABAR/PEP-II - One Year of Operations SLAC-PUB-9158 March 22 Results from /PEP-II - One Year of Operations Paul C. Bloom Representing the Collaboration Presented at the 4th International Conference on Hyperons, Charm and Beauty Hadrons, 6/27/2

More information

SLAC{PUB{7776 October 1998 Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the De

SLAC{PUB{7776 October 1998 Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the De SLAC{PUB{7776 October 1998 Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the Deep Quantum Regime Kathleen A. Thompson and Pisin Chen

More information

Higgs Factory Magnet Protection and Machine-Detector Interface

Higgs Factory Magnet Protection and Machine-Detector Interface Higgs Factory Magnet Protection and Machine-Detector Interface Nikolai Mokhov Fermilab MAP Spring Workshop May 27-31, 2014 Outline MDI Efforts Building Higgs Factory Collider, Detector and MDI Unified

More information

Stathes D. Paganis Nevis Laboratories, Columbia University, Irvington NY, 10533, USA (On behalf of the ZEUS Collaboration)

Stathes D. Paganis Nevis Laboratories, Columbia University, Irvington NY, 10533, USA (On behalf of the ZEUS Collaboration) Frascati Physics Series Vol. nnn (2001), pp. 000-000 IX Int. Conf. on Calorimetry in Part. Phys. - Annecy, Oct. 9-14, 2000 A LUMINOSITY SPECTROMETER FOR THE ZEUS EXPERIMENT AT HERA Stathes D. Paganis Nevis

More information

OBTAINING SLOW BEAM SPILLS AT THE SSC COLLIDER D. Ritson Stanford Linear Accelerator Stanford, CA 94309

OBTAINING SLOW BEAM SPILLS AT THE SSC COLLIDER D. Ritson Stanford Linear Accelerator Stanford, CA 94309 I : SLAC-PUB-6332 August 1993 (A) OBTAINING SLOW BEAM SPILLS AT THE SSC COLLIDER D. Ritson Stanford Linear Accelerator Stanford CA 94309 Center 1. INTRODUCTION There is substantial interest in providing

More information

Overview on Compton Polarimetry

Overview on Compton Polarimetry General Issues O spin motion & alignment tolerances O beam-beam effects & upstream vs. Downstream Compton Polarimetry Basics O beam parameters & Compton detection methods O kinematics, cross sections &

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

SLAC-PUB-5205 April 1990 (I/A) DETECTOR BACKGROUND CONDITIONS AT LINEAR COLLIDERS*

SLAC-PUB-5205 April 1990 (I/A) DETECTOR BACKGROUND CONDITIONS AT LINEAR COLLIDERS* SLAC-PUB-5205 April 1990 (I/A) DETECTOR BACKGROUND CONDITIONS AT LINEAR COLLIDERS* R. JACOBSEN, H. BAND, T. BARKLOW, D. BURKE, D. COUPAL, H. DeSTAEBLER, F. DYDAK,l G. FELDMAN, S. HERTZBACH, R. KOFLER,

More information

SLAC-PUB-7409 First Observations of a Fast Beam-Ion Instability

SLAC-PUB-7409 First Observations of a Fast Beam-Ion Instability SLAC-PUB-749 First Observations of a Fast Beam-Ion Instability Stanford Linear Accelerator Center, Stanford University, Stanford, CA 9439 Work supported by Department of Energy contract DE AC3 76SF515.

More information

Gas Chamber. (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF

Gas Chamber. (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF HERMES 97-34 Performance of the HERMES Micro-Strip Gas Chamber J.J. van Hunen 1 (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF Postbus 41882, 19 DB Amsterdam,

More information

1 Introduction The SLAC B Factory asymmetric B-factories was approved by President Clinton in October B-factories The inaugural meeting of the d

1 Introduction The SLAC B Factory asymmetric B-factories was approved by President Clinton in October B-factories The inaugural meeting of the d SLAC-PUB-8459 hep-ex/0006012 May 2000 Status of PEP-II and BaBar J. Dorfan Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 Invited talk presented at 19th International

More information

Machine Detector Interface at Electron Colliders. Hongbo Zhu (IHEP, Beijing)

Machine Detector Interface at Electron Colliders. Hongbo Zhu (IHEP, Beijing) Machine Detector Interface at Electron Colliders Hongbo Zhu (IHEP, Beijing) Outline Introduction Interaction Regions Single ring, pretzel scheme, head-on collision Radiation Backgrounds Final Focusing

More information

Fermilab FERMILAB-Conf-00/342-E CDF January 2001

Fermilab FERMILAB-Conf-00/342-E CDF January 2001 Fermilab FERMILAB-Conf-00/342-E CDF January 2001 CDF/ANAL/JET/PUBLIC/5507 December 21, 2000 Frascati Physics Series Vol. nnn (2001), pp. 000-000 IX Int. Conf. on Calorimetry in Part. Phys. - Annecy, Oct.

More information

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 *

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * SLAC PUB 17366 December 2018 DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * Y. Cai, R. De Maria, M. Giovannozzi, Y. Nosochkov, F.F. Van der Veken ;1 CERN, CH-1211 Geneva 23, Switzerland SLAC National Accelerator

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

3.5 perpendicular incidence (0 degree) incidence at 60 degree

3.5 perpendicular incidence (0 degree) incidence at 60 degree EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 95 A Simulation Study of Electron-Cloud Instability and Beam-Induced

More information

> 12 GeV. (a) Value 43% 7-12 GeV 11% 13% 11% 9% 8% (b) Uncertainty. narrow resonan ces 14% 31% 11% ρ 25%

> 12 GeV. (a) Value 43% 7-12 GeV 11% 13% 11% 9% 8% (b) Uncertainty. narrow resonan ces 14% 31% 11% ρ 25% Measurement of R Between 2-5 GeV Derrick Kong University of Hawaii We have obtained measurements of the total cross section for e + e? annihilation into hadronic nal states for 6 energy points (2.6, 3.2,

More information

Aperture Measurements and Implications

Aperture Measurements and Implications Aperture Measurements and Implications H. Burkhardt, SL Division, CERN, Geneva, Switzerland Abstract Within short time, the 2/90 optics allowed to reach similar luminosity performance as the 90/60 optics,

More information

V.M. Tsakanov. 1 Introduction 2. 2 The smoothly curved orbit (CDR) 3. 3 The TESLA high luminosity Trajectory correction 18.

V.M. Tsakanov. 1 Introduction 2. 2 The smoothly curved orbit (CDR) 3. 3 The TESLA high luminosity Trajectory correction 18. Beam Dynamics Study for TESLA with the Integrated FEL V.M. Tsakanov Yerevan Physics Institute, Alikhanian Br. 2, 37536 Yerevan, Armenia Contents 1 Introduction 2 2 The smoothly curved orbit (CDR) 3 2.1

More information

GG6 summary. Valery Telnov Snowmass, Aug.19, 2005,

GG6 summary. Valery Telnov Snowmass, Aug.19, 2005, GG6 summary Valery Telnov Snowmass, Aug.19, 2005, Goal of the Global Group GG6 GG6, Options: Understand requirements and configurational issues related to possible alternatives to e+e- collisions, including

More information

High-Energy Detector Backgrounds from a Plasma Lens*

High-Energy Detector Backgrounds from a Plasma Lens* High-Energy Detector Backgrounds from a Plasma Lens* P Chen, C-K, Ng Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 and A W Weidemannt University of Tennessee, Knoxville, TN

More information

Luminosity Calculation From Known Beam Functions

Luminosity Calculation From Known Beam Functions Luminosity Calculation From Known Beam Functions Galekhutle Marang Electrical Engineering, Wayne State University, Detroit,MI, 48202 (Dated: August 16, 2003) Luminosity is a measure of the rate of collisions

More information

A Two-Stage Bunch Compressor Option for the US Cold LC

A Two-Stage Bunch Compressor Option for the US Cold LC LCC-0151 SLAC-TN-0-048 June 2004 Linear Collider Collaboration Tech Notes A Two-Stage Bunch Compressor Option for the US Cold LC Abstract This note documents a set of expressions used to explore the issue

More information

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY B. SURROW Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA E-mail: surrow@mit.edu

More information

Photon Colliders at Multi-TeV Energies

Photon Colliders at Multi-TeV Energies Photon Colliders at Multi-TeV Energies Valery Telnov Institute of Nuclear Physics, 630090 Novosibirsk, Russia High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light are

More information

PARTICLE ACCELERATORS

PARTICLE ACCELERATORS VISUAL PHYSICS ONLINE PARTICLE ACCELERATORS Particle accelerators are used to accelerate elementary particles to very high energies for: Production of radioisotopes Probing the structure of matter There

More information

Polarised Geant4 Applications at the ILC

Polarised Geant4 Applications at the ILC Polarised Geant4 Applications at the ILC Andreas Schälicke, Karim Laihem 2 and Pavel Starovoitov - DESY Platanenallee 6, 578 Zeuthen - Germany 2- RWTH Aachen - Phys. Inst. IIIB Physikzentrum, 5256 Aachen-

More information

Report from the Luminosity Working Group of the International Linear Collider Technical Review Committee (ILC-TRC) Chairman: Greg Loew

Report from the Luminosity Working Group of the International Linear Collider Technical Review Committee (ILC-TRC) Chairman: Greg Loew Report from the Luminosity Working Group of the International Linear Collider Technical Review Committee (ILC-TRC) Chairman: Greg Loew The ILC-TRC was originally constituted in 1994 and produced a report

More information

Electron Cloud Studies for KEKB and ATF KEK, May 17 May 30, 2003

Electron Cloud Studies for KEKB and ATF KEK, May 17 May 30, 2003 Electron Cloud Studies for KEKB and ATF KEK, May 17 May 3, 23 F. Zimmermann April 12, 23 Abstract I describe a few recent electron-cloud simulations for KEKB and the ATF. For KEKB the dependence of the

More information

Advantages of axially aligned crystals used in positron production at future linear colliders

Advantages of axially aligned crystals used in positron production at future linear colliders PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 091003 (2003) Advantages of axially aligned crystals used in positron production at future linear colliders X. Artru, 1 R. Chehab, 2 M.

More information

HADRONIZATION IN A NUCLEAR ENVIRONMENT. Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF

HADRONIZATION IN A NUCLEAR ENVIRONMENT. Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF 98 7 HADRONIZATION IN A NUCLEAR ENVIRONMENT J. J. VAN HUNEN (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF Postbus 41882, 1009 DB Amsterdam, The Netherlands

More information

Spin Dynamics at the NLC

Spin Dynamics at the NLC BI TN-2004-3 Revision 0: June 1, 2004 Spin Dynamics at the NLC Ken Moffeit and Mike Woods SLAC Abstract This note describes spin transport and depolarization effects at the NLC. We also discuss the difference

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

INTRA-BEAM SCATTERING, IMPEDANCE, AND INSTABILITIES IN ULTIMATE STORAGE RINGS

INTRA-BEAM SCATTERING, IMPEDANCE, AND INSTABILITIES IN ULTIMATE STORAGE RINGS SLAC-PUB-489 March 0 INTRA-BEAM SCATTERING, IMPEDANCE, AND INSTABILITIES IN ULTIMATE STORAGE RINGS K.L.F. Bane, SLAC National Accelerator Laboratory, Stanford, CA 94309, USA Presented at the ICFA Workshop

More information

Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment

Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment Camilla Vittori Department of Physics, University of Bologna, Italy Summer Student Program 2014 Supervisor

More information

LEP-style counting in luminosity measurement at CepC

LEP-style counting in luminosity measurement at CepC LEP-style counting in luminosity measurement at CepC S. Luki Vin a institute of nuclear sciences, University of Belgrade Lumical meeting, online, Sep. 29, 2017 S. Luki, Lumical meeting, online, Sep. 29,

More information

Beam-beam effects. (an introduction) Werner Herr CERN, AB Department. (/afs/ictp/home/w/wfherr/public/cas/doc/beambeam.pdf)

Beam-beam effects. (an introduction) Werner Herr CERN, AB Department. (/afs/ictp/home/w/wfherr/public/cas/doc/beambeam.pdf) Beam-beam effects (an introduction) Werner Herr CERN, AB Department (/afs/ictp/home/w/wfherr/public/cas/doc/beambeam.pdf) (http://cern.ch/lhc-beam-beam/talks/trieste beambeam.pdf) Werner Herr, beam-beam

More information

Magnet Modelling and its Various Uses at SLAC

Magnet Modelling and its Various Uses at SLAC Magnet Modelling and its Various Uses at SLAC Informal presentation by Cherrill Spencer, SLAC s Magnet Engineer, to the Mini- Workshop on Magnet Simulations for Particle Accelerators at PAC05. 18th May

More information

The International Linear Collider. Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06

The International Linear Collider. Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06 The International Linear Collider Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06 Why e + e - Collisions? elementary particles well-defined energy, angular momentum uses full COM energy produces

More information

Implementation of Round Colliding Beams Concept at VEPP-2000

Implementation of Round Colliding Beams Concept at VEPP-2000 Implementation of Round Colliding Beams Concept at VEPP-2000 Dmitry Shwartz BINP, Novosibirsk Oct 28, 2016 JAI, Oxford Introduction Beam-Beam Effects 2 e Interaction Points (IP) Circular colliders e Different

More information

Asymmetry. Energy imbalance. Asymmetry. Number of tracks

Asymmetry. Energy imbalance. Asymmetry. Number of tracks 5.3 Background sources and asymmetries In the early SLD runs, when a purely calorimetric event selection procedure was used, beam/machine related noise represented a major contribution to the A LR background.

More information

The HERA ep Interaction Regions Learned Lessons

The HERA ep Interaction Regions Learned Lessons The HERA ep Interaction Regions Learned Lessons Uwe Schneekloth DESY Electron-Ion Collider Workshop Hampton University May 2008 Outline HERA Overview HERA I interaction region HERA II interaction region

More information

Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler

Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler LCC 0038 29/04/00 CBP Tech Note - 234 Linear Collider Collaboration Tech Notes Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler 29 April 2000 17 J. Corlett and S. Marks Lawrence

More information

Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture

Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture WEOAB2 Luis Medina1,2, R. Toma s2, J. Barranco3, X. Buffat1, Y. Papaphilippou1, T. Pieloni3 1 Universidad de Guanajuato,

More information

arxiv: v1 [physics.acc-ph] 18 Dec 2013

arxiv: v1 [physics.acc-ph] 18 Dec 2013 BEAM-BEAM COMPENSATION STUDIES IN THE TEVATRON WITH ELECTRON LENSES Giulio Stancari and Alexander Valishev Fermi National Accelerator Laboratory, Batavia, IL 60150, USA arxiv:1312.5006v1 [physics.acc-ph]

More information

COLLIMATION SYSTEMS IN THE NEXT LINEAR COLLIDER* N. MERMINGA, J. IRWIN, R. HELM, and R. D. RUTH

COLLIMATION SYSTEMS IN THE NEXT LINEAR COLLIDER* N. MERMINGA, J. IRWIN, R. HELM, and R. D. RUTH COLLIMATION SYSTEMS IN THE NEXT LINEAR COLLIDER* N. MERMINGA, J. IRWIN, R. HELM, and R. D. RUTH Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 SLAC-PUB-5436 February 1991 (A)

More information

Observation of Plasma Focusing of a 28.5 GeV Positron Beam

Observation of Plasma Focusing of a 28.5 GeV Positron Beam SLAC-PUB-8975 Observation of Plasma Focusing of a 28.5 GeV Positron Beam J.S.T. Ng 1,P.Chen 1,H.Baldis 2a,P.Bolton 2b,D.Cline 3,W.Craddock 1,C.Crawford 4, F.J. Decker 1, C. Field 1, Y. Fukui 3,V.Kumar

More information

Search for a Z at an e + e - Collider Thomas Walker

Search for a Z at an e + e - Collider Thomas Walker Search for a Z at an e + e - Collider Thomas Walker Significance: Many theories predict that another neutral gauge boson (Z ) may exist. In order to detect this Z, I would use an e + e - linear collider

More information

Simulation Studies for a Polarimeter at the International Linear Collider (ILC)

Simulation Studies for a Polarimeter at the International Linear Collider (ILC) Project Report Summer Student Program 2007 Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany Simulation Studies for a Polarimeter at the International Linear Collider (ILC) Moritz Beckmann Leibniz

More information

- he [I+ P,P,A (~%)l,

- he [I+ P,P,A (~%)l, c SLAC-PUB-6026 December 1992 (A/E) The Compton Polarimeter for SLC* The SLD Collaboration Stanford Linear Accelerator Center, Stanford, CA 94309 represented by Michael J. Fero Massachusetts Institute

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION CERN-SL-2000-070 CLIC Note 463 AP Multi-TeV CLIC Photon Collider Option H. Burkhardt Considerations for an option of γγ collisions at multi-tev

More information

Instrumentation of the Very Forward Region of a Linear Collider Detector. Wolfgang Lohmann, DESY

Instrumentation of the Very Forward Region of a Linear Collider Detector. Wolfgang Lohmann, DESY Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY August 2005 Snowmass Workshop Used by H. Yamamoto Simulation studies on several designs Design for 0-2 mrad

More information

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING Qun Fan & Arie Bodek Department of Physics and Astronomy University of Rochester Rochester,

More information

σ ε ω 1 /σ ω ε α=ω 2 /ω 1

σ ε ω 1 /σ ω ε α=ω 2 /ω 1 The measurement line at the Antiproton Decelerator Ulrik Mikkelsen Institute for Storage Ring Facilities, ISA, University of Aarhus, DK{8000 Aarhus C, Denmark and PS-CA, CERN, CH-1211 Geneva 23, Switzerland

More information

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan.

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan. CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan. 22-25, 2018 CEPC Parameters Y. Zhang, CEPC conference Nov. 2017, IHEP

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Rough Layout and Rate Estimate for Beam Test in SLAC ESA

Rough Layout and Rate Estimate for Beam Test in SLAC ESA Rough Layout and Rate Estimate for Beam Test in SLAC ESA IPBI-TN-2004-7 July 13, 2004 of Synchrotron Radiation Detector Prototypes for LC Beam Monitor R. Arnold UMass, Amherst, MA 01003 E. Torrence University

More information

BEAM-BEAM SIMULATIONS WITH THE GAUSSIAN CODE TRS

BEAM-BEAM SIMULATIONS WITH THE GAUSSIAN CODE TRS BEAM-BEAM SIMULATIONS WITH THE GAUSSIAN CODE TRS Miguel A. Furman Lawrence Berkeley National Laboratory, MS 71-59 Berkeley, CA 97, USA Abstract We describe features of the soft-gaussian beam-beam simulation

More information

A Tau-Charm Factory in the United States*

A Tau-Charm Factory in the United States* A Tau-Charm Factory in the United States* D. H. Coward Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 As the conclusions of the many presentations made at the Tau- Charm

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note - 819 THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC A. Vivoli 1, I. Chaikovska 2, R. Chehab 3, O. Dadoun 2, P. Lepercq 2, F.

More information

LCWS 05 Machine Detector Interface Design Updates. Tom Markiewicz SLAC 22 March 2005

LCWS 05 Machine Detector Interface Design Updates. Tom Markiewicz SLAC 22 March 2005 LCWS 05 Machine Detector Interface Design Updates SLAC 22 March 2005 ILC WG4 Strawman Layout of BDS with 20 mrad and 2 mrad IRs logically complete P P P E E P E E 2/ 20 Warm LC Collimation System Design

More information

Accelerator development

Accelerator development Future Colliders Stewart T. Boogert John Adams Institute at Royal Holloway Office : Wilson Building (RHUL) W251 Email : sboogert@pp.rhul.ac.uk Telephone : 01784 414062 Lectures aims High energy physics

More information

Polarised e ± at HERA

Polarised e ± at HERA olarised e ± at HERA D.. Barber, E. Gianfelice Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D 223 Hamburg, Germany After a short summary of experience with e ± polarisation at the preupgraded

More information