STRAND: ALGEBRA Unit 2 Solving Quadratic Equations

Size: px
Start display at page:

Download "STRAND: ALGEBRA Unit 2 Solving Quadratic Equations"

Transcription

1 CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet STRAND: ALGEBRA Unit Solving Quadratic Equations TEXT Contents Section. Factorisation. Using the Formula. Completing the Square

2 CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet Solving Quadratic Equations. Factorisation Equations of the form a + + c = 0 are called quadratic equations. Many can e solved using factorisation. If a quadratic equation can e written as ( a) ( ) = 0 then the equation will e satisfied if either racket is equal to zero. That is, ( a) = 0 or So there would e two possile solutions, Worked Eample Solve = 0. ( ) = 0 = a and =. Factorising gives So therefore ( + 5) ( + ) = = 0 or + = 0 = 5 or = Worked Eample Solve = 0. Factorising gives So therefore ( ) ( + 7) = 0 = 0 or + 7 = 0 = or = 7 Worked Eample Solve = 0.

3 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet Factorising gives So therefore Worked Eample 4 Solve Factorising gives So therefore ( ) = 0 = 0 or = 0 = 0 or = 4 8 = 0 ( )( + ) = = 0 or + 9 = 0 = 9 or = 9 = 4 = 4 Worked Eample 5 Solve = 0. Factorising gives So therefore ( ) ( ) = 0 = 0 or = 0 = or = This type of solution is often called a repeated solution and results from solving a perfect square, that is 0 ( ) = Most of these eamples have had two solutions, ut the last eample had only one solution.

4 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet The graphs elow show y = and y = y y 5 The curve crosses the -ais at The curve touches the -ais at = 5 and =. = These are the solutions of Eercises This is the solution of = = 0. Solve the following quadratic equations. (a) + = 0 () 5 = 0 (c) + 4 = 0 (d) + 6 = 0 (e) 4 = 0 (f) 4 9 = 0 (g) 9 = 0 (h) 49 = 0 (i) 9 64 = 0 (j) = 0 (k) = 0 (l) 8 = 0 (m) + 8 = 0 (n) + 0 = 0 (o) = 0 (p) = 0 (q) + 5 = 0 (r) = 0 (s) 4 + = 0 (t) + 5 = 0 (u) = 0. The equations of a numer of curves are given elow. Find where each curve crosses the -ais and use this to draw a sketch of the curve. (a) y = () y = 4 (c) y = (d) y = +. Use the difference of two squares result to solve the following equations. (a) 4 6 = 0 () 4 65 = 0 4. Find the lengths of each side of the following rectangles. (a) () Area = Area = + + 4

5 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet (c) (d) Area = Area = The height of a all thrown straight up from the ground into the air at time, t, is given y h = 8t 0t Find the time it takes for the all to go up and fall ack to ground level. 6. The diagram represents a shed. The volume of the shed is given y the formula G V = LW E + R ( ) E R (a) Make L the suject of the formula, giving your answer as simply as possile. W L The surface area, A, of the shed, is given y the formula ( ) A = GL + EL + W E + R where V = 500, A = 00, E = 6 and G = 4. () By sustituting these values into the equations for V and A show that L satisfies the equation L 5L + 50 = 0 Make the steps in your working clear. (c) Solve the equation L 5L + 50 = 0.. Using the Formula The formula given elow is particularly useful for quadratics which cannot e factorised. To prove this important result requires some quite comple analysis, using a technique called completing the square, which is the suject of Section.. Theorem The solutions of the quadratic equation are given y a + + c = 0 ac = ± 4 a 4

6 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet Proof The equation a + + c = 0 is first divided y the non-zero constant, a, giving Note that a c + + = 0 a + = + + a a a = a a a (epanding) = + + a a = + + a a (adding like terms) (simplifying) The first two terms are identical to the first two terms in our equation, so you can re-write the equation as + c a a + a = 0 + = a a c a = 4a c a i.e. + a = 4ac 4a Taking the square root of oth sides of the equation gives + = ± a 4ac 4a Hence as required. or = ± 4 ac a = ± a 4ac a ac = ± 4 a 5

7 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet Worked Eample Solve = 0 giving the solution correct to decimal places. Here a =, = 6 and c = 8. These values can e sustituted into to give ac = ± 4 a ( ) = 6 ± = 6 ± 68 = or 6 68 =. or 7. (to d.p.) Worked Eample Solve the quadratic equation = 0. Here a = 4, = and c = 9. Sustituting the values into gives = ac = ± 4 a ( ) ( ) ± = = ± ± 0 8 = 8 = 5. = 6

8 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet Worked Eample Solve the quadratic equation = 0 Here a =, = and c = 5. Sustituting the values into the formula gives ( ) = ± 4 5 = ± 0 = ± 9 As it is not possile to find 9, this equation has no solutions. These three eamples illustrate that a quadratic equation can have, or 0 solutions. The graphs elow illustrate these graphically and show how the numer of solutions depends on the sign of ( 4ac) which is part of the quadratic formula. y y y Two solutions One solution No solutions 4ac > 0 4ac = 0 4ac < 0 (Worked Eample ) (Worked Eample ) (Worked Eample ) Eercises. Use the quadratic equation formula to find the solutions, where they eist, of each of the following equations. Give answers to decimal places. (a) = 0 () + 0 = 0 (c) 9 6 = 0 (d) 5 7 = 0 (e) + 8 = 0 (f) = 0 (g) = 0 (h) 4 = 0 (i) + 0 = 0 (j) + 8 = 0 (k) + 6 = 0 (l) 8 + = 0 (m) 4 5 = 0 (n) = 0 (o) 6 5 = 0 7

9 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet. A ticket printing and cutting machine cuts rectangular cards which are cm longer than they are wide. (a) If is the width of a ticket, find an epression for the area of the ticket. () Find the size of a ticket with an area of 0 cm.. A window manufacturer makes a range of windows for which the height is 0.5 m greater than the width. Find the width and height of a window with an area of m. 4. The height of a stone launched from a catapult is given y h = 0t 9. 8t where t is the time after the moment of launching. (a) () (c) (d) Find when the stone hits the ground. For how long is the stone more than 5 m aove the ground? Is the stone ever more than m aove ground level? If m is the maimum height of the stone, write down a quadratic equation which involves m. Eplain why this equation has only one solution and use this fact to find the value of m, to decimal places. 5. The equation elow is used to find the maimum amount,, which a ungee cord stretches during a ungee jump: mg + mgl k = 0, where m = mass of ungee jumper l = length of rope when not stretched (0 m) k = stiffness constant 0 (a) () g = acceleration due to gravity 0 ( Nm ) ( ms ) Find the maimum amount that the cord stretches for a ungee jumper of mass 60 kg. How much more would the cord stretch for a person of mass 70 kg? 6. Solve the equation = 5 + 7, giving your answers correct to significant figures. 8

10 CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet. Completing the Square Completing the square is a technique which can e used to solve quadratic equations that do not factorise. It can also e useful when finding the minimum or maimum value of a quadratic. A general quadratic a + + c is written in the form a( + p) + q when completing the square. You need to find the constants p and q so that the two epressions are identical. Worked Eample Complete the square for First consider the ( ) + 0. These terms can e otained y epanding + 5. ( ) = = ( + ) But so ( ) + ( 5) Therefore = Worked Eample Complete the square for To otain ( ) + 6 requires epanding +. = + ( ) = + + But ( ) so + 6 = + 9 ( ) Therefore = Note ( ) = + 7 When completing the square for + + c, the result is + + c = + and for a 0, a + + c = a + c c a 4a 9

11 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet Worked Eample Complete the square for As a first step, the quadratic can e rearranged as shown elow. ( ) = + 7 Then note that + = + ( ) + = + ( ) [( ) ] + ( ) + so Worked Eample 4 (a) Complete the square for y = 8 +. () Find the minimum value of y. (c) Sketch the graph of y = 8 +. (a) First rearrange the quadratic as shown. Then = + 7 ( ) + = + 4 ( ) = 4 ( ) to give [( ) ] + 4 can e written as 4 ( ) ( ) + = 4 4 ( ) + = 8 ( ) = 6 () As y = 6, the minimum possile value of y is 6, which is otained when = 0 or =. (c) Before sketching the graph, it is also useful to find where the curve crosses the -ais, that is when y = 0. To do this, solve ( ) 0 = 6 ( ) = 6 ( ) = = ± = ± So the curve crosses the -ais at + and, and has a minimum at (, 6). 0

12 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet This is shown in the graph opposite. y Worked Eample 5 6 (, 6) ( ) + (a) Epress + + in the form a + p q numers. where a, p and q are real ( ) = + + () Hence, determine for f (i) (ii) the minimum value for f ( ) the equation of the ais of symmetry. ( ) + (a) + + = a + p q Equating coefficients: ( ) + = a + p + p q ( ) = a + ap + ap + q [ ] = a a = [ ] = ap p = = a [ c t ] = ap + q = + q = + q Thus q = = + + = + +

13 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet () (i) Minimum value of y = + + =, and the value is y =. will occur when + = 0 ; that is, (ii) y = is the equation of the ais of symmetry. Eercises. Complete the square for each of the epressions elow. (a) () + 6 (c) + 0 (d) 8 + (e) + + (f) (g) + (h) 5 + (i) + 4. Use the completing the square method to solve each of the following equations. (a) 4 + = 0 () 6 4 = 0 (c) = 0 (d) = 0 (e) + = 0 (f) + 4 = 0 (g) = 0 (h) + 5 = 0 (i) = 0. Complete the square for each of the following epressions. (a) + 8 () + 0 (c) + + (d) + 6 (e) (f) (g) + 4 (h) (i) +

14 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet 4. Solve each of the following equations y completing the square. (a) = 0 () + 6 = 0 (c) + 8 = 0 (d) 4 + = 0 (e) + 6 = 0 (f) = 0 5. Sketch the graph of each equation elow, showing its minimum or maimum point and where it crosses the -ais. (a) y = () y = (c) y = (d) y = (e) y = 4 + (f) y = 6. The height of a all thrown into the air is given y h = + 0t 0t Find the maimum height reached y the all. 7. (a) By writing the quadratic epression ( ) in the form + a, find a and and hence find the minimum value of the epression. () Solve the equation 4 + = 0 giving your answers correct to decimal places. 8. (a) Factorise the epression +. ( ) () Epress + in the form + a, where a and are whole numers. (c) Sketch the curve with equation y = +. ( ) = 9. (a) Epress the function f 4 in the form ( ) = ( + ) + f a h k. Hence, or otherwise, determine () the values of at which the graph cuts the -ais. (c) the interval for which f( ) 0

15 . CMM Suject Support Strand: ALGEBRA Unit Solving Quadratic Equations: Tet (d) (e) the minimum value of f( ) the value of at which f( ) is a minimum. 0. (a) If 4y + y + is a perfect square, calculate the value of. () By the method of completing the square, solve the equation 5y = 8y. Give your answers to significant figures. Information The word 'quadratic' comes from the Latin word 'quadratum', which means 'a squared figure'. 4

STRAND F: ALGEBRA. UNIT F4 Solving Quadratic Equations: Text * * Contents. Section. F4.1 Factorisation. F4.2 Using the Formula

STRAND F: ALGEBRA. UNIT F4 Solving Quadratic Equations: Text * * Contents. Section. F4.1 Factorisation. F4.2 Using the Formula UNIT F4 Solving Quadratic Equations: Tet STRAND F: ALGEBRA Unit F4 Solving Quadratic Equations Tet Contents * * Section F4. Factorisation F4. Using the Formula F4. Completing the Square UNIT F4 Solving

More information

Quadratics NOTES.notebook November 02, 2017

Quadratics NOTES.notebook November 02, 2017 1) Find y where y = 2-1 and a) = 2 b) = -1 c) = 0 2) Epand the brackets and simplify: (m + 4)(2m - 3) To find the equation of quadratic graphs using substitution of a point. 3) Fully factorise 4y 2-5y

More information

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis ADDITIONAL MATHEMATICS MODULE 5 QUADRATIC FUNCTIONS CHAPTER 3 : QUADRARIC FUNCTIONS MODULE 5 3.1 CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions 3 3.3 Graphs of quadratic functions 4 Eercise

More information

Graphs and polynomials

Graphs and polynomials 1 1A The inomial theorem 1B Polnomials 1C Division of polnomials 1D Linear graphs 1E Quadratic graphs 1F Cuic graphs 1G Quartic graphs Graphs and polnomials AreAS of STud Graphs of polnomial functions

More information

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON CONDENSED LESSON 9.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations solve

More information

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings 978--08-8-8 Cambridge IGCSE and O Level Additional Mathematics Practice Book Ecerpt Chapter XX: : Functions XXXXXXXXXXXXXXX Chapter : Data representation This section will show you how to: understand

More information

Completing the Square

Completing the Square 3.5 Completing the Square Essential Question How can you complete the square for a quadratic epression? Using Algera Tiles to Complete the Square Work with a partner. Use algera tiles to complete the square

More information

Graphs and polynomials

Graphs and polynomials 5_6_56_MQVMM - _t Page Frida, Novemer 8, 5 :5 AM MQ Maths Methods / Final Pages / 8//5 Graphs and polnomials VCEcoverage Areas of stud Units & Functions and graphs Algera In this chapter A The inomial

More information

12. Quadratics NOTES.notebook September 21, 2017

12. Quadratics NOTES.notebook September 21, 2017 1) Fully factorise 4y 2-5y - 6 Today's Learning: To find the equation of quadratic graphs using substitution of a point. 2) Epand the brackets and simplify: (m + 4)(2m - 3) 3) Calculate 20% of 340 without

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information

Algebra I Quadratics Practice Questions

Algebra I Quadratics Practice Questions 1. Which is equivalent to 64 100? 10 50 8 10 8 100. Which is equivalent to 6 8? 4 8 1 4. Which is equivalent to 7 6? 4 4 4. Which is equivalent to 4? 8 6 From CCSD CSE S Page 1 of 6 1 5. Which is equivalent

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

Number Plane Graphs and Coordinate Geometry

Number Plane Graphs and Coordinate Geometry Numer Plane Graphs and Coordinate Geometr Now this is m kind of paraola! Chapter Contents :0 The paraola PS, PS, PS Investigation: The graphs of paraolas :0 Paraolas of the form = a + + c PS Fun Spot:

More information

Solve Quadratics Using the Formula

Solve Quadratics Using the Formula Clip 6 Solve Quadratics Using the Formula a + b + c = 0, = b± b 4 ac a ) Solve the equation + 4 + = 0 Give our answers correct to decimal places. ) Solve the equation + 8 + 6 = 0 ) Solve the equation =

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Polnomials and Quadratics Contents Polnomials and Quadratics 1 1 Quadratics EF 1 The Discriminant EF Completing the Square EF Sketching Paraolas EF 7 5 Determining the Equation of a

More information

Lesson 4.1 Exercises, pages

Lesson 4.1 Exercises, pages Lesson 4.1 Eercises, pages 57 61 When approimating answers, round to the nearest tenth. A 4. Identify the y-intercept of the graph of each quadratic function. a) y = - 1 + 5-1 b) y = 3-14 + 5 Use mental

More information

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3 1. Which is equivalent to 64 100? 10 50 8 10 8 100. Which is equivalent to 6 8? 4 8 1 4. Which is equivalent to 7 6? 4 4 4. Which is equivalent to 4? 8 6 Page 1 of 0 11 Practice Questions 6 1 5. Which

More information

Name Class Date. Quadratic Functions and Transformations. 4 6 x

Name Class Date. Quadratic Functions and Transformations. 4 6 x - Quadratic Functions and Transformations For Eercises, choose the correct letter.. What is the verte of the function 53()? D (, ) (, ) (, ) (, ). Which is the graph of the function f ()5(3) 5? F 6 6 O

More information

ALGEBRA II-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION

ALGEBRA II-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION ALGEBRA II-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION The Quadratic Equation is written as: ; this equation has a degree of. Where a, b and c are integer coefficients (where a 0) The graph of

More information

Graph is a parabola that opens up if a 7 0 and opens down if a 6 0. a - 2a, fa - b. 2a bb

Graph is a parabola that opens up if a 7 0 and opens down if a 6 0. a - 2a, fa - b. 2a bb 238 CHAPTER 3 Polynomial and Rational Functions Chapter Review Things to Know Quadratic function (pp. 150 157) f12 = a 2 + b + c Graph is a parabola that opens up if a 7 0 and opens down if a 6 0. Verte:

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc. Page 111.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Page 111. Algera Chapter : Polnomial and Rational Functions Chapter : Polnomial and Rational Functions - Polnomial Functions and Their Graphs Polnomial Functions: - a function that consists of a polnomial epression

More information

Further factorising, simplifying, completing the square and algebraic proof

Further factorising, simplifying, completing the square and algebraic proof Further factorising, simplifying, completing the square and algebraic proof 8 CHAPTER 8. Further factorising Quadratic epressions of the form b c were factorised in Section 8. by finding two numbers whose

More information

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta QUADRATIC GRAPHS ALGEBRA 2 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Quadratic Graphs 1/ 16 Adrian Jannetta Objectives Be able to sketch the graph of a quadratic function Recognise the shape

More information

MCF3MI Unit 3: Solving Quadratic Equations

MCF3MI Unit 3: Solving Quadratic Equations MCF3MI Unit 3: Solving Quadratic Equations MCF3MI Unit 3: Solving Quadratic Equations Lesson 1 Date: Quadratic Functions vs. Quadratic Equations A Quadratic Function of the form f() = a 2 + b + c, where

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

Exam 2 Review F15 O Brien. Exam 2 Review:

Exam 2 Review F15 O Brien. Exam 2 Review: Eam Review:.. Directions: Completely rework Eam and then work the following problems with your book notes and homework closed. You may have your graphing calculator and some blank paper. The idea is to

More information

Maths A Level Summer Assignment & Transition Work

Maths A Level Summer Assignment & Transition Work Maths A Level Summer Assignment & Transition Work The summer assignment element should take no longer than hours to complete. Your summer assignment for each course must be submitted in the relevant first

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Lesson 5.1 Exercises, pages

Lesson 5.1 Exercises, pages Lesson 5.1 Eercises, pages 346 352 A 4. Use the given graphs to write the solutions of the corresponding quadratic inequalities. a) 2 2-8 - 10 < 0 The solution is the values of for which y

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson, you Learn the terminology associated with polynomials Use the finite differences method to determine the degree of a polynomial

More information

5Higher-degree ONLINE PAGE PROOFS. polynomials

5Higher-degree ONLINE PAGE PROOFS. polynomials 5Higher-degree polnomials 5. Kick off with CAS 5.2 Quartic polnomials 5.3 Families of polnomials 5.4 Numerical approimations to roots of polnomial equations 5.5 Review 5. Kick off with CAS Quartic transformations

More information

Answers. Investigation 2. ACE Assignment Choices. Applications. Problem 2.5. Problem 2.1. Problem 2.2. Problem 2.3. Problem 2.4

Answers. Investigation 2. ACE Assignment Choices. Applications. Problem 2.5. Problem 2.1. Problem 2.2. Problem 2.3. Problem 2.4 Answers Investigation ACE Assignment Choices Problem. Core, Problem. Core, Other Applications ; Connections, 3; unassigned choices from previous problems Problem.3 Core Other Connections, ; unassigned

More information

Higher Tier - Algebra revision

Higher Tier - Algebra revision Higher Tier - Algebra revision Contents: Indices Epanding single brackets Epanding double brackets Substitution Solving equations Solving equations from angle probs Finding nth term of a sequence Simultaneous

More information

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation QUADRATIC FUNCTIONS B the end of this unit, ou should be able to: (a) (b) (c) (d) (e) recognise quadratics of the form = k 2 and = ( + a) 2 + b ; a, b Î Z, from their graphs identif the nature and coordinates

More information

Lesson 10.1 Solving Quadratic Equations

Lesson 10.1 Solving Quadratic Equations Lesson 10.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with each set of conditions. a. One -intercept and all nonnegative y-values b. The verte in the third quadrant and no

More information

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N.

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N. Calculus Review Packet 1. Consider the function f() = 3 3 2 24 + 30. Write down f(0). Find f (). Find the gradient of the graph of f() at the point where = 1. The graph of f() has a local maimum point,

More information

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1.

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1. 04-05 SEMESTER EXAMS. (.-) What is the inverse of f ( ) 9? f f f f ( ) 9 ( ) 9 9 ( ) ( ) 9. (.-) If 4 f ( ) 8, what is f ( )? f( ) ( 8) 4 f ( ) 8 4 4 f( ) 6 4 f( ) ( 8). (.4-) Which statement must be true

More information

Algebra Skills Required for Entry to a Level Two Course in Mathematics

Algebra Skills Required for Entry to a Level Two Course in Mathematics Algebra Skills Required for Entr to a Level Two Course in Mathematics This is a list of Level One skills ou will be required to demonstrate if ou are to gain entr to the Level Two Achievement Standard

More information

Section 2.3 Quadratic Functions and Models

Section 2.3 Quadratic Functions and Models Section.3 Quadratic Functions and Models Quadratic Function A function f is a quadratic function if f ( ) a b c Verte of a Parabola The verte of the graph of f( ) is V or b v a V or b y yv f a Verte Point

More information

MTH 252 Lab Supplement

MTH 252 Lab Supplement Fall 7 Pilot MTH 5 Lab Supplement Supplemental Material by Austina Fong Contents Antiderivatives... Trigonometric Substitution... Approimate Integrals Technology Lab (Optional)... 4 Error Bound Formulas...

More information

Objectives To solve equations by completing the square To rewrite functions by completing the square

Objectives To solve equations by completing the square To rewrite functions by completing the square 4-6 Completing the Square Content Standard Reviews A.REI.4. Solve quadratic equations y... completing the square... Ojectives To solve equations y completing the square To rewrite functions y completing

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Quadratics intervention Deduce quadratic roots algebraically 1 Grade 6 Objective: Deduce roots algebraically. Question 1. Factorise and solve the equation x 2 8x + 15 = 0 Question

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

Further algebra. polynomial identities

Further algebra. polynomial identities 8 8A Polynomial identities 8B Partial fractions 8C Simultaneous equations areas of study The solution of simultaneous equations arising from the intersection of a line with a parabola, circle or rectangular

More information

THOMAS WHITHAM SIXTH FORM

THOMAS WHITHAM SIXTH FORM THOMAS WHITHAM SIXTH FORM Algebra Foundation & Higher Tier Units & thomaswhitham.pbworks.com Algebra () Collection of like terms. Simplif each of the following epressions a) a a a b) m m m c) d) d d 6d

More information

Active Maths 2 Old Syllabus Strand 5

Active Maths 2 Old Syllabus Strand 5 Junior certificate HIGHER LEVEL Active Maths Old Sllabus Strand 5 πr m = - - πr Oliver Murph Contents. Functions.... Functions and Graphs...5.3 Graphs...7.4 Linear Graphs...7.5 Quadratic Graphs...9.6 Real-Life

More information

A11.1 Areas under curves

A11.1 Areas under curves Applications 11.1 Areas under curves A11.1 Areas under curves Before ou start You should be able to: calculate the value of given the value of in algebraic equations of curves calculate the area of a trapezium.

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 1 b. 0.2 1. 2 3.2 3 c. 20 16 2 20 2. Determine which of the epressions are polynomials. For each polynomial,

More information

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens Section.1 Graphing Quadratics Objectives: 1. Graph Quadratic Functions. Find the ais of symmetry and coordinates of the verte of a parabola.. Model data using a quadratic function. y = 5 I. Think and Discuss

More information

136 Maths Quest 10 for Victoria

136 Maths Quest 10 for Victoria Quadratic graphs 5 Barr is a basketball plaer. He passes the ball to a team mate. When the ball is thrown, the path traced b the ball is a parabola. Barr s throw follows the quadratic equation =.5 +. +.5.

More information

May 27, QUADRATICS.notebook. Apr 26 17:43. Apr 26 18:27. Apr 26 18:40. Apr 28 10:22. Apr 28 10:34. Apr 28 10:33. Starter

May 27, QUADRATICS.notebook. Apr 26 17:43. Apr 26 18:27. Apr 26 18:40. Apr 28 10:22. Apr 28 10:34. Apr 28 10:33. Starter 1. Factorise: 2 - - 6 2. Solve for : 2( + 1) = - 1 3. Factorise: 2-25 To solve quadratic equations.. Factorise: 2 2-8 5. State the gradient of the line: + 12 = 2 Apr 26 17:3 Apr 26 18:27 Solving Quadratic

More information

IB Questionbank Mathematical Studies 3rd edition. Quadratics. 112 min 110 marks. y l

IB Questionbank Mathematical Studies 3rd edition. Quadratics. 112 min 110 marks. y l IB Questionbank Mathematical Studies 3rd edition Quadratics 112 min 110 marks 1. The following diagram shows a straight line l. 10 8 y l 6 4 2 0 0 1 2 3 4 5 6 (a) Find the equation of the line l. The line

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

SOLUTION OF QUADRATIC EQUATIONS LESSON PLAN. A3 Topic Overview ALGEBRA

SOLUTION OF QUADRATIC EQUATIONS LESSON PLAN. A3 Topic Overview ALGEBRA ALGEBRA A Topic Overview A SOLUTION OF QUADRATIC EQUATIONS This topic describes three methods of solving Quadratic equations. assumes you understand and have practised using the algebraic methods described

More information

Algebra y funciones [219 marks]

Algebra y funciones [219 marks] Algebra y funciones [219 marks] Let f() = 3 ln and g() = ln5 3. 1a. Epress g() in the form f() + lna, where a Z +. 1b. The graph of g is a transformation of the graph of f. Give a full geometric description

More information

Practice Problems for Test II

Practice Problems for Test II Math 117 Practice Problems for Test II 1. Let f() = 1/( + 1) 2, and let g() = 1 + 4 3. (a) Calculate (b) Calculate f ( h) f ( ) h g ( z k) g( z) k. Simplify your answer as much as possible. Simplify your

More information

Higher. Differentiation 28

Higher. Differentiation 28 Higher Mathematics UNIT OUTCOME Differentiation Contents Differentiation 8 Introduction to Differentiation 8 Finding the Derivative 9 Differentiating with Respect to Other Variables 4 Rates of Change 4

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form a 2 + b + c = 0. Quadratic Formula The solutions of a 2 +

More information

MAT 1033C -- Martin-Gay Intermediate Algebra Chapter 8 (8.1, 8.2, 8.5, 8.6) Practice for the Exam

MAT 1033C -- Martin-Gay Intermediate Algebra Chapter 8 (8.1, 8.2, 8.5, 8.6) Practice for the Exam MAT 33C -- Martin-Ga Intermediate Algebra Chapter 8 (8.1 8. 8. 8.6) Practice for the Eam Name Date Da/Time: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

More information

Algebraic Functions, Equations and Inequalities

Algebraic Functions, Equations and Inequalities Algebraic Functions, Equations and Inequalities Assessment statements.1 Odd and even functions (also see Chapter 7)..4 The rational function a c + b and its graph. + d.5 Polynomial functions. The factor

More information

Algebra Final Exam Review Packet

Algebra Final Exam Review Packet Algebra 1 00 Final Eam Review Packet UNIT 1 EXPONENTS / RADICALS Eponents Degree of a monomial: Add the degrees of all the in the monomial together. o Eample - Find the degree of 5 7 yz Degree of a polynomial:

More information

NAME DATE PERIOD. Study Guide and Intervention. Solving Quadratic Equations by Graphing. 2a = -

NAME DATE PERIOD. Study Guide and Intervention. Solving Quadratic Equations by Graphing. 2a = - NAME DATE PERID - Study Guide and Intervention Solving Quadratic Equations by Graphing Solve Quadratic Equations Quadratic Equation A quadratic equation has the form a + b + c = 0, where a 0. Roots of

More information

f 0 ab a b: base f

f 0 ab a b: base f Precalculus Notes: Unit Eponential and Logarithmic Functions Sllaus Ojective: 9. The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential

More information

REVIEW KEY VOCABULARY REVIEW EXAMPLES AND EXERCISES

REVIEW KEY VOCABULARY REVIEW EXAMPLES AND EXERCISES Etra Eample. Graph.. 6. 7. (, ) (, ) REVIEW KEY VOCABULARY quadratic function, p. 6 standard form of a quadratic function, p. 6 parabola, p. 6 verte, p. 6 ais of smmetr, p. 6 minimum, maimum value, p.

More information

4 B. 4 D. 4 F. 3. How can you use the graph of a quadratic equation to determine the number of real solutions of the equation?

4 B. 4 D. 4 F. 3. How can you use the graph of a quadratic equation to determine the number of real solutions of the equation? 3.1 Solving Quadratic Equations COMMON CORE Learning Standards HSA-SSE.A. HSA-REI.B.b HSF-IF.C.8a Essential Question Essential Question How can ou use the graph of a quadratic equation to determine the

More information

Quadratic Inequalities in One Variable

Quadratic Inequalities in One Variable Quadratic Inequalities in One Variable Quadratic inequalities in one variable can be written in one of the following forms: a b c + + 0 a b c + + 0 a b c + + 0 a b c + + 0 Where a, b, and c are real and

More information

Module 2, Section 2 Solving Equations

Module 2, Section 2 Solving Equations Principles of Mathematics Section, Introduction 03 Introduction Module, Section Solving Equations In this section, you will learn to solve quadratic equations graphically, by factoring, and by applying

More information

Section 0.4 Inverse functions and logarithms

Section 0.4 Inverse functions and logarithms Section 0.4 Inverse functions and logarithms (5/3/07) Overview: Some applications require not onl a function that converts a numer into a numer, ut also its inverse, which converts ack into. In this section

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

MATH 115: Review for Chapter 5

MATH 115: Review for Chapter 5 MATH 5: Review for Chapter 5 Can you find the real zeros of a polynomial function and identify the behavior of the graph of the function at its zeros? For each polynomial function, identify the zeros of

More information

Math Analysis Chapter 2 Notes: Polynomial and Rational Functions

Math Analysis Chapter 2 Notes: Polynomial and Rational Functions Math Analysis Chapter Notes: Polynomial and Rational Functions Day 13: Section -1 Comple Numbers; Sections - Quadratic Functions -1: Comple Numbers After completing section -1 you should be able to do

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to eactly one element in the range. The domain is the set of all possible inputs

More information

Unit 3. Expressions and Equations. 118 Jordan School District

Unit 3. Expressions and Equations. 118 Jordan School District Unit 3 Epressions and Equations 118 Unit 3 Cluster 1 (A.SSE.): Interpret the Structure of Epressions Cluster 1: Interpret the structure of epressions 3.1. Recognize functions that are quadratic in nature

More information

Set 3: Limits of functions:

Set 3: Limits of functions: Set 3: Limits of functions: A. The intuitive approach (.): 1. Watch the video at: https://www.khanacademy.org/math/differential-calculus/it-basics-dc/formal-definition-of-its-dc/v/itintuition-review. 3.

More information

MATH 110: FINAL EXAM REVIEW

MATH 110: FINAL EXAM REVIEW MATH 0: FINAL EXAM REVIEW Can you solve linear equations algebraically and check your answer on a graphing calculator? (.) () y y= y + = 7 + 8 ( ) ( ) ( ) ( ) y+ 7 7 y = 9 (d) ( ) ( ) 6 = + + Can you set

More information

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient.

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient. CHAPTER 6 Vocabular The table contains important vocabular terms from Chapter 6. As ou work through the chapter, fill in the page number, definition, and a clarifing eample. Term Page Definition Clarifing

More information

Unit 2. Quadratic Functions and Modeling. 24 Jordan School District

Unit 2. Quadratic Functions and Modeling. 24 Jordan School District Unit Quadratic Functions and Modeling 4 Unit Cluster (F.F.4, F.F.5, F.F.6) Unit Cluster (F.F.7, F.F.9) Interpret functions that arise in applications in terms of a contet Analyzing functions using different

More information

Unit 4: Polynomial and Rational Functions

Unit 4: Polynomial and Rational Functions 50 Unit 4: Polynomial and Rational Functions Polynomial Functions A polynomial function y p() is a function of the form p( ) a a a... a a a n n n n n n 0 where an, an,..., a, a, a0 are real constants and

More information

Ready To Go On? Skills Intervention 6-1 Polynomials

Ready To Go On? Skills Intervention 6-1 Polynomials 6A Read To Go On? Skills Intervention 6- Polnomials Find these vocabular words in Lesson 6- and the Multilingual Glossar. Vocabular monomial polnomial degree of a monomial degree of a polnomial leading

More information

AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs

AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs The eqn y = a +b+c is a quadratic eqn and its graph is called a parabola. If a > 0, the parabola is concave up, while if a < 0, the parabola

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12 Section 7.1 Video Guide Solving Quadratic Equations by Completing the Square Objectives: 1. Solve Quadratic Equations Using the Square Root Property. Complete the Square in One Variable 3. Solve Quadratic

More information

CHAPTER 8 Quadratic Equations, Functions, and Inequalities

CHAPTER 8 Quadratic Equations, Functions, and Inequalities CHAPTER Quadratic Equations, Functions, and Inequalities Section. Solving Quadratic Equations: Factoring and Special Forms..................... 7 Section. Completing the Square................... 9 Section.

More information

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites:

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites: 8 CHAPTER VECTOR FUNCTIONS N Some computer algebra sstems provide us with a clearer picture of a space curve b enclosing it in a tube. Such a plot enables us to see whether one part of a curve passes in

More information

Chapter Three QUADRATIC FUNCTIONS

Chapter Three QUADRATIC FUNCTIONS Chapter Three QUADRATIC FUNCTIONS Contents 3.1 Introduction to the Family of Quadratic Functions................. 116 Finding the Zeros of a Quadratic Function.. 116 Concavity and Rates of Change for Quadratic

More information

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0.

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0. Chapter Review IB Questions 1. Given the function f () = 3b + (c + ), determine the values of b and c such that f = 0 and f = 0. (Total 4 marks). Consider the function ƒ : 3 5 + k. (a) Write down ƒ ().

More information

CHAPTER 2. Polynomial Functions

CHAPTER 2. Polynomial Functions CHAPTER Polynomial Functions.1 Graphing Polynomial Functions...9. Dividing Polynomials...5. Factoring Polynomials...1. Solving Polynomial Equations...7.5 The Fundamental Theorem of Algebra...5. Transformations

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Maima and minima In this unit we show how differentiation can be used to find the maimum and minimum values of a function. Because the derivative provides information about the gradient or slope of the

More information

3.2 Logarithmic Functions and Their Graphs

3.2 Logarithmic Functions and Their Graphs 96 Chapter 3 Eponential and Logarithmic Functions 3.2 Logarithmic Functions and Their Graphs Logarithmic Functions In Section.6, you studied the concept of an inverse function. There, you learned that

More information

Unit 11 - Solving Quadratic Functions PART ONE

Unit 11 - Solving Quadratic Functions PART ONE Unit 11 - Solving Quadratic Functions PART ONE PREREQUISITE SKILLS: students should be able to add, subtract and multiply polynomials students should be able to factor polynomials students should be able

More information

Polynomial Functions of Higher Degree

Polynomial Functions of Higher Degree SAMPLE CHAPTER. NOT FOR DISTRIBUTION. 4 Polynomial Functions of Higher Degree Polynomial functions of degree greater than 2 can be used to model data such as the annual temperature fluctuations in Daytona

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Honors Math 2 Unit 1 Test #2 Review 1

Honors Math 2 Unit 1 Test #2 Review 1 Honors Math Unit 1 Test # Review 1 Test Review & Study Guide Modeling with Quadratics Show ALL work for credit! Use etra paper, if needed. Factor Completely: 1. Factor 8 15. Factor 11 4 3. Factor 1 4.

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

Suggested Problems for Math 122

Suggested Problems for Math 122 Suggested Problems for Math 22 Note: This file will grow as the semester evolves and more sections are added. CCA = Contemporary College Algebra, SIA = Shaum s Intermediate Algebra SIA(.) Rational Epressions

More information