Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information From Nano to Micrometer Scale: The Role of Anti-Solvent Treatment on the High-Performance Perovskite Solar Cells Sanghyun Paek, Pascal Schouwink, Evangelia-Nefeli Athanasopoulou,, Kyung Taek Cho, Giulia Grancini, Yonghui Lee, Yi Zhang, Francesco Stellacci, Mohammad Khaja Nazeeruddin and Peng Gao General Methods UV-Vis Kinetics study of the perovskite film Unless stated otherwise, steady-state absorption spectra were recorded in transmission mode on a Perkin Elmer Lambda 850 spectrophotometer using a perovskite deposited TiO 2 /FTO glass. Likewise, emission spectra were recorded on a Perkin Elmer Fluorolog spectrofluorometer. Kinetics measurements were carried out as follows: Mesoporous TiO 2 films were deposited on cut FTO glasses and infiltrated with perovskites solution by spin-coating. Simulating the anti-solvent treatment procedure, the samples were then placed vertically in a standard cuvette of 10 mm path length using a Teflon holder. Corresponding anti-solvent was then rapidly injected into the cuvette while the optical absorption at 550 nm was monitored respectively. X-ray diffraction spectroscopy For XRD measurements, the perovskite nanocomposites were deposited on TiO 2 coated FTO classes using the one step deposition procedures. X-ray powder diagrams were recorded on an Bruker D8 Advance equipped with a ceramic tube (Cu anode, λ= Å), and a RTMS X Celerator detector, and operated in BRAGG-BRENTANO geometry. The samples were mounted without further 1

2 modification and rotating at a speed 8 degree per minute (ω) during the measurement, and the automatic divergence slit and beam mask were adjusted to the dimensions of the thin films. A step size of deg was chosen and an acquisition time of up to 7.5min deg -1. A baseline correction was applied to all X-ray powder diagrams to remove the broad diffraction peak arising from the air scattering. Device Fabrication Chemically etched FTO glass (Nippon Sheet Glass) was sequentially cleaned by sonication in a 2 % Helmanex solution, acetone and ethanol for 30 min each, followed by a 15 min UV-ozone treatment. To form a 30-nm thick TiO 2 blocking layer, diluted titanium diisopropoxide bis(acetylacetonate) (TAA) solution (Sigma-Aldrich) in isopropanol was sprayed at 450 C. For the 200 nm mesoporous TiO 2 layer, mesoporous-tio2 layers were made by spin-coating a commercially available TiO2 paste (Dyesol 30NRD). Substrates were baked at 500 o C for 30 min. Then, Li-doping of mesoporous TiO2 is treated by spin coating a 0.1 M solution of Li-TFSI in acetonitrile at 3000 rpm for 10 s followed by another sintering at 500 C for 20 min before the deposition of the perovskite layer. Mixed-perovskite precursor was prepared by mixing 1.15 m PbI 2, 1.10 m FAI, 0.2 m PbBr 2, 0.2 m MABr in a mixed solvent of DMF: DMSO = 4:1 (volume ratio). Perovskite solutions are successively spin-coated in the glovebox as follow: first, 2000 rpm for 10 s with a ramp-up of 200 rpm s 1 ; second, 6000 rpm for 30 s with a ramp-up of 2000 rpm s 1. Various anti-solvents were dropped on the spinning substrate during the second spin-coating step 20 s (trifluorotoluene, 110 ul), 15 s (Chlorobenzene, 100 ul), 15 s (Toluene, 600 ul), 15 s (xylene, 900 ul) and 10 s (diethyl ether, 200 ul), respectively, before the end of the procedure. Then films were annealed at 100 o C for 90 min. The spiro-ometad solution was prepared by dissolving in chlorobenzene at 70 mm. 2

3 tert-butylpyridine (tbp), Tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(iii) (FK209) and Tris(bis(trifluoromethylsulfon-yl)imide) (Li-TFSI) were added as additives. Equimolar amounts of additives were added for all hole-transporters: 330 mol% tbp, 50 mol% Li-TFSI from a 1.8M stock solution in acetonitrile and 3 mol% FK209 from a 0.25M stock solution in acetonitrile. The final HTM solutions were spin-coated onto the perovskite layers at 4000rpm for 30s. The gold electrodes were deposited by thermal evaporation of 80 nm gold in high vacuum conditions. Device measurement J-V curves were obtained at a scan rate of 25 mv s -1. All the data are recorded from reverse scan direction. The devices were measured by using a black mask with an active area of 0.16 cm 2. Figure S1. The central area of the film treated by low boiling point anti-solvents like ether or dichloromethane 3

4 Table S1. Physical properties of the bath solvents and shower solvents Solvents Chemical Structure B.P. ( o C) Density a (g/ml) Dipole moment Dielectric constant, ε a DMSO Miscibility DMF Miscibility DMSO D 46.7 Yes Yes DMF D 36.7 Yes Yes DMSO:DMF=4: b Yes Yes Trifluorotoluene D 9.18 Yes Yes Chlorobenzene D 5.62 Yes Yes Toluene D 2.38 Yes Yes CH 3 p-xylene D 2.20 No No CH 3 Ether D 4.33 No Yes Dichloromethane D 9.04 Yes Yes a. 25 o C; b Ch. Wohlfarth. Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures; Lechner, M. D., Ed.; Landolt-Börnstein - Group IV Physical Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; Vol. 17. Patent WO A2 - Capacitance-based sensing chlorobenzene DIM 4

5 Figure S2. SEM images of perovskite films treated by TFT (a), Toluene (b), Chlorobenzene (c), Xylene (d), ether (e) and without treatment (f). scale bar 2 µm. Table S2. A summary of the fitted time constant values shown in Figure 1 Solvents Equation τ1 (s) τ2 (s) τ3 (s) R 2 TFT y = A1*exp(-x/t1) + y Toluene y = y A1*exp(-(x-x0)/t1) + A2*exp(-(x-x0)/t2) Chlorobenzene y = y A1*exp(-(x-x0)/t1) + A2*exp(-(x-x0)/t2) p-xylene y = y

6 A1*exp(-(x-x0)/t1) + A2*exp(-(x-x0)/t2) Diethyl ether y = A1*exp(-x/t1) + y Dichloromethane y = y A1*exp(-(x-x0)/t1) + A2*exp(-(x-x0)/t2) + A3*exp(-(x-x0)/t3) Figure S3. XRD patterns of perovskite film after A.S.T. and annealing comparing to the simulated (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 powder. 6

7 Table S3. Reduced cubic unit cell volume per formula unit determined from profile fits on experimental data collected after thermal annealing. Perovskite α-fapbi 3 α-fapbi 3 α-fapbi 3 FAPbBr 3 MAPbI 3 Space Group Trigonal, P3m1 Trigonal, P3m1 Cubic, Pm-3m Cubic Pm-3m Tetragonal I4/mcm Volume / f.u.(å 3 ) Ref Perovskite Anti-solvent Volume / f.u.(å 3 ) (FAPbI 3) 0.85(MAPbBr 3) 0.15 w/o A.S.T (7) (FAPbI 3) 0.85(MAPbBr 3) 0.15 DCM (4) (FAPbI 3) 0.85(MAPbBr 3) 0.15 Trifluorotoluene (7) (FAPbI 3) 0.85(MAPbBr 3) 0.15 Toluene (6) (FAPbI 3) 0.85(MAPbBr 3) 0.15 Chlorobenzene (8) MA 0.15FA 0.85PbI (FAPbI 3) 0.85(MAPbBr 3) 0.15 p-xylene (8) (FAPbI 3) 0.85(MAPbBr 3) 0.15 Cubic, P m -3 m (FAPbI 3) 0.85(MAPbBr 3) 0.15 Ether (9) Figure S4. Cross-sections of full devices with the perovskite treated with TFT, Tol, Cb, Xyl, Ether and without A.S.T. scale bar 200 nm. 7

8 Figure S5. Photograph of adding anti-solvents into precursor solution Table S4. RMS statistics based on AFM measurements of five different areas of each film Sample file # area Rms (nm) Sample file # area Rms (nm) TFT Toluene average average st dev st dev Sample file # area Rms (nm) Sample file # area Rms (nm) Reference Xylene

9 average average st dev st dev Sample file # area Rms (nm) Sample file # area Rms (nm) Chlorobenzene Ether average average st dev st dev

10 Dielectric Constant at T = K Ratio of DMF Figure S6. The dependence of dielectric constant with ratio of DMF inside DMSO according to the table in Ch. Wohlfarth. Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures; Lechner, M. D., Ed.; Landolt-Börnstein - Group IV Physical Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; Vol

11 Figure S7. Hysteresis study of the devices treated with different anti-solvents. 11

12 (1) Han, Q.; Bae, S.-H.; Sun, P.; Hsieh, Y.-T.; Yang, Y. M.; Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G.; et al. Single Crystal Formamidinium Lead Iodide (FAPbI 3 ): Insight into the Structural, Optical, and Electrical Properties. Adv. Mater. 2016, 28, (2) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, (3) Weller, M. T.; Weber, O. J.; Frost, J. M.; Walsh, A. Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[hc(nh 2 ) 2 ]PbI 3, at 298 K. J. Phys. Chem. Lett. 2015, 6, (4) Wang, L.; Wang, K.; Zou, B. Pressure-Induced Structural and Optical Properties of Organometal Halide Perovskite-Based Formamidinium Lead Bromide. J. Phys. Chem. Lett. 2016, 7, (5) Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications. J. Mater. Chem. A 2013, 1, (6) Weber, O. J.; Charles, B.; Weller, M. T. Phase Behaviour and Composition in the Formamidinium methylammonium Hybrid Lead Iodide Perovskite Solid Solution. J. Mater. Chem. A 2016, 4, (7) Xie, L.-Q.; Chen, L.; Nan, Z.-A.; Lin, H.-X.; Wang, T.; Zhan, D.; Yan, J.-W.; Mao, B.-W.; Tian, Z.-Q. Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals. J. Am. Chem. Soc. 2017, 139,

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Enhanced Charge Collection with Passivation of

More information

Electronic Supplementary Information. Crystallographic Orientation Propagation in Metal Halide Perovskite Thin Films

Electronic Supplementary Information. Crystallographic Orientation Propagation in Metal Halide Perovskite Thin Films Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Crystallographic Orientation Propagation

More information

Band-gap tuning of lead halide perovskites using a sequential deposition process

Band-gap tuning of lead halide perovskites using a sequential deposition process Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting information Band-gap tuning of lead halide perovskites using

More information

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Supporting Information CsPbIBr 2 Perovskite Solar Cell by Spray Assisted Deposition Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Green, Shujuan Huang, Anita W.

More information

Supporting Information

Supporting Information Supporting Information Unsymmetrical and Symmetrical Zn(II) Phthalocyanines as Hole- Transporting Materials for Perovskite Solar Cells Yi Zhang,, Sanghyun Paek,, Maxence Urbani,,,, María Medel, Iwan Zimmermann,

More information

Severe Morphological Deformation of Spiro- Temperature

Severe Morphological Deformation of Spiro- Temperature Supplementary Information Severe Morphological Deformation of Spiro- OMeTAD in (CH 3 NH 3 )PbI 3 Solar Cells at High Temperature Ajay Kumar Jena, Masashi Ikegami, Tsutomu Miyasaka* Toin University of Yokohama,

More information

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Electronic Supplementary Information A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Matthew J. Carnie, a Cecile Charbonneau, a Matthew L. Davies, b Joel Troughton,

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Solution Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells Weijun Ke, Guojia Fang,* Qin Liu, Liangbin Xiong,

More information

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning, Supporting Information for Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room Temperature DC Magnetron Sputtered TiO 2 Electron Extraction Layer Aibin Huang,

More information

Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites

Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites SUPPORTING INFORMATION Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites Jesús Rodríguez-Romero, Bruno Clasen Hames, Iván Mora-Seró and Eva M. Barea* Institute of

More information

Supporting Information

Supporting Information Supporting Information Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures Yun Lin 1, Yang Bai 1, Yanjun Fang 1, Zhaolai Chen 1, Shuang Yang 1, Xiaopeng Zheng 1,

More information

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 1 Low-temperature-processed inorganic perovskite solar cells via solvent engineering

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Materials. FAI was synthesized according to a reported

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room-Temperature Film Formation of Metal Halide Perovskites

More information

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Supporting information for Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Jing Cao 1,*,, Congping Li 1,, Xudong

More information

All-Inorganic Perovskite Solar Cells

All-Inorganic Perovskite Solar Cells Supporting Information for: All-Inorganic Perovskite Solar Cells Jia Liang, Caixing Wang, Yanrong Wang, Zhaoran Xu, Zhipeng Lu, Yue Ma, Hongfei Zhu, Yi Hu, Chengcan Xiao, Xu Yi, Guoyin Zhu, Hongling Lv,

More information

Impact of Rubidium and Cesium Cations on the. Moisture Stability of Multiple-Cation Mixed-

Impact of Rubidium and Cesium Cations on the. Moisture Stability of Multiple-Cation Mixed- Supporting Information Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed- Halide Perovskites Yinghong Hu, 1 Meltem F. Aygüler, 1 Michiel L. Petrus, 1 Thomas Bein,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Simultaneous Enhancement in Performance and UV-light

More information

Supporting Information for. Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr 3. Perovskite Crystals for Thin Film Photovoltaic Applications

Supporting Information for. Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr 3. Perovskite Crystals for Thin Film Photovoltaic Applications Supporting Information for Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr 3 Perovskite Crystals for Thin Film Photovoltaic Applications Nadja Giesbrecht, 1 Johannes Schlipf, 2 Lukas Oesinghaus,

More information

Supporting Information. Chlorine in PbCl 2 -Derived Hybrid-Perovskite Solar Absorbers

Supporting Information. Chlorine in PbCl 2 -Derived Hybrid-Perovskite Solar Absorbers Supporting Information Chlorine in PbCl 2 -Derived Hybrid-Perovskite Solar Absorbers Vanessa L. Pool, Aryeh Gold-Parker, Michael D. McGehee and Michael F. Toney * SLAC National Accelerator Laboratory,

More information

Perovskite solar cells on metal substrate with high efficiency

Perovskite solar cells on metal substrate with high efficiency Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) for Perovskite solar cells on metal

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1228604/dc1 Supporting Online Material for Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites Michael M. Lee, Joël Teuscher,

More information

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Supporting Information for Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Mingyang Cha,, Peimei Da,, Jun Wang, Weiyi Wang, Zhanghai Chen,

More information

Achieving high-performance planar perovskite solar cells with

Achieving high-performance planar perovskite solar cells with Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Supporting Information for Achieving high-performance planar perovskite

More information

Preparation of mixed-ion and inorganic perovskite solar cells using water and isopropanol as solvents for solar cell applications

Preparation of mixed-ion and inorganic perovskite solar cells using water and isopropanol as solvents for solar cell applications Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 217 Preparation of mixed-ion and inorganic perovskite solar cells using water and

More information

Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Nam-gu, Pohang, Gyeongbuk , Republic of Korea.

Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Nam-gu, Pohang, Gyeongbuk , Republic of Korea. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Green-solvent processable semiconducting polymers

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Long-term Stability of Organic-Inorganic

More information

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Supporting information for High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Zhi-Xiang Zhang, Ji-Song Yao, Lin Liang, Xiao-Wei Tong, Yi Lin, Feng-Xia Liang, *, Hong-Bin

More information

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Hysteresis-free low-temperature-processed planar

More information

Supporting Information for. Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient

Supporting Information for. Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient Supporting Information for Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient Wenming Tian, Jing Leng, Chunyi Zhao and Shengye Jin* State Key Laboratory of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Mesoporous SnO 2 Single Crystals as an Effective Electron Collector for Perovskite Solar Cells

Mesoporous SnO 2 Single Crystals as an Effective Electron Collector for Perovskite Solar Cells Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Mesoporous SnO 2 Single Crystals as an Effective Electron Collector for Perovskite

More information

Supporting Information. Zn 2 SnO 4 -based photoelectrodes for organolead halide perovskite solar cells

Supporting Information. Zn 2 SnO 4 -based photoelectrodes for organolead halide perovskite solar cells Supporting Information Zn 2 SnO 4 -based photoelectrodes for organolead halide perovskite solar cells Lee Seul Oh, 1,2, Dong Hoe Kim, 3, Jin-Ah Lee, 1 Seong Sik Shin, 3 Jin-Wook Lee, 4 Ik Jae Park, 1,3

More information

Supporting Information

Supporting Information Supporting Information Metal to Halide Perovskite )HaP(: an Alternative Route to HaP Coating Directly from Pb (0) or Sn (0) films Yevgeny Rakita, Satyajit Gupta, David Cahen*, Gary Hodes* Department of

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2014 69451 Weinheim, Germany A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells** Manda Xiao, Fuzhi Huang, Wenchao

More information

Supporting Information. for

Supporting Information. for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information for Highly Efficient Perovskite Solar Cells Based

More information

Supporting Information

Supporting Information Supporting Information Improved Morphology and Efficiency of n i p Planar Perovskite Solar Cells by Processing with Glycol Ether Additives Esma Ugur, Arif D. Sheikh, Rahim Munir, Jafar I. Khan, Dounya

More information

Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide

Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide Supporting Information Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide Weiqiang Liao,,,# Dewei Zhao, *,, # Yue Yu, Niraj

More information

Supplementary Information

Supplementary Information Supplementary Information Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions Md Nadim Ferdous Hoque, 1

More information

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information The Roles of Alkyl Halide Additives in Enhancing

More information

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Supporting information For Nano Letters Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Xiaobao Xu,,, Zonghao Liu,, Zhixiang Zuo, Meng Zhang, Zhixin Zhao, Yan Shen,

More information

Supporting Information

Supporting Information Supporting Information Band Gap Tuning of CH 3 NH 3 Pb(Br 1-x Cl x ) 3 Hybrid Perovskite for Blue Electroluminescence Naresh K. Kumawat 1, Amrita Dey 1, Aravindh Kumar 2, Sreelekha P. Gopinathan 3, K.

More information

Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide

Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide SUPPORTING INFORMATION Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide Fabian Hanusch, 1 Erwin Wiesenmayer, 2 Eric Mankel, 3 Andreas Binek, 1 Philipp Angloher,

More information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die printing system combined with grazing incidence X-ray diffraction (GIXD) set-up. 1 Supplementary Figure 2 2D GIXD images

More information

Electronic Supplementary Information. Yunlong Guo, Chao Liu, Kento Inoue, Koji Harano, Hideyuki Tanaka,* and Eiichi Nakamura*

Electronic Supplementary Information. Yunlong Guo, Chao Liu, Kento Inoue, Koji Harano, Hideyuki Tanaka,* and Eiichi Nakamura* Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Enhancement in the efficiency of an

More information

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14% Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14% Kunpeng Li, Junyan Xiao, Xinxin Yu, Tongle Bu, Tianhui Li, Xi Deng, Sanwan Liu,

More information

Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals through Solid-Liquid-Solid Cation Exchange

Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals through Solid-Liquid-Solid Cation Exchange Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals through

More information

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13% All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency Exceeding 13% Chong Liu a,, Wenzhe Li a,, Cuiling Zhang b, Yunping Ma b, Jiandong Fan*,a, Yaohua Mai*,a,b a Institute of New Energy

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Additive Engineering for High-Performance Room-Temperature-Processed

More information

High Photovoltage of 1 V on a Steady-State Certified Hole Transport Layer-Free Perovskite Solar Cell by a Molten-Salt Approach

High Photovoltage of 1 V on a Steady-State Certified Hole Transport Layer-Free Perovskite Solar Cell by a Molten-Salt Approach Supporting Information High Photovoltage of 1 V on a Steady-State Certified Hole Transport Layer-Free Perovskite Solar Cell by a Molten-Salt Approach Lukas Wagner 1, Sijo Chacko 1, Gayathri Mathiazhagan

More information

The Cubic Perovskite Structure of Black. Formamidinium Lead Iodide, α-[hc(nh 2 ) 2 ]PbI 3,

The Cubic Perovskite Structure of Black. Formamidinium Lead Iodide, α-[hc(nh 2 ) 2 ]PbI 3, Supporting Information The Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[hc(nh 2 ) 2 ]PbI 3, at 298 K Mark T. Weller, Oliver J Weber, Jarvist M. Frost, Aron Walsh Centre for Sustainable

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201601733 Molecularly Engineered Phthalocyanines as Hole- Transporting

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N.

More information

Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives

Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Synergistic Improvements in Stability

More information

Unveiling the Role of tbp-litfsi Complexes in Perovskite Solar Cells

Unveiling the Role of tbp-litfsi Complexes in Perovskite Solar Cells Supporting Information Unveiling the Role of tbp-litfsi Complexes in Perovskite Solar Cells Shen Wang, Zihan Huang, Xuefeng Wang, Yingmin Li, Marcella Günther, Sophia Valenzuela, Pritesh Parikh, Amanda

More information

Mixed Sn-Ge Perovskite for Enhanced Perovskite

Mixed Sn-Ge Perovskite for Enhanced Perovskite Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air Nozomi Ito a, Muhammad Akmal Kamarudin a*, Daisuke Hirotani a, Yaohong Zhang b, Qing Shen b, Yuhei Ogomi a, Satoshi Iikubo a,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Cesium-containing Triple Cation Perovskite Solar Cells:

More information

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Supporting Information Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Xiaodong Li, a Ying-Chiao Wang, a Liping Zhu,

More information

POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION

POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION, PhD student DIPARTIMENTO DI SCIENZE FISICHE E TECNOLOGIA DELLA MATERIA CNR-IOM - Istituto Officina dei Materiali Headquarters (Trieste, TASC)

More information

High performance carbon based printed perovskite solar cells with humidity assisted thermal treatment

High performance carbon based printed perovskite solar cells with humidity assisted thermal treatment Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information High performance carbon based printed

More information

Supplemental Information. Tailor-Making Low-Cost. Spiro[fluorene-9,9 0 -xanthene]-based. 3D Oligomers for Perovskite Solar Cells

Supplemental Information. Tailor-Making Low-Cost. Spiro[fluorene-9,9 0 -xanthene]-based. 3D Oligomers for Perovskite Solar Cells Chem, Volume 2 Supplemental Information Tailor-Making Low-Cost Spiro[fluorene-9,9 0 -xanthene]-based 3D Oligomers for Perovskite Solar Cells Bo Xu, Jinbao Zhang, Yong Hua, Peng Liu, Linqin Wang, Changqing

More information

Supporting Information for

Supporting Information for Supporting Information for General Space-Confined On-substrate Fabrication of Thickness- Adjustable Hybrid Perovskite Single-Crystalline Thin Films Yao Xuan Chen,,, Qian Qing Ge,,, Yang Shi,, Jie, Liu,,

More information

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee 1. Depleted heterojunction solar cells 2. Deposition of semiconductor layers with solution process June 7, 2016 Yonghui Lee Outline 1. Solar cells - P-N junction solar cell - Schottky barrier solar cell

More information

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch*

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Supporting information Inverted P3HT:PC61BM organic solar cells incorporating a -extended squaraine dye with H- and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Department

More information

GRAPHENE/CARBON BLACK COUNTER ELECTRODE FOR PEROVSKITE SOLAR CELL. Nutsuda Bunyoo, Nuttapol Pootrakulchote*

GRAPHENE/CARBON BLACK COUNTER ELECTRODE FOR PEROVSKITE SOLAR CELL. Nutsuda Bunyoo, Nuttapol Pootrakulchote* GRAPHENE/CARBON BLACK COUNTER ELECTRODE FOR PEROVSKITE SOLAR CELL Nutsuda Bunyoo, Nuttapol Pootrakulchote* Department of Chemical Technology, Faculty of Science, Chulalongkorn University Center of Excellence

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Photovoltaic mixed- cation lead mixed-

More information

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the spiro-ometad from a perovskite-filled mesoporous TiO 2

More information

Supporting Information

Supporting Information Supporting Information Molecular Engineering of Triphenylamine-Based Non-fullerene Electron Transport Materials for Efficient Rigid and Flexible Perovskite Solar Cells Cheng Chen, a # Hongping Li, a #

More information

Hindered Formation of Photo-inactive δ-fapbi 3. Phase and Hysteresis-free Mixed-cation Planar. Heterojunction Perovskite Solar Cells with

Hindered Formation of Photo-inactive δ-fapbi 3. Phase and Hysteresis-free Mixed-cation Planar. Heterojunction Perovskite Solar Cells with Supporting Information Hindered Formation of Photo-inactive δ-fapbi 3 Phase and Hysteresis-free Mixed-cation Planar Heterojunction Perovskite Solar Cells with Enhanced Efficiency via Potassium Incorporation

More information

Supporting information

Supporting information Supporting information Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates - Mysterious Enhancement of Device Efficiency Overtime Discovered Cheng Bi, Xiaopeng Zheng, Bo Chen,

More information

Supporting Information for: Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by. Metallic Electrodes

Supporting Information for: Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by. Metallic Electrodes Supporting Information for: Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes Cristina Besleaga +, Laura Elena Abramiuc +#, Viorica Stancu +, Andrei Gabriel Tomulescu

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information In situ and real-time ToF-SIMS analysis of light-induced chemical changes

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea Supporting Information Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells Seong Sik Shin 1,2,, Woon Seok Yang 1,3,, Eun Joo Yeom 1,4, Seon Joo Lee 1, Nam

More information

4. Experimental Section

4. Experimental Section Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 4. Experimental Section Preparation of Perovskite Precursor : CH I was synthesized in an ice bath

More information

Supporting Information

Supporting Information Supporting Information ~800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells Zhongcheng Yuan,, Yingguo Yang, Zhongwei Wu, Sai Bai, Weidong Xu,

More information

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

Enhanced Grain Size and Crystallinity in CH 3 NH 3 PbI 3 Perovskite Films by Metal Additives to the Single-Step Solution Fabrication Process

Enhanced Grain Size and Crystallinity in CH 3 NH 3 PbI 3 Perovskite Films by Metal Additives to the Single-Step Solution Fabrication Process MRS Advances 2018 Materials Research Society DOI: 10.1557/adv.2018.413 Enhanced Grain Size and Crystallinity in CH 3 NH 3 PbI 3 Perovskite Films by Metal Additives to the Single-Step Solution Fabrication

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for Hybrid organic inorganic solar

More information

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells Supporting Information Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells Taketo Handa, + Takumi Yamada, + Hirofumi Kubota,

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Highly Efficient Ruddlesden Popper Halide

Highly Efficient Ruddlesden Popper Halide Supporting Information Highly Efficient Ruddlesden Popper Halide Perovskite PA 2 MA 4 Pb I 16 Solar Cells Peirui Cheng, 1 Zhuo Xu, 1 Jianbo Li, 1 Yucheng Liu, 1 Yuanyuan Fan, 1 Liyang Yu, 2 Detlef-M. Smilgies,

More information

School of Materials Science & Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, , P.R. China.

School of Materials Science & Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, , P.R. China. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION Low-temperature SnO 2 -modified TiO 2 yields record

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Indolo[3,2-b]indole-based Crystalline Hole Transporting

More information

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5.

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Supplementary Materials

Supplementary Materials Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Cost-efficient Clamping Solar Cells Using Candle Soot for Hole Extraction

More information

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass and a reference pattern of anatase TiO 2 (JSPDS No.: 21-1272).

More information

Supporting Information

Supporting Information Supporting Information Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable and Large-Area Solar Cell Experimental Section Kai Yao, Xiaofeng Wang, Yun-xiang Xu, Fan Li, Lang

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2013 69451 Weinheim, Germany 3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells** Hui Wang, Kai

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Engineering of Hole-selective Contact for Low Temperature-Processed

More information

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells **

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells ** Nickel Phosphide-embedded Graphene as Counter Electrode for Dye-sensitized Solar Cells ** Y. Y. Dou, G. R. Li, J. Song, and X. P. Gao =.78 D 1359 G 163 a =.87 D 138 G 159 b =1.3 D 1351 G 1597 c 1 15 1

More information

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Organo-metal halide perovskite-based solar cells with CuSCN as inorganic

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Highly stable, luminescent core-shell type methylammonium-octylammonium

More information

Supporting Information: Influence of Fermi Level Alignment with Tin Oxide. on the Hysteresis of Perovskite Solar Cells

Supporting Information: Influence of Fermi Level Alignment with Tin Oxide. on the Hysteresis of Perovskite Solar Cells Supporting Information: Influence of Fermi Level Alignment with Tin Oxide on the Hysteresis of Perovskite Solar Cells Meltem F. Aygüler, Alexander G. Hufnagel, Philipp Rieder, Michael Wussler, Wolfram

More information

The Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells

The Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells SUPPORTING INFORMATION The Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells Emilio J. Juarez-Perez, 1 Michael Wuβler, 1, 2 Francisco Fabregat-Santiago, 1 Kerstin

More information

Investigating charge dynamics in halide perovskitesensitized

Investigating charge dynamics in halide perovskitesensitized Electronic Supplementary Material (ESI) for Energy. This journal is The Royal Society of Chemistry 2014 Supporting information Investigating charge dynamics in halide perovskitesensitized mesostructured

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Author(s) Citation Modulating Carrier Dynamics through Perovskite Film Engineering Lim, Swee Sien; Chong,

More information