Automatic Control III (Reglerteknik III) fall Nonlinear systems, Part 3

Size: px
Start display at page:

Download "Automatic Control III (Reglerteknik III) fall Nonlinear systems, Part 3"

Transcription

1 Automatic Control III (Reglerteknik III) fall Nonlinear systems, Part 3 (Chapter 4) Hans Norlander Systems and Control Department of Information Technology Uppsala University

2 OSCILLATIONS AND DESCRIBING FUNCTIONS The describing function method Autotuning of PID controllers Fall 20 Automatic Control III:4 part 3 Page

3 DESCRIBING FUNCTIONS An approximate method for examining existence of periodic solutions for systems of the form () ( ) ¹ Û Ý ¹ () ( ) a static nonlinearity linear system of low-pass character (dampens high frequencies more than low ones) Fall 20 Automatic Control III:4 part 3 Page 2

4 CONDITIONS FOR OSCILLATION () ( ) ¹ Û Ý ¹ Assume (Ø) = sin Ø. As () is static, Û(Ø) will be periodic. Use a Fourier series Û(Ø) = ( sin Ø) = 0 () + () sin(ø + ()) + 2 () sin(2ø + 2 ()) + 3 () sin(3ø + 3 ()) + Assume that ( ) = () µ 0 () = 0. Fall 20 Automatic Control III:4 part 3 Page 3

5 Amplitude =, phase shift = 80 Æ ¾ CONDITIONS FOR OSCILLATION Assume that the higher frequencies can be neglected. Thus Ý(Ø) ()() sin (Ø + () + arg(())) Conditions for an undamped oscillation: ()() = () + arg(()) = + 2 Fall 20 Automatic Control III:4 part 3 Page 4

6 DESCRIBING FUNCTION Definition of describing function () = () () The condition for an undamped oscillation ()() = ( ) Procedure:. Determine the describing function (). 2. Investigate whether or not equation ( ) has a solution. 3. Determine if the oscillation will be maintained. Fall 20 Automatic Control III:4 part 3 Page 5

7 COMPUTATION OF THE DESCRIBING FUNCTION Set «= Ø. The nonlinear element sin «) = () sin(«+ ()) + ( = () «cos + () «sin + The describing function () = ()() = () + () Fourier coefficients () = 2 0 ( sin «) cos ««() = ( sin «) sin ««0 Hysteresis gives a complex-valued describing function. 2 Fall 20 Automatic Control III:4 part 3 Page 6

8 ANALYZING THE OSCILLATION If possible, solve the equation ()() = with respect to and. ( =the amplitude of an oscillation, before the nonlinearity; = the frequency of the oscillation). The equation can be treated graphically using a Nyquist curve and a plot of (): () = () intersection By reasoning as for the Nyquist theorem, one can examine if the oscillation is stable (the amplitude tends to remain constant) or not. Fall 20 Automatic Control III:4 part 3 Page 7

9 WILL THE OSCILLATION BE STABLE? Apply the Nyquist theorem ( () corresponds to in the linear case). For the case when ( ) has no poles in the right half plane: If () encloses the point () [ fixed], then will increase. If () does not enclose the point () [ fixed], then will decrease. Fall 20 Automatic Control III:4 part 3 Page 8

10 WILL THE OSCILLATION BE STABLE? Examples stable oscillation unstable oscillation G(iw) G(iw) Y f (C) C Y f (C) C Fall 20 Automatic Control III:4 part 3 Page 9

11 2 DESCRIBING FUNCTION Example Ideal relay () = 0 0 No phase shift, a gain depending on the amplitude. () = 0 cos ««+ ( ) cos ««= 0 () = () = 4 0 sin ««+ 2 ( ) sin ««= 4 Fall 20 Automatic Control III:4 part 3 Page 0

12 DESCRIBING FUNCTION Example, cont d ( ) = Ã + ) 2 () ideal relay ( Condition for oscillation () = () Ã + ) = 2 4 ( =µ = Ã 2 = 4 = 2Ã µ Fall 20 Automatic Control III:4 part 3 Page

13 DESCRIBING FUNCTION 2 0 Example, cont d C The oscillation is expected to be stable Fall 20 Automatic Control III:4 part 3 Page 2

14 DESCRIBING FUNCTION, Example, cont d Σ ¹ ¹ ¹ Ù 3 ( +) 2 Ý Æ Simulation y, u t Fall 20 Automatic Control III:4 part 3 Page 3

15 DESCRIBING FUNCTION Relay with hysteresis a complex-valued describing function: ÁÑ Ê À () increases 4À À () = where sin = 4À () = = 4À Ô 2 2 µ 4À 4À Fall 20 Automatic Control III:4 part 3 Page 4

16 PID DESIGN: AUTO-TUNING Idea: Identify and modify one point on the Nyquist curve. Force the system to self-oscillation by relay feedback (ideal or with hysteresis). + ÑΣ ¹ PID Relay ( ) ¹ ¹ ¹ Ö Ù Ý ¹ Õ Õ Õ If Ý oscillates with frequency Ó and amplitude Ó, then ( Ó Ó ) should be a solution to µ ( Ó ) = ( Ó )( Ó ) = ( Ó ) = Ó 4À Ó where sin Ó = Ó Fall 20 Automatic Control III:4 part 3 Page 5

17 AUTO-TUNING, cont d The parameters Ó and Ó can easily be determined experimentally. Let Ì + + È Á ( ) = Ã Choose the parameters to get the ( point ) È Á ( Ó Ó ) on the Nyquist curve to some desired location in. Ì Á A commonly used choice is to let = Ó, and then choose È Á ( ) to have a desired phase margin Ñ µ ( Ó ) È Á ( Ó ) = Ñ is desired. Fall 20 Automatic Control III:4 part 3 Page 6

18 Ì Ó Ì Ó AUTO-TUNING, cont d Since ( Ó ) = Ó Ó we must have 4À È ( Ó Á ) = 4À ( Ñ Ó Ó ) = 4À Ó cos( Ñ Ó ) ( + tan( Ñ Ó )) and since Ì + Ó È Á ( Ó ) = Ã the parameters should be chosen so that = Ã 4À Ó Ñ cos( ) Ó = Ñ tan( Ó ) Ó Ì Fall 20 Automatic Control III:4 part 3 Page 7

Final exam: Automatic Control II (Reglerteknik II, 1TT495)

Final exam: Automatic Control II (Reglerteknik II, 1TT495) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Automatic Control II (Reglerteknik II, TT495) Date: October 22, 2 Responsible examiner:

More information

Final exam: Computer-controlled systems (Datorbaserad styrning, 1RT450, 1TS250)

Final exam: Computer-controlled systems (Datorbaserad styrning, 1RT450, 1TS250) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Computer-controlled systems (Datorbaserad styrning, RT450, TS250) Date: December 9,

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Final exam: Automatic Control II (Reglerteknik II, 1TT495)

Final exam: Automatic Control II (Reglerteknik II, 1TT495) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Automatic Control II (Reglerteknik II, TT495) Date: October 6, Responsible examiner:

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa. ( ) X é X é Q Ó / 8 ( ) Q / ( ) ( ) : ( ) : 44-3-8999 433 4 z 78-19 941, #115 Z 385-194 77-51 76-51 74-7777, 75-5 47-55 74-8141 74-5115 78-3344 73-3 14 81-4 86-784 78-33 551-888 j 48-4 61-35 z/ zz / 138

More information

Differentiating Functions & Expressions - Edexcel Past Exam Questions

Differentiating Functions & Expressions - Edexcel Past Exam Questions - Edecel Past Eam Questions. (a) Differentiate with respect to (i) sin + sec, (ii) { + ln ()}. 5-0 + 9 Given that y =, ¹, ( -) 8 (b) show that = ( -). (6) June 05 Q. f() = e ln, > 0. (a) Differentiate

More information

Lecture 6 Describing function analysis

Lecture 6 Describing function analysis Lecture 6 Describing function analysis Today s Goal: To be able to Derive describing functions for static nonlinearities Predict stability and existence of periodic solutions through describing function

More information

Lecture 6 Describing function analysis

Lecture 6 Describing function analysis Lecture 6 Describing function analysis Today s Goal: To be able to Derive describing functions for static nonlinearities Predict stability and existence of periodic solutions through describing function

More information

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

B œ c   ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true System of Linear Equations variables Ð unknowns Ñ B" ß B# ß ÞÞÞ ß B8 Æ Æ Æ + B + B ÞÞÞ + B œ, "" " "# # "8 8 " + B + B ÞÞÞ + B œ, #" " ## # #8 8 # ã + B + B ÞÞÞ + B œ, 3" " 3# # 38 8 3 ã + 7" B" + 7# B#

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS Q J j,. Y j, q.. Q J & j,. & x x. Q x q. ø. 2019 :. q - j Q J & 11 Y j,.. j,, q j q. : 10 x. 3 x - 1..,,. 1-10 ( ). / 2-10. : 02-06.19-12.06.19 23.06.19-03.07.19 30.06.19-10.07.19 07.07.19-17.07.19 14.07.19-24.07.19

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Lab 2 Iterative methods and eigenvalue problems. Introduction. Iterative solution of the soap film problem. Beräkningsvetenskap II/NV2, HT (6)

Lab 2 Iterative methods and eigenvalue problems. Introduction. Iterative solution of the soap film problem. Beräkningsvetenskap II/NV2, HT (6) Beräkningsvetenskap II/NV2, HT 2008 1 (6) Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751 05 Uppsala Telefon:

More information

Exam in Systems Engineering/Process Control

Exam in Systems Engineering/Process Control Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 7-6- Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total number

More information

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2) Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. (a) Using the identity cos (A + B) º cos A cos B sin A sin B, rove that cos A º sin A. () (b) Show that sin q 3 cos q 3

More information

15 hij 60 _ip = 45 = m 4. 2 _ip 1 huo 9 `a = 36m `a/_ip. v 41

15 hij 60 _ip = 45 = m 4. 2 _ip 1 huo 9 `a = 36m `a/_ip. v 41 Name KEY Math 2 Final Review Unit 7 Trigonometric Functions. A water wheel has a radius of 8 feet. The wheel is rotating at 5 revolutions per minutes. Find the linear speed, in feet per second, of the

More information

An Improved Relay Auto Tuning of PID Controllers for SOPTD Systems

An Improved Relay Auto Tuning of PID Controllers for SOPTD Systems Proceedings of the World Congress on Engineering and Computer Science 7 WCECS 7, October 4-6, 7, San Francisco, USA An Improved Relay Auto Tuning of PID Controllers for SOPTD Systems Sathe Vivek and M.

More information

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Digital Communication System Introduction Bandlimited channels distort signals the result is smeared pulses intersymol interference

More information

probability of k samples out of J fall in R.

probability of k samples out of J fall in R. Nonparametric Techniques for Density Estimation (DHS Ch. 4) n Introduction n Estimation Procedure n Parzen Window Estimation n Parzen Window Example n K n -Nearest Neighbor Estimation Introduction Suppose

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

4.3 Laplace Transform in Linear System Analysis

4.3 Laplace Transform in Linear System Analysis 4.3 Laplace Transform in Linear System Analysis The main goal in analysis of any dynamic system is to find its response to a given input. The system response in general has two components: zero-state response

More information

Engineering Tripos Part IIB Nonlinear Systems and Control. Handout 3: Describing Functions

Engineering Tripos Part IIB Nonlinear Systems and Control. Handout 3: Describing Functions Engineering Tripos Part IIB Module 4F2 Nonlinear Systems and Control Handout 3: Describing Functions 1 Harmonic balance The describing function method (also called the method of harmonic balance) uses

More information

Optimization of a parallel 3d-FFT with non-blocking collective operations

Optimization of a parallel 3d-FFT with non-blocking collective operations Optimization of a parallel 3d-FFT with non-blocking collective operations Chair of Computer Architecture Technical University of Chemnitz Département de Physique Théorique et Appliquée Commissariat à l

More information

Distributed Real-Time Control Systems

Distributed Real-Time Control Systems Distributed Real-Time Control Systems Chapter 9 Discrete PID Control 1 Computer Control 2 Approximation of Continuous Time Controllers Design Strategy: Design a continuous time controller C c (s) and then

More information

Math 144 Activity #7 Trigonometric Identities

Math 144 Activity #7 Trigonometric Identities 144 p 1 Math 144 Activity #7 Trigonometric Identities What is a trigonometric identity? Trigonometric identities are equalities that involve trigonometric functions that are true for every single value

More information

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus Chapter 10 Conics, Parametric Equations, and Polar Coordinates 10.1 Conics and Calculus 1. Parabola A parabola is the set of all points x, y ( ) that are equidistant from a fixed line and a fixed point

More information

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system Magnets and Lattices - Accelerator building blocks - Transverse beam dynamics - coordinate system Both electric field and magnetic field can be used to guide the particles path. r F = q( r E + r V r B

More information

18.12 FORCED-DAMPED VIBRATIONS

18.12 FORCED-DAMPED VIBRATIONS 8. ORCED-DAMPED VIBRATIONS Vibrations A mass m is attached to a helical spring and is suspended from a fixed support as before. Damping is also provided in the system ith a dashpot (ig. 8.). Before the

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Introduction to Describing Functions Hanz Richter Mechanical Engineering Department Cleveland State University Introduction Frequency domain methods

More information

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications G G " # $ % & " ' ( ) $ * " # $ % & " ( + ) $ * " # C % " ' ( ) $ * C " # C % " ( + ) $ * C D ; E @ F @ 9 = H I J ; @ = : @ A > B ; : K 9 L 9 M N O D K P D N O Q P D R S > T ; U V > = : W X Y J > E ; Z

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' % 7 9 9 7 The two basic variable types in a connector potential (or across) variable and flow (or through) variable are not sufficient to describe in a numerically sound way the bi-directional flow of matter

More information

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods

More information

M 408 K Fall 2005 Inverse Trig Functions Important Decimal Approximations and Useful Trig Identities Decimal Approximations: p

M 408 K Fall 2005 Inverse Trig Functions Important Decimal Approximations and Useful Trig Identities Decimal Approximations: p M 408 K Fall 005 Inverse Trig Fnctions Imortant Decimal Aroimations an Usefl Trig Ientities Decimal Aroimations: 0 0000 0 0 0000 054 0500 6 0577 ( æ ö ç ø è 4 0785 0707 ; 0866 047 4 000 57 6 55 094 8 44

More information

Vectors. Teaching Learning Point. Ç, where OP. l m n

Vectors. Teaching Learning Point. Ç, where OP. l m n Vectors 9 Teaching Learning Point l A quantity that has magnitude as well as direction is called is called a vector. l A directed line segment represents a vector and is denoted y AB Å or a Æ. l Position

More information

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems IE 400 Principles of Engineering Management Graphical Solution of 2-variable LP Problems Graphical Solution of 2-variable LP Problems Ex 1.a) max x 1 + 3 x 2 s.t. x 1 + x 2 6 - x 1 + 2x 2 8 x 1, x 2 0,

More information

Continuous-time Fourier Methods

Continuous-time Fourier Methods ELEC 321-001 SIGNALS and SYSTEMS Continuous-time Fourier Methods Chapter 6 1 Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity

More information

Iterative Controller Tuning Using Bode s Integrals

Iterative Controller Tuning Using Bode s Integrals Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch

More information

Byung-Soo Choi.

Byung-Soo Choi. Grover Search and its Applications Bung-Soo Choi bschoi3@gmail.com Contents Basics of Quantum Computation General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric

More information

Table of Laplacetransform

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

More information

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides)

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides) Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform How we will get there? Periodic discrete-time signal representation by Discrete-time

More information

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0 HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.

More information

Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year

Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

Periodic monopoles and difference modules

Periodic monopoles and difference modules Periodic monopoles and difference modules Takuro Mochizuki RIMS, Kyoto University 2018 February Introduction In complex geometry it is interesting to obtain a correspondence between objects in differential

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

S u p e r v i s o r y C o m m i t t e e : T i n a G u r u c h a r r i, C h a i r M a r i a n n e S c h m i n k, M e m b e r

S u p e r v i s o r y C o m m i t t e e : T i n a G u r u c h a r r i, C h a i r M a r i a n n e S c h m i n k, M e m b e r T i e r r a D e s p i e r t a : A S o c i a l a n d P h y s i c a l S t u d y o f t h e A g r i c u l t u r e L a n d i n S a n t a C r u z, G a l a p a g o s, E c u a d o r A F i e l d P r a c t i c u

More information

Definition of Stability

Definition of Stability Definition of Stability Transfer function of a linear time-invariant (LTI) system Fs () = b 2 1 0+ b1s+ b2s + + b m m m 1s - - + bms a0 + a1s+ a2s2 + + an-1sn- 1+ ansn Characteristic equation and poles

More information

= 1 3. r in. dr in. 6 dt = 1 2 A in. dt = 3 ds

= 1 3. r in. dr in. 6 dt = 1 2 A in. dt = 3 ds . B. Consider the octagon slit u into eight isosceles triangles with vertex angle o and base angles o /. We want to calculate the aothem using the tangent half-angle formula and a right triangle with base

More information

Hello Future Calculus Level One Student,

Hello Future Calculus Level One Student, Hello Future Calculus Level One Student, This assignment must be completed and handed in on the first day of class. This assignment will serve as the main review for a test on this material. The test will

More information

Finding small factors of integers. Speed of the number-field sieve. D. J. Bernstein University of Illinois at Chicago

Finding small factors of integers. Speed of the number-field sieve. D. J. Bernstein University of Illinois at Chicago The number-field sieve Finding small factors of integers Speed of the number-field sieve D. J. Bernstein University of Illinois at Chicago Prelude: finding denominators 87366 22322444 in R. Easily compute

More information

Index. INDEX_p /15/02 3:08 PM Page 765

Index. INDEX_p /15/02 3:08 PM Page 765 INDEX_p.765-770 11/15/02 3:08 PM Page 765 Index N A Adaptive control, 144 Adiabatic reactors, 465 Algorithm, control, 5 All-pass factorization, 257 All-pass, frequency response, 225 Amplitude, 216 Amplitude

More information

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Gene expression experiments Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Gene expression experiments Question: Gene

More information

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv Ed S MArket NarROW Q urrrrrrrrrrrv } ] T O P [ { U S E R S G U I D E QUALITY U op e nt y p e fa q: For information on how to access the swashes and alternates, visit LauraWorthingtonType.com/faqs All operating

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

An Introduction to Optimal Control Applied to Disease Models

An Introduction to Optimal Control Applied to Disease Models An Introduction to Optimal Control Applied to Disease Models Suzanne Lenhart University of Tennessee, Knoxville Departments of Mathematics Lecture1 p.1/37 Example Number of cancer cells at time (exponential

More information

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk

More information

Exercises Automatic Control III 2015

Exercises Automatic Control III 2015 Exercises Automatic Control III 205 Foreword This exercise manual is designed for the course "Automatic Control III", given by the Division of Systems and Control. The numbering of the chapters follows

More information

The distribution of characters, bi- and trigrams in the Uppsala 70 million words Swedish newspaper corpus

The distribution of characters, bi- and trigrams in the Uppsala 70 million words Swedish newspaper corpus Uppsala University Department of Linguistics The distribution of characters, bi- and trigrams in the Uppsala 70 million words Swedish newspaper corpus Bengt Dahlqvist Abstract The paper describes some

More information

CONVEX OPTIMIZATION OVER POSITIVE POLYNOMIALS AND FILTER DESIGN. Y. Genin, Y. Hachez, Yu. Nesterov, P. Van Dooren

CONVEX OPTIMIZATION OVER POSITIVE POLYNOMIALS AND FILTER DESIGN. Y. Genin, Y. Hachez, Yu. Nesterov, P. Van Dooren CONVEX OPTIMIZATION OVER POSITIVE POLYNOMIALS AND FILTER DESIGN Y. Genin, Y. Hachez, Yu. Nesterov, P. Van Dooren CESAME, Université catholique de Louvain Bâtiment Euler, Avenue G. Lemaître 4-6 B-1348 Louvain-la-Neuve,

More information

Räkneövningar Empirisk modellering

Räkneövningar Empirisk modellering Räkneövningar Empirisk modellering Bengt Carlsson Systems and Control Dept of Information Technology, Uppsala University 5th February 009 Abstract Räkneuppgifter samt lite kompletterande teori. Contents

More information

IUnderstanding who feeds on whom and how often is the basis for

IUnderstanding who feeds on whom and how often is the basis for Acting as Well Known Particle IUnderstanding who feeds on whom and how often is the basis for The vertebral Silence Sea Lion as Scientist Variations on a theme of how to build a body that was laid down

More information

Summer 2017 Review For Students Entering AP Calculus AB/BC

Summer 2017 Review For Students Entering AP Calculus AB/BC Summer 2017 Review For Students Entering AP Calculus AB/BC Holy Name High School AP Calculus Summer Homework 1 A.M.D.G. AP Calculus AB Summer Review Packet Holy Name High School Welcome to AP Calculus

More information

FEEDBACK, STABILITY and OSCILLATORS

FEEDBACK, STABILITY and OSCILLATORS FEEDBACK, STABILITY and OSCILLATORS à FEEDBACK, STABILITY and OSCILLATORS - STABILITY OF FEEDBACK SYSTEMS - Example : ANALYSIS and DESIGN OF PHASE-SHIFT-OSCILLATORS - Example 2: ANALYSIS and DESIGN OF

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

Causality and Boundary of wave solutions

Causality and Boundary of wave solutions Causality and Boundary of wave solutions IV International Meeting on Lorentzian Geometry Santiago de Compostela, 2007 José Luis Flores Universidad de Málaga Joint work with Miguel Sánchez: Class. Quant.

More information

Exam in Systems Engineering/Process Control

Exam in Systems Engineering/Process Control Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 27-6-2 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total

More information

Glasgow eprints Service

Glasgow eprints Service Kalna, K. and Asenov, A. (1) Multiple delta doping in aggressively scaled PHEMTs. In, Ryssel, H. and Wachutka, G. and Grunbacher, H., Eds. Solid-State Device Research Conference, 11-13 September 1, pages

More information

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS International Workshop Quarkonium Working Group QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS ALBERTO POLLERI TU München and ECT* Trento CERN - November 2002 Outline What do we know for sure?

More information

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh. 1 From To Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh. The Director General, Town & Country Planning Department, Haryana, Chandigarh. Memo No. Misc-2339

More information

Scandinavia SUMMER / GROUPS. & Beyond 2014

Scandinavia SUMMER / GROUPS. & Beyond 2014 / & 2014 25 f f Fx f 211 9 Öæ Höf æ å f 807 ø 19 øø ä 2111 1 Z F ø 1328 H f fö F H å fö ö 149 H 1 ö f Hø ø Hf 1191 2089 ä ø å F ä 1907 ä 1599 H 1796 F ø ä Jä J ( ) ø F ø 19 ö ø 15 á Å f 2286 æ f ó ä H

More information

Applications of Discrete Mathematics to the Analysis of Algorithms

Applications of Discrete Mathematics to the Analysis of Algorithms Applications of Discrete Mathematics to the Analysis of Algorithms Conrado Martínez Univ. Politècnica de Catalunya, Spain May 2007 Goal Given some algorithm taking inputs from some set Á, we would like

More information

Analyzing Control Problems and Improving Control Loop Performance

Analyzing Control Problems and Improving Control Loop Performance OptiControls Inc. Houston, TX Ph: 713-459-6291 www.opticontrols.com info@opticontrols.com Analyzing Control s and Improving Control Loop Performance -by Jacques F. Smuts Page: 1 Presenter Principal Consultant

More information

Mutually orthogonal latin squares (MOLS) and Orthogonal arrays (OA)

Mutually orthogonal latin squares (MOLS) and Orthogonal arrays (OA) and Orthogonal arrays (OA) Bimal Roy Indian Statistical Institute, Kolkata. Bimal Roy, Indian Statistical Institute, Kolkata. and Orthogonal arrays (O Outline of the talk 1 Latin squares 2 3 Bimal Roy,

More information

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

More information

2 Hallén s integral equation for the thin wire dipole antenna

2 Hallén s integral equation for the thin wire dipole antenna Ú Ð Ð ÓÒÐ Ò Ø ØØÔ»» Ѻ Ö Ùº º Ö ÁÒغ º ÁÒ Ù ØÖ Ð Å Ø Ñ Ø ÎÓк ÆÓº ¾ ¾¼½½µ ½ ¹½ ¾ ÆÙÑ Ö Ð Ñ Ø Ó ÓÖ Ò ÐÝ Ó Ö Ø ÓÒ ÖÓÑ Ø Ò Û Ö ÔÓÐ ÒØ ÒÒ Ëº À Ø ÑÞ ¹Î ÖÑ ÞÝ Ö Åº Æ Ö¹ÅÓ Êº Ë Þ ¹Ë Ò µ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò

More information

Digital Control Systems

Digital Control Systems Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

This document has been prepared by Sunder Kidambi with the blessings of

This document has been prepared by Sunder Kidambi with the blessings of Ö À Ö Ñ Ø Ò Ñ ÒØ Ñ Ý Ò Ñ À Ö Ñ Ò Ú º Ò Ì ÝÊ À Å Ú Ø Å Ê ý Ú ÒØ º ÝÊ Ú Ý Ê Ñ º Å º ² ºÅ ý ý ý ý Ö Ð º Ñ ÒÜ Æ Å Ò Ñ Ú «Ä À ý ý This document has been prepared by Sunder Kidambi with the blessings of Ö º

More information

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 REDCLIFF MUNICIPAL PLANNING COMMISSION FOR COMMENT/DISCUSSION DATE: TOPIC: April 27 th, 2018 Bylaw 1860/2018, proposed amendments to the Land Use Bylaw regarding cannabis

More information

Process Identification Using Relay Feedback with a Fractional Order Integrator

Process Identification Using Relay Feedback with a Fractional Order Integrator Preprints of the 9th World Congress The International Federation of Automatic Control Process Identification Using Relay Feedback with a Fractional Order Integrator Zhuo Li, Chun Yin,, YangQuan Chen, and

More information

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2) Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

More information

Full file at 2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT

Full file at   2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT 2CT.2 UNIT IMPULSE 2CT.2. CHAPTER 2CT 2CT.2.2 (d) We can see from plot (c) that the limit?7 Ä!, B :?7 9 œb 9$ 9. This result is consistent with the sampling property: B $ œb $ 9 9 9 9 2CT.2.3 # # $ sin

More information

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform

More information

. ffflffluary 7, 1855.

. ffflffluary 7, 1855. x B B - Y 8 B > ) - ( vv B ( v v v (B/ x< / Y 8 8 > [ x v 6 ) > ( - ) - x ( < v x { > v v q < 8 - - - 4 B ( v - / v x [ - - B v B --------- v v ( v < v v v q B v B B v?8 Y X $ v x B ( B B B B ) ( - v -

More information

EXPERIMENTAL METHODS QUIZ #1 SYSTEM QUESTION. The equations governing the proportional control of the forward speed of a certain ship are:

EXPERIMENTAL METHODS QUIZ #1 SYSTEM QUESTION. The equations governing the proportional control of the forward speed of a certain ship are: EXPERIMENTAL METHODS QUIZ #1 SYSTEM QUESTION The equations governing the proportional control of the forward speed of a certain ship are: Plant X dr/dt + Y R = P + D Drive J dp/dt + I P = Q Sensor A dw/dt

More information

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure Product Overview XI025100V036NM1M Input Voltage (Vac) Output Power (W) Output Voltage Range (V) Output urrent (A) Efficiency@ Max Load and 70 ase Max ase Temp. ( ) Input urrent (Arms) Max. Input Power

More information

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim International Research Exchange Meeting of Ship and Ocean Engineering in Osaka, December 1-, Osaka, Japan Comparative Study on Added Resistance Computation Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0. 6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

More information

13th IFAC Symposium on System Identification

13th IFAC Symposium on System Identification ESTIMATING PARAMETERS IN A LUMPED PARAMETER SYSTEM WITH FIRST PRINCIPLE MODELING AND DYNAMIC EXPERIMENTS RAdeCallafon UniversityofCalifornia,SanDiego Dept of Mechanical and Aerospace Engineering 9500 Gilman

More information

Block vs. Stream cipher

Block vs. Stream cipher Block vs. Stream cipher Idea of a block cipher: partition the text into relatively large (e.g. 128 bits) blocks and encode each block separately. The encoding of each block generally depends on at most

More information

CHAPTER # 9 ROOT LOCUS ANALYSES

CHAPTER # 9 ROOT LOCUS ANALYSES F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system

More information

JEE-ADVANCED MATHEMATICS. Paper-1. SECTION 1: (One or More Options Correct Type)

JEE-ADVANCED MATHEMATICS. Paper-1. SECTION 1: (One or More Options Correct Type) JEE-ADVANCED MATHEMATICS Paper- SECTION : (One or More Options Correct Type) This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR

More information