Control of Electric Field Stress in Gas Insulating Busduct using Nano-Nitride Fillers

Size: px
Start display at page:

Download "Control of Electric Field Stress in Gas Insulating Busduct using Nano-Nitride Fillers"

Transcription

1 , pp Control of Electric Field Stress in Gas Insulating Busduct using Nano-Nitride Fillers Hannah Monica Anoop 1, G. V. Nagesh Kumar 1, K Appala Naidu 1, D. Deepak Chowdary 2 and B Venkateswara Rao 3 1 Vignan s Institute of Information Technology, Visakhapatnam, India 2 Dr. L. Bullaya College of Engineering for Women, Visakhapatnam, India 3 V R Siddhartha Engineering College (Autonomous), Vijayawada, India Abstract. Gas Insulated Substation (GIS) gains an ever increasing importance due to the ever growing demand for electricity and energy density in metropolitan cities. The insulation integrity of the spacer ensures the reliability of GIS. So, it is of at most importance that the electric field distribution along the spacer s surface is simulated and an optimization of the same is done in order to prevent the flashovers especially at the triple junction (TJ) formed by SF6 gas, the spacer and the electrode. The distribution of electric field depends considerably on the geometric shape of the spacer. Epoxy resin exhibits excellent electrical, thermal and mechanical properties. This can be further enhanced to a great extent by reinforcing epoxy with nano filler mixture as a dielectric coating. The condition assessment can be done using Finite Element Method, one of the proven methods for calculating the electric field density at various points under consideration and the condition enhancement is done by changing the filler concentration or by changing the thickness of the dielectric coating. In this paper, the distribution of along the spacer s surface is plotted, the relative permittivity, breakdown voltage, thermal conductivity and maximum electric field are calculated for a conical spacer are determined and analyzed for different filler concentrations and different thickness of the dielectric coating. Keywords: Electric Field; Gas Insulated Systems; Nano Nitrides; Polymeric Insulators 1 Introduction Gas Insulated Systems (GIS) which are highly reliable, compact and pollution-free have a potential to lead to a breakthrough in the Indian power scenario whose major challenges are rapid urbanization, increasing energy density and scarcity of land. The reliability of Gas Insulated Substations is of at most importance as any small failure can elevate to a major problem in the grid it is connected to resulting in blackouts in the power system. A survey of the failures in Indian GIS has shown that almost 30% of the failures are due to selection of wrong materials, improper material substitutions and material failures [1]. The condition assessment and enhancement of same is a thrust area of the research and has drawn the attention of many researchers. ISSN: ASTL Copyright 2017 SERSC

2 As the compactness of GIS is increased, the electric field stress developed in the Gas Insulated Busduct (GIB) comprising of the solid insulator called spacer, gaseous insulator and the conductor, increases. A HV system experiences extreme conditions which include high electric fields, high temperatures, mechanical stress and intense radiations. From [2], the electric field stress developed at the ends of the solid insulator increases at certain conditions leading to partial discharges weakening the dielectric strength and early degradation. Under severe conditions, a complete flashover occurs. It should have the capability to withstand not only regular voltages but also over voltages caused by lightning, switching etc. Upgradation to ultra-high voltage lines and extra-high voltage lines necessitates insulating materials which can withstand high voltages, polarity reversal and space charge accumulation. Generally, pure SF 6 or mixture of SF 6 and N 2 is used at high pressure are used as the gaseous insulator. The solid insulators called spacers which contain the conductors are also used to support and separate various sections in GIB. Spacers produce a complex dielectric field and intensify the electric field on the spacer s surface. The dielectric strength of SF 6 is sensitive to maximum electric field. The dielectric strength along the surface of the spacer is generally lower than that of gaseous medium [3]. So the spacers should be designed such that, more or less a uniform electric field distribution occurs along the spacer s surface which will be more reliable and flashover free. High operating temperatures and accumulation of heat causes heating up of the equipment. It results in looseness between the devices and consequent reduction of its lifespan. So the enhancement of the thermal properties of the insulating materials is very important. Other factors like particle dispersion, electric erosion, electrical treeing and interface properties greatly affect the breakdown voltage. The future of the power systems lies in the progress of the insulating materials with superior thermal, mechanical and electrical properties. The development of polymers which conduct heat through vibration of atoms, groups and chains, led to the synthetic materials like varnish, resins, impregnated insulating fiber and composites [4] which had better insulating properties to be used in even extreme conditions. In [5], the performance of the spacers in various shapes like cone, smooth disc and corrugated disc has been reviewed. The intensification of the local electric field which is a major problem has been considered in [6] in a conetype spacer fitted between the flanges in GIB. Various techniques have been implemented to obtain improved insulating properties and uniform electric field but with the limitation of a complex geometry of the spacer rendering it almost impossible to manufacture. The breakdown of dielectric occurs at submicron or nanoscale weak points like interface between dielectric and electrode or other interface regions within the dielectric. In 1994, Lewis introduced the concept of nano-dielectrics [7]. Investigations have proved that epoxy with nano-composites exhibit superior electrical and mechanical properties when compared to pure epoxy resin and epoxy resin with micro-fillers at low concentrations [8]. It was proved that the permittivity depends greatly on the type and size of filler [9], combination of matrix and filler and the smoothness of the samples [10]. In [11], it was shown that the epoxy nanocomposites accumulate lesser charge compared to that of the clean epoxy resins. From [12], it is shown that the charge dynamics are faster in epoxy nano-composites 2 Copyright 2017 SERSC

3 and it is observed most evidently in case of negative charges. They exhibit a high resistance towards partial discharges and electrical treeing and low dissipation factor. Research has shown orderly arrangement of spherulite structures which prevents the development of electric erosion helping the polymers to resist corona and partial discharge [13-14]. The thermal conductivity of the dielectrics can be improved by adding nanoparticles. By changing the amount, type and surface modification method the thermal properties can be enhanced. Various fillers such as Al 2O 3, BN, AIN and BNNT have been modified and added to different matrices, which include polyamide, epoxy and silicone rubber. The zone of interaction between the polymer matrix and nanoparticles is considered as an independent area. When nanoparticles are in isolated dispersion, the carriers are restrained in the interaction area. This results in the reduction of the density of charge carriers as well as the mobility of the charge carriers. The thickness of the interaction zone increases with an increase in the filler concentration which greatly increases the mobility and density of the carriers. The interaction strength between the polymer matrix and the nanoparticles greatly affects the thickness of the interaction zone. The incorporation of nanofillers into the polymer matrix results in a structural change of polymer caused by the polymer-nanofiller interaction. Using inorganics nanofillers like aluminum-nitride and boron-nitride in polymeric matrices reduces the cost, improves the fire resistance, mechanical characteristics like tensile strength and permittivity. In this paper, the distribution of electric field along the spacer s surface coated with dielectric coatings of nanonitrides with different concentrations is calculated using Finite Element Method (FEM). The overall insulation integrity of GIB is determined. 2 Calculation of Relative Permitivity The electric field in a given volume will be weakened when a material whose dielectric constant is high is placed in it. Polyethylene can be placed between the inner conductor and the outer enclosure in a coaxial cable. Epoxy/epoxy based nanocomposites are preferred insulating materials for electrical applications for bushings, GIS spacers etc. In epoxy nano composite, nanocomposites play a vital part in the enhancement of the properties of epoxy because the permittivities of fillers are high. Due to the higher individual permittivities of the fillers and on combining with epoxy resin overall permittivity of the composite increases when compared to net epoxy and epoxy micro composite. The filler loading can considered up to certain extent based on the advantage of the interaction zone. It filler concentration is increased to a high value which leads to over lapping of the interaction zone between polymer matrix and filler due to which conductivity increases. The overlapping of the nanoparticles in epoxy nanocomposite depends upon the rate of dispersion of nanoparticles in the epoxy resin. The permittivity of a two phase dielectric satisfies the Lichtenecker-Rother mixing rule which can be extended and written as shown in equation (1) Copyright 2017 SERSC 3

4 c Log xlog ylog zlog (1) c where is resultant composite permittivity, 1,, and epoxy and x and y, are the concentrations of filler and polymer. 2 3 are the permittivities of the filler 3 Breakdown Voltage For transmission and distribution of electric power three-phase common enclosure GIB is used GIS. Inner surface of the bus duct is dielectric coated with epoxy nanocomposites. To determine the breakdown voltage in terms of coating thickness and permittivity can be written as -1 v = v 1+ tε r b d where t is the thickness in µm, V is the voltage applied, d is the gap and ɛ r is the relative permittivity. The use of without surface treatment of nanofillers in epoxy nanocomposite there is no changes in breakdown voltage. The breakdown voltage is calculated at γ is (2) 4 Thermal Conductivites The nanofillers have the individual thermal conductivity values are high. The epoxy resin thermal conductivity is 0.168w/m.k. The thermal properties of epoxy resin, nanocomposites are added to the matrix. The thermal conductivity is predicted from the Agari and Uno model; Logk =.c.logk + 1-.Log c.k c 1 f 1 m where, c 1 and c 2 are the adjustable constants, k f is the thermal conductivity of the filler, k m is the thermal conductivity of polymer matrix, k c is the resultant thermal conductivity, Φ is the volume fraction of the filler additives. w f w 1 w m (3) (4) where w is weight fraction, ρ f is the density of the filler, ρ m is the density of polymer matrix. The weight percentage of nanofillers increase then thermal conductivity of epoxy increases well. 4 Copyright 2017 SERSC

5 5 Results and Discussions The filler concentrations of aluminium nitride are varied and variation of various parameters like resultant permittivity, break down voltage and maximum electric field are calculated and presented in Table 1. As the filler concentrations of aluminium nitride are increased there is a gradual increase from 3.61 (for filler concentration of 0.2) to 4.52 (for filler concentration of 10). The break down voltages are calculated for various filler concentrations of aluminium nitride. It is observed that with the decrease in the thickness, there is an increase in the breakdown voltage. However, there is a minor change in the maximum Electric field from 1.14 to As the filler concentrations of Boron nitride are increased there is a gradual increase from 3.60 (for filler concentration of 0.2) to 4.14 (for filler concentration of 10). The Break down voltages is calculated for various filler concentrations of Boron nitride. It is observed that with the decrease in the thickness, there is an increase in the breakdown voltage. However, there is a minor change in the maximum Electric field from 1.14 to Table 1. Variation of Various Parameters with Aluminium Nitride Filler Concentration Filler Concentratio n Resultant Permitivity Breakdown Voltage at 40µm Breakdown Voltage at 130 µm Maximum Electric Field The variation of relative permittivity with filler concentration of aluminium nitride and boron nitride are plotted in Fig 1. It is observed that there is a linear increase in permittivity with increase in filler concentrations. Permittivity with aluminium nitride filler concentration is more than that of boron nitride filler concentration. Copyright 2017 SERSC 5

6 Fig. 1. Plots between permittivity and filler concentration 6 Conclusion The flashovers in critical areas which lead to complete breakdown of the insulators can be prevented during the design by having a precise knowledge of the distribution of the electric filed. The electrostatic field developed is greatly influenced by the geometric shape of the electrode. The electric field distribution along the electrode surface and the dielectric surface has to be carefully considered during the design and optimization of the high voltage equipment. The model has been developed for a single phase enclosure with an objective to obtain a quasi-stationary electric field distribution. Nano composites enhanced the electrical and thermal strengths of insulating materials in a gas insulated bus duct. Nitrides like aluminum nitride and boron nitride enhanced the break down voltage and electric field. References 1. V. Aaradhi and K. Gaidhani,: Special problems in gas insulated substations (GIS) and their effects on indian power system, 2012 IEEE International Conference on Power System Technology (POWERCON), Auckland, pp. 1-5, (2012). 2. Marungsri,W. Onchantuek, A. Oonsivilai and T. Kulworawanichpong,: Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method, pp ,International Journal of Electrical and Computer Engineering,(2010). 3. T.Hasegawa. K. Yamaji, M. Hatano, H. Aoyagi, Y. Taniguchi and A.Kobayashi,: DC Dielectric Characteristics And Conception Of Insulation Design for DC GIS,vol. 2. no.4, pp , IEEE Transactions On Power Delivery, (1996). 4. Lei, Q.: Recent progress of engineering dielectrics, Science Press, Beijing, 1st edn. (1999). 5. J.C.Cronin, E.R.Perry,: Optimization of Insulators for Gas Insulated Systems,vol.92, no.2,pp , IEEE Transactions on Power Apparatus and Systems, (1973). 6. H. Tsuboi,T. Misaki,:Optimization of Electrode and Insulator Contours by Using Newton Method, vol. 106A, pp. 307_314, IEEE Trans. (1986). 6 Copyright 2017 SERSC

7 7. Lewis, T.J.,:Nanometric Dielectrics,vol.1, pp , IEEE Trans. Dielectr. Electr. Insul. (1994). 8. Singha, S.; Thomas, M.J,: Dielectric properties of epoxy nanocomposites,vol.15, pp.12 23, IEEE Trans. Dielectr. Electr. Insul.(2008). 9. Kadhim, M.J.; Abdullah, A.K.; Al-Ajaj, I.A.; Khalil, A.S,: Dielectric properties of epoxy/al2o3 nanocomposites,vol.3, pp , Int. J. Appl. Innov. Eng. Manag. (2014). 10. Lau, K.Y., Vaughan, A.S., Chen, G.: Nanodielectrics: pportunities and challenges, vol.31, issue.4, pp , IEEE Electr. Insul. Mag., (2015). 11. Castellon, J.; Nguyen, H.N.; Agnel, S.; Toureille, A.Frechette, M.; Savoie, S.; Krivda, A.; Schmidt, L.E,: Electrical properties analysis of micro and nano composite epoxy resin materials,vol.18, pp , IEEE Trans. Dielectr. Electr. Insul. (2011). 12. Fabiani, D.; Montanari, G.C.; Dardano, A.; Guastavino, G.; Testa, L.; Sangermano, M.,: Space charge dynamics in nanostructured epoxy resin. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, Quebec, QC, Canada, October 2008; pp , (2008). 13. Maity, P., Basu, S., Parameswaran, V..: Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges, vol.15, no.1, pp , IEEE Trans.Dielectr. Electr. Insul., (2008). 14. Kozako, M., Okazaki, Y., Hikita, M,: Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity, th IEEE Int. Conf. on Solid Dielectrics, pp. 1 4, (2010). Copyright 2017 SERSC 7

Electric Field Stress Calculation for different spacer types in Bus Duct

Electric Field Stress Calculation for different spacer types in Bus Duct 958 Electric Field Stress Calculation for different spacer types in Bus Duct Sayed A. Ward 1, G.M.Turky 2, Doaa M. shabayek 3 1 Head of Elect. Eng. Dept., Banha University, Cairo, Egypt 2 Head of microwave

More information

International Journal of Advances in Engineering & Technology, May IJAET ISSN: D. Deepak Chowdary 1, J.Amarnath 2

International Journal of Advances in Engineering & Technology, May IJAET ISSN: D. Deepak Chowdary 1, J.Amarnath 2 ELECTRIC FIELD STRESS ANALYSIS FOR A COMPOSITE CONE TYPE SPACER DESIGNED FOR UNIFORM ELECTRIC FIELD DISTRIBUTION ON SPACER SURFACE IN THE PRESENCE OF A WIRE LIKE PARTICLE D. Deepak Chowdary 1, J.Amarnath

More information

PARTICLE TRAJECTORIES IN A THREE PHASE COMMON ENCLOSURE GAS INSULATED BUSDUCT WITH MONTE CARLO TECHNIQUE

PARTICLE TRAJECTORIES IN A THREE PHASE COMMON ENCLOSURE GAS INSULATED BUSDUCT WITH MONTE CARLO TECHNIQUE PARTICLE TRAJECTORIES IN A THREE PHASE COMMON ENCLOSURE GAS INSULATED BUSDUCT WITH MONTE CARLO TECHNIQUE M. Venu Gopala Rao 1, J. Amarnath 2 and S. Kamakshaiah 3 1 QIS College of Engineering and Technology,

More information

Comparative Analysis of Dielectric Properties of Enamel Filled with Various Nanofillers such as ZrO 2, Al 2 O 3, CNT and ZnO

Comparative Analysis of Dielectric Properties of Enamel Filled with Various Nanofillers such as ZrO 2, Al 2 O 3, CNT and ZnO Comparative Analysis of Dielectric Properties of Enamel Filled with Various Nanofillers such as,, and D. Edison Selvaraj Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering

More information

Analysis of Very Fast Transients in EHV Gas Insulated Substations

Analysis of Very Fast Transients in EHV Gas Insulated Substations Analysis of Very Fast Transients in EHV Gas Insulated Substations A.Raghu Ram, k. Santhosh Kumar raghuram_a@yahoo.com,ksanthosheee@gmail.com Abstract: Gas insulated switchgear (GIS) has been in operation

More information

Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy Resin/TiO 2

Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy Resin/TiO 2 ETASR - Engineering, Technology & Applied Science Research Vol. 3, o. 5, 2013, 511-515 511 Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy

More information

Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique

Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique R. Sarathi, M. G. Danikas, Y. Chen, and T. Tanaka Abstract In the present work, Pulsed Electro Acoustic (PEA)

More information

J. Electrical Systems 10-3 (2014): Regular paper

J. Electrical Systems 10-3 (2014): Regular paper G.V.Nagesh Kumar 1,*, Amarnath Jinka 2 Regular paper Assessing the Risk of Failure due to Particle Contamination in GIS under various Coefficient of Restitutions JES Journal of Electrical Systems The development

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING UNIT 1: BREAKDOWN IN SOLIDS 1.) Introduction: The solid dielectric materials are used in all kinds of electrical apparatus and devices to insulate current carrying part from another when they operate at

More information

Computation of Electric Field for FGM Spacer Using Di-Post Insulator in GIS

Computation of Electric Field for FGM Spacer Using Di-Post Insulator in GIS International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 4 (2012), pp. 465-474 International Research Publication House http://www.irphouse.com Computation of Electric Field for

More information

INORGANIC NANOFILLER EFFECTS ON RESISTIVITY AND ABSORPTION CURRENTS IN LOW DENSITY POLYETHYLENE NANOCOMPOSITES

INORGANIC NANOFILLER EFFECTS ON RESISTIVITY AND ABSORPTION CURRENTS IN LOW DENSITY POLYETHYLENE NANOCOMPOSITES INORGANIC NANOFILLER EFFECTS ON RESISTIVITY AND ABSORPTION CURRENTS IN LOW DENSITY POLYETHYLENE NANOCOMPOSITES ILONA PLESA 1, FLORIN CIUPRINA 1, PETRU V. NOTINGHER 1, DENIS PANAITESCU 2 The study of the

More information

Breakdown Characteristic of LLDPE-NR Nanocomposite using High Voltage Direct Current (HVDC) Test

Breakdown Characteristic of LLDPE-NR Nanocomposite using High Voltage Direct Current (HVDC) Test Breakdown Characteristic of LLDPE-NR Nanocomposite using High Voltage Direct Current (HVDC) Test N. A. M. Jamail 1,N.A.A.N Zarujhan 2 1,2 Faculty of Electrical and Electronic Engineering Universiti Tun

More information

Performance of SF 6 GIB under the influence of power frequency voltages

Performance of SF 6 GIB under the influence of power frequency voltages Performance of SF 6 GIB under the influence of power frequency voltages L.Rajasekhar Goud (Corresponding author) EEE Department, G.Pulla Reddy Engineering College, Kurnool, India E-mail: lrs_76@rediffmail.com

More information

Comparison of Radial Movement of Metallic Particles in a Single Phase Gas Insulated Busduct

Comparison of Radial Movement of Metallic Particles in a Single Phase Gas Insulated Busduct International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 4, Number 2 (2011), pp. 211-220 International Research Publication House http://www.irphouse.com Comparison of Radial

More information

EFFECTS OF TEMPERATURE AND NANOPARTICLES ON DIELECTRIC PROPERTIES OF PVC

EFFECTS OF TEMPERATURE AND NANOPARTICLES ON DIELECTRIC PROPERTIES OF PVC U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015 ISSN 2286-3540 EFFECTS OF TEMPERATURE AND NANOPARTICLES ON DIELECTRIC PROPERTIES OF Florin CIUPRINA 1, Laura ANDREI 2, In this paper, the influence of

More information

Some Aspects of Stress Distribution and Effect of Voids Having Different Gases in MV Power Cables

Some Aspects of Stress Distribution and Effect of Voids Having Different Gases in MV Power Cables IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 5, Issue 6 (May. - Jun. 2013), PP 16-22 Some Aspects of Stress Distribution and Effect of

More information

Numerical Calculation and Analysis on the Surface Electric Field Characteristics of Hot-Line Robot

Numerical Calculation and Analysis on the Surface Electric Field Characteristics of Hot-Line Robot 2017 International Conference on Computer Science and Application Engineering (CSAE 2017) ISBN: 978-1-60595-505-6 Numerical Calculation and Analysis on the Surface Electric Field Characteristics of Hot-Line

More information

CHAPTER-I INTRODUCTION. The increasing demand for electricity and the growing energy

CHAPTER-I INTRODUCTION. The increasing demand for electricity and the growing energy 1 CHAPTER-I INTRODUCTION 1.1 INTRODUCTION The increasing demand for electricity and the growing energy demand in metropolitan cities have made it necessary to extend the existing high voltage network right

More information

Electric Field Analysis and Experimental Evaluation of 400 kv Silicone Composite Insulator

Electric Field Analysis and Experimental Evaluation of 400 kv Silicone Composite Insulator Electric Field Analysis and Experimental Evaluation of 400 kv Silicone Composite Insulator M. Nageswara Rao, N. Sumathi, V. S. N. K. Chaitanya International Science Index, Electronics and Communication

More information

CHAPTER 2 ESTIMATION OF BREAKDOWN VOLTAGES IN SMALL INSULATION GAPS AN EMPIRICAL APPROACH

CHAPTER 2 ESTIMATION OF BREAKDOWN VOLTAGES IN SMALL INSULATION GAPS AN EMPIRICAL APPROACH 17 CHAPTER 2 ESTIMATION OF BREAKDOWN VOLTAGES IN SMALL INSULATION GAPS AN EMPIRICAL APPROACH 2.1 INTRODUCTION Insulation materials of different types viz. gaseous, liquid and solid are used to make the

More information

Narapareddy Rama Rao 1, J.Amarnath 2, E.Arunkumar 3, T.Srinivas 4

Narapareddy Rama Rao 1, J.Amarnath 2, E.Arunkumar 3, T.Srinivas 4 International Journal of Engineering Research and Development e-issn: 78-67X, p-issn: 78-8X, www.ijerd.com Volume 6, Issue 7 (April 13), PP. 6-14 Influence of Free Metallic Dimensions on Its Movement in

More information

A Novel Optimized Design for Busbar Structures using Finite Element Methods

A Novel Optimized Design for Busbar Structures using Finite Element Methods A Novel Optimized Design for Busbar Structures using Finite Element Methods Xiaojuan Sun 1, Shuhong Wang, Ruilei Gong,3 1 School of Electronic Information Engeering,Xi an Technological University Xi an,71001,china

More information

Investigation and Analysis of Inception Voltage and Field Distribution in Power Cables with Internal Cavities in Dielectric

Investigation and Analysis of Inception Voltage and Field Distribution in Power Cables with Internal Cavities in Dielectric Investigation and Analysis of Inception Voltage and Field Distribution in Power Cables with Internal Cavities in Dielectric A. A. Hossam-Eldin Electrical Eng. Department, Faculty of Engineering, Alexandria

More information

Estimation of the Electric Field and Potential Distribution on Three Dimension Model of Polymeric Insulator Using Finite Element Method

Estimation of the Electric Field and Potential Distribution on Three Dimension Model of Polymeric Insulator Using Finite Element Method Estimation of the Electric Field and Potential Distribution on Three Dimension Model of Polymeric Insulator Using Finite Element Method Rifai Ahmed Rifai, Ali Hassan Mansour, Mahmoud Abdel Hamid Ahmed

More information

Experimental Study of Space Charge Characteristics in Thin Films of Polyvinyl Chloride Nanocomposites

Experimental Study of Space Charge Characteristics in Thin Films of Polyvinyl Chloride Nanocomposites International Journal on Electrical Engineering and Informatics - Volume 7, Number 1, March 2015 Experimental Study of Space Charge Characteristics in Thin Films of Polyvinyl Chloride Nanocomposites Ahmed

More information

http://www.diva-portal.org This is the published version of a paper presented at 18th International Symposium on High Voltage Engineering (ISH), 213 Korea. Citation for the original published paper: Wang,

More information

Electric Field and Potential Distributions along Non-Ceramic Insulators with Water Droplets. Integrated Engineering Software - Website Links

Electric Field and Potential Distributions along Non-Ceramic Insulators with Water Droplets. Integrated Engineering Software - Website Links Electric Field and Potential Distributions along Non-Ceramic Insulators with Water Droplets ABSTRACT The electric field and potential distributions along wet non-ceramic insulators are calculated using

More information

World Academy of Science, Engineering and Technology

World Academy of Science, Engineering and Technology Effect of Surface Tracking on LLDPE-NR/TiO2 Nanocomposite Conductivity Using PDC Technique M. S. A. Aziz 1, N. A. Muhamad 1,N.A.M.Jamail 12, Q. E. Kamarudin 3 1 Institute of High Voltage & High Current,

More information

On Designing of a High Voltage Standard Capacitor Using a Semi-Analytical Field Computation Method

On Designing of a High Voltage Standard Capacitor Using a Semi-Analytical Field Computation Method Proc. 2016 Electrostatics Joint Conference 1 On Designing of a High Voltage Standard Capacitor Using a Semi-Analytical Field Computation Method N. K. Kishore Professor, Dept. of Electrical Engineering

More information

Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics

Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics N. Lavesson *1 and C. B. Doiron 2 1 ABB Corporate Research, Västerås, Sweden, 2 ABB Corporate Research, Dättwil, Switzerland *Corresponding

More information

3D modeling of Electrical Field and Electrical Potential in different contamination condition in Polymeric Insulator

3D modeling of Electrical Field and Electrical Potential in different contamination condition in Polymeric Insulator 3D modeling of Electrical Field and Electrical Potential in different contamination condition in Polymeric Insulator A. Majzoobi *, I. A. Joneidi, S. Mohajer, H.Mohseni, A. A. Shayegani High Voltage Lab,

More information

Dielectric Properties of Epoxy Nanocomposites

Dielectric Properties of Epoxy Nanocomposites 12 S. Singha and M. J. Thomas: Dielectric Properties of Epoxy Nanocomposites Dielectric Properties of Epoxy Nanocomposites Santanu Singha and M. Joy Thomas High Voltage Laboratory Department of Electrical

More information

STUDIES ON LIGHTNING CHARACTERISTICS

STUDIES ON LIGHTNING CHARACTERISTICS STUDIES ON LIGHTNING CHARACTERISTICS Lohit Singh.G 1, Piyush Kankariya 1, Rakesh Kumar 1, Varun.P 1, Shreyas 1, Madhu Palati 2 1 UG Student, 2 Assistant Professor, 1, 2 Department of Electrical & Electronics

More information

Electrical Conductivity and Moisture Uptake Studies of Low Density Polyethylene Octylnanosilica Composite

Electrical Conductivity and Moisture Uptake Studies of Low Density Polyethylene Octylnanosilica Composite Electrical Conductivity and Moisture Uptake Studies of Low Density Polyethylene Octylnanosilica Composite S. Virtanen, A.S. Vaughan ECS; University of Southampton Southampton, United Kingdom S.Yang, F.

More information

Simulation Studies of Composite Insulators used in High Voltage Transmission

Simulation Studies of Composite Insulators used in High Voltage Transmission Simulation Studies of Composite s used in High Voltage Transmission Rohit P R, Rahul P R (June 18, 2018) Department of Electrical & Electronics Engineering, CMR Institute of Technology, Bengaluru rohitpr300796@gmail.com,

More information

THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL

THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL Pawel Rozga, PhD Dariusz Hantsz, MSc Technical University of Lodz, Poland Abstract Article

More information

White Paper: Transparent High Dielectric Nanocomposite

White Paper: Transparent High Dielectric Nanocomposite Zhiyun (Gene) Chen, Ph.D., Vice President of Engineering Pixelligent Technologies 64 Beckley Street, Baltimore, Maryland 2224 Email: zchen@pixelligent.com February 205 Abstract High dielectric constant

More information

Comparison of Partial Discharge Characteristics for Different Defect Types in SF 6 Gas Insulation System

Comparison of Partial Discharge Characteristics for Different Defect Types in SF 6 Gas Insulation System Comparison of Partial Discharge Characteristics for Different Defect Types in SF 6 Gas Insulation System D.A. Mansour, T. Okusu, K. Nishizawa, H. Kojima, N. Hayakawa, F. Endo and H. Okubo Nagoya University

More information

EXPERIMENTAL AND THEORETICAL STUDY OF BREAKDOWN VOLTAGE INITIATED BY PARTICLE CONTAMINATION IN GIS

EXPERIMENTAL AND THEORETICAL STUDY OF BREAKDOWN VOLTAGE INITIATED BY PARTICLE CONTAMINATION IN GIS 241 EXPERIMENTAL AND THEORETICAL STUDY OF BREAKDOWN VOLTAGE INITIATED BY PARTICLE CONTAMINATION IN GIS Sayed A. Ward 1, Adel A. ElFaraskoury 2, S. Sabry ElSayed 3 1 Head of Elect. Eng. Dept., Banha University,

More information

Performance analysis of 1200 kv ceramic disc insulator string under normal and faulted conditions

Performance analysis of 1200 kv ceramic disc insulator string under normal and faulted conditions Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (5 ) 4 9 The 7 th International Conference on Applied Energy ICAE5 Performance analysis of kv ceramic disc insulator string under

More information

Winai Onchantuek, Boonruang Marungsri, Anant Oonsivilai, Thanatchai Kulworawanichpong. WSEAS TRANSACTIONS on POWER SYSTEMS

Winai Onchantuek, Boonruang Marungsri, Anant Oonsivilai, Thanatchai Kulworawanichpong. WSEAS TRANSACTIONS on POWER SYSTEMS Comparison of Electric Field and Potential Distributions on Silicone Rubber Polymer Insulators under Clean and Various Contamination Conditions Using Finite Element Method WINAI ONCHANTUEK, BOONRUANG MARUNGSRI*

More information

EasyDry transformer bushing Better performance made easy. Power and productivity for a better world TM ABB

EasyDry transformer bushing Better performance made easy. Power and productivity for a better world TM ABB EasyDry transformer bushing Better performance made easy Power and productivity for a better world TM ABB ABB, the world leader in high voltage bushing technology Global experience and resources The ABB

More information

Fatima Michael College of Engineering & Technology

Fatima Michael College of Engineering & Technology ANNA UNIVERSITY AFFILIATED COLLEGES BE EEE SEMESTER VI EE2353 - HIGH VOLTAGE ENGINEERING UNIT IOVER VOLTAGES IN ELECTRICAL POWER SYSTEMS 1. What is surge arrester? 2. Name the sources of switching surges.

More information

Flashover Performance of Station Post Insulators under Icing Conditions based on Electric Field Distribution

Flashover Performance of Station Post Insulators under Icing Conditions based on Electric Field Distribution Flashover Performance of Station Post Insulators under Icing Conditions based on Electric Field Distribution V. Jaiswal and M. Farzaneh NSERC / Hydro-Quebec / UQAC Industrial Chair on Atmospheric Icing

More information

High Voltage Electrical Properties of Epoxy / h-bn Microcomposites

High Voltage Electrical Properties of Epoxy / h-bn Microcomposites High Voltage Electrical Properties of Epoxy / h-bn Microcomposites Loriane DESMARS (1,2), Jocelyne GALY (1), Damien BACHELLERIE (2), Antonella CRISTIANO-TASSI (2), Servane HALLER (2), Sébastien PRUVOST

More information

Electrical, Electronic and Computer Engineering ENEL4HB - High Voltage 2

Electrical, Electronic and Computer Engineering ENEL4HB - High Voltage 2 Electrical, Electronic and Computer Engineering ENEL4HB - High oltage 2 Main Examination October 2016 Instructions Answer all questions, show all working and include all necessary comments (it is your

More information

Mechanical Properties of Epoxy/Al 2 O 3 Nanocomposites

Mechanical Properties of Epoxy/Al 2 O 3 Nanocomposites Mechanical Properties of Epoxy/Al 2 O 3 Nanocomposites M. J. Kadhim*, A. K. Abdullah, I. A. Al-Ajaj, and A. S. Khalil Department of Physics, College of Science, Baghdad University, Baghdad, Iraq. Abstract

More information

Finite Element Analysis of Disc Insulator Type and Corona Ring Effect on Electric Field Distribution over 230-kV Insulator Strings

Finite Element Analysis of Disc Insulator Type and Corona Ring Effect on Electric Field Distribution over 230-kV Insulator Strings International Journal of Engineering and Technology, 1 (4) (2012) 407-419 Science Publishing Corporation www.sciencepubco.com/index.php/ijet Finite Element Analysis of Disc Insulator Type and Corona Ring

More information

Electric Field and Potential Distributions along Dry and Clean Non-Ceramic Insulators. Integrated Engineering Software - Website Links

Electric Field and Potential Distributions along Dry and Clean Non-Ceramic Insulators. Integrated Engineering Software - Website Links Electric Field and Potential Distributions along Dry and Clean Non-Ceramic Insulators ABSTRACT The electric field and potential distributions in the vicinity of non-ceramic insulators under dry and clean

More information

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON DIELECTRIC PROPERTIES OF EPOXY AND XLPE NANOCOMPOSITES D.KAVITHA

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON DIELECTRIC PROPERTIES OF EPOXY AND XLPE NANOCOMPOSITES D.KAVITHA Synopsis of the PhD Thesis THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON DIELECTRIC PROPERTIES OF EPOXY AND XLPE NANOCOMPOSITES by D.KAVITHA Department of Electrical and Electronics Engineering Amrita

More information

Simulation of the Electric Field on Composite Insulators Using the Finite Elements Method

Simulation of the Electric Field on Composite Insulators Using the Finite Elements Method Simulation of the Electric Field on Composite Insulators Using the Finite Elements Method V.T. KONTARGYRI I.F. GONOS N.C. ILIA I.A. STATHOPULOS High Voltage Laboratory School of Electrical and Computer

More information

O Plus Dry Bushing 69 kv system, 350 kv BIL, 3000 A. Table of contents

O Plus Dry Bushing 69 kv system, 350 kv BIL, 3000 A. Table of contents Type test report O Plus Dry Bushing 69 kv system, 0 kv BIL, 000 A Table of contents Abstract... 2 2 Certification... 2 Introduction.... Description and ratings....2 Overview of tests.... Applicable standards....4

More information

Temperature and Field Dependence of Field Grading Tubes for Medium Voltage XLPE Cable Joints

Temperature and Field Dependence of Field Grading Tubes for Medium Voltage XLPE Cable Joints 24 th Nordic Insulation Symposium on Materials, Components and Diagnostics 138 Temperature and Field Dependence of Field Grading Tubes for Medium Voltage XLPE Cable Joints Frank Mauseth Norwegian Univ.

More information

CHAPTER 5 ANALYSIS OF ELECTRIC FIELD AND VOLTAGE DISTRIBUTION

CHAPTER 5 ANALYSIS OF ELECTRIC FIELD AND VOLTAGE DISTRIBUTION 96 CHAPTER 5 ANALYSIS OF ELECTRIC FIELD AND VOLTAGE DISTRIBUTION 5.1 INTRODUCTION The electric field distribution of polymeric insulator is different when compared to porcelain and glass insulators. Generally

More information

Epoxy/BN Micro- and Submicro-composites: Dielectric and Thermal Properties of Enhanced Materials for High Voltage Insulation Systems

Epoxy/BN Micro- and Submicro-composites: Dielectric and Thermal Properties of Enhanced Materials for High Voltage Insulation Systems Epoxy/BN Micro- and Submicro-composites: Dielectric and Thermal Properties of Enhanced Materials for High Voltage Insulation Systems Thomas Heid École de Technologie Supérieure (ETS) 1100 Notre-Dame Street

More information

AC AND IMPULSE TEST ANALYSIS ON LLDPE-NR FOR DIFFERENCE AMOUNT OF SIO2 NANOFILLER

AC AND IMPULSE TEST ANALYSIS ON LLDPE-NR FOR DIFFERENCE AMOUNT OF SIO2 NANOFILLER AC AND IMPULSE TEST ANALYSIS ON LLDPE-NR FOR DIFFERENCE AMOUNT OF SIO2 NANOFILLER M. A. A Azmi, N. A. M. Jamail, N. H Zulkifli, M. I. H Razali and N. A. A. N Zarujhan Faculty of Electrical and Electronic

More information

Tailoring of new Field Grading Materials for HVDC Systems. Dipl.-Ing. Maximilian Secklehner Rashid Hussain, M.Sc.

Tailoring of new Field Grading Materials for HVDC Systems. Dipl.-Ing. Maximilian Secklehner Rashid Hussain, M.Sc. Tailoring of new Field Grading Materials for HVDC Systems Dipl.-Ing. Maximilian Secklehner Rashid Hussain, M.Sc. Structure Motivation Challenges of DC-Insulation-Systems Introduction of a characteristic

More information

Evaluation of Epoxy Nanocomposites for High Voltage Insulation. Ganpathy Iyer

Evaluation of Epoxy Nanocomposites for High Voltage Insulation. Ganpathy Iyer Evaluation of Epoxy Nanocomposites for High Voltage Insulation by Ganpathy Iyer A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved June 2012

More information

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER Intensive Programme Renewable Energy Sources May 2011, Železná Ruda-Špičák, University of West Bohemia, Czech Republic NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC

More information

Effect of High Voltage Impulses on Surface Discharge Characteristics of Polyethylene

Effect of High Voltage Impulses on Surface Discharge Characteristics of Polyethylene 9 th Nordic Insulation Symposium on Materials, Components and Diagnostics Effect of High Voltage s on Surface Discharge Characteristics of Polyethylene Roya Nikjoo, Nathaniel Taylor, Hans Edin School of

More information

Finite Element Analysis on Post Type Silicon Rubber Insulator Using MATLAB

Finite Element Analysis on Post Type Silicon Rubber Insulator Using MATLAB Finite Element Analysis on Post Type Silicon Rubber Insulator Using MATLAB ISSN: 3-9939 Finite Element Analysis on Post Type Silicon Rubber Insulator Using MATLAB Vishal Kahar, Ch.v.sivakumar, 3 Dr.Basavaraja.B

More information

I, THERMAL ANALYSIS OF BUS-BAR FOR SWITCH BOARD

I, THERMAL ANALYSIS OF BUS-BAR FOR SWITCH BOARD THERMAL ANALYSIS OF BUS-BAR FOR SWITCH BOARD Krishna Dwivedi*, Kulwant Dhankar**, Smita Ganjare*** & Hemant More**** Assistant Professor, Mechanical Department, LTCOE, Navi Mumbai, Maharashtra Abstract:

More information

Surface potential dynamics on insulating polymers for HVDC applications

Surface potential dynamics on insulating polymers for HVDC applications THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Surface potential dynamics on insulating polymers for HVDC applications Shahid Alam High Voltage Engineering Department of Material and Manufacturing Technology

More information

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A 1. Mention the gases used as the insulating medium in electrical apparatus? Most of the electrical apparatus use air as the insulating

More information

D1-00. SPECIAL REPORT FOR SC D1 (Materials and Emerging Test Techniques) S.M. GUBANSKI and U. SCHICHLER. Special Reporters

D1-00. SPECIAL REPORT FOR SC D1 (Materials and Emerging Test Techniques) S.M. GUBANSKI and U. SCHICHLER. Special Reporters CIGRE 2016 D1-00 SPECIAL REPORT FOR SC D1 (Materials and Emerging Test Techniques) S.M. GUBANSKI and U. SCHICHLER Special Reporters 1. General The aim of Study Committee D1 is to facilitate and promote

More information

STUDY OF THE FACTORS THAT INFLUENCE THE EFECTIVE PERMITTIVITY OF THE DIELECTRIC MIXTURES

STUDY OF THE FACTORS THAT INFLUENCE THE EFECTIVE PERMITTIVITY OF THE DIELECTRIC MIXTURES STUDY OF THE FACTORS THAT INFLUENCE THE EFECTIVE PERMITTIVITY OF THE DIELECTRIC MIXTURES RODICA CREŢ, LAURA DARABANT, DAN DORU MICU, MIHAELA PLESA, ANTONIU TURCU, DENISA STET Key words: Statically fective

More information

White Paper: Resistivity and Dielectric Strength of Nanocomposites

White Paper: Resistivity and Dielectric Strength of Nanocomposites Zhiyun (Gene) Chen, Ph.D., Vice President of Technology Matthew Healy, Ph.D., Vice President of Product Management Pixelligent Technologies 6411 Beckley Street, Baltimore, Maryland 21224 Email: zchen@pixelligent.com

More information

EFFECT OF EARTH DISCONTINUED TO THE ELECTRICAL FIELD DISTRIBUTION IN ROD-PLANE AIR GAPS UNDER LIGHTNING IMPULSE. A. Khechekhouche and D.

EFFECT OF EARTH DISCONTINUED TO THE ELECTRICAL FIELD DISTRIBUTION IN ROD-PLANE AIR GAPS UNDER LIGHTNING IMPULSE. A. Khechekhouche and D. Journal of Fundamental and Applied Sciences Research Article ISSN 1112-9867 Available online at http://www.jfas.info EFFECT OF EARTH DISCONTINUED TO THE ELECTRICAL FIELD DISTRIBUTION IN ROD-PLANE AIR GAPS

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR410209 Set No. 1 1. What are the gases mainly used in insulating medium at high pressures? Which is more suitable? Why? What about its dielectric strength? Explain. [16] 2. (a) Define time lags

More information

Electrical, Electronic and Computer Engineering ENEL4HB - High Voltage 2

Electrical, Electronic and Computer Engineering ENEL4HB - High Voltage 2 Electrical, Electronic and Computer Engineering ENEL4HB - High Voltage 2 Main Examination October 2015 Instructions Answer all questions and show all working. Time allowed = 2 hours Full marks = 100 Question

More information

with embedded electrode

with embedded electrode NAOSITE: Nagasaki University's Ac Title Author(s) Citation Estimation of surface breakdown vol with embedded electrode Yamashita, Takahiko; Iwanaga, Kazuh Hiroyuki; Fujishima, Tomoyuki; Asar IEEE Transactions

More information

EFFECT OF DIELECTRIC BARRIERS TO THE ELECTRIC FIELD OF ROD-PLANE AIR GAP

EFFECT OF DIELECTRIC BARRIERS TO THE ELECTRIC FIELD OF ROD-PLANE AIR GAP EFFECT OF DIELECTRIC BARRIERS TO THE ELECTRIC FIELD OF ROD-PLANE AIR GAP A. Kara 1, Ö. Kalenderli, K. Mardikyan 3 1,, 3 Istanbul Technical University, Electrical and Electronics Engineering Faculty, Istanbul,

More information

Evaluation of Epoxy Nanocomposites for High Voltage Insulation

Evaluation of Epoxy Nanocomposites for High Voltage Insulation Evaluation of Epoxy Nanocomposites for High Voltage Insulation Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System Evaluation of

More information

The Impact of Metallized Electrodes on High Energy Density Pulse Power Capacitors

The Impact of Metallized Electrodes on High Energy Density Pulse Power Capacitors Technical Note Archive The Impact of Metallized Electrodes on High Energy Density Pulse Power Capacitors ABSTRACT Over the past few years, Aerovox has been replacing foil electrode construction with metallized

More information

Potentiality of nanofilled thermoplastic insulation for DC cables and capacitors

Potentiality of nanofilled thermoplastic insulation for DC cables and capacitors Tampere University of Technology Potentiality of nanofilled thermoplastic insulation for DC cables and capacitors Citation Montanari, G. C., Seri, P., Paajanen, M., Lahti, K., Rytöluoto, I., Ritamäki,

More information

2. MATHEMATICAL MODEL OF THE

2. MATHEMATICAL MODEL OF THE Optimal Electrical Design Condenser Graded High Voltage AC Bushings Mohammad Reza Hesamzadeh Research and Development Department Nirou Trans Company Shiraz, Iran Email: hesamzadeh000@yahoo.com Nasser Hossein-zadeh

More information

Power System Engineering Prof. Debrapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Engineering Prof. Debrapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Engineering Prof. Debrapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 01 Overhead Line Insulators So, welcome to this another course that

More information

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Evaluation of Capacitance in Motor Circuit Analysis Findings Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Introduction The question related to the ability of low voltage testing to detect

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 00 0 Department of Electrical and Electronics Engineering TUTORIAL QUESTION BANK Course Name : HIGH VOLTAGE ENGINEERING Course Code

More information

SPECIFICATION SS 51/9 400KV COUPLING CAPACITORS FOR POWER LINE CARRIER SYSTEM

SPECIFICATION SS 51/9 400KV COUPLING CAPACITORS FOR POWER LINE CARRIER SYSTEM INDEPENDENT POWER TRANSMISSION OPERATOR S.A. TNPRD/ SUBSTATION SPECIFICATION & EQUIPMENT SECTION January 2017 SPECIFICATION SS 51/9 400KV COUPLING CAPACITORS FOR POWER LINE CARRIER SYSTEM I. SCOPE This

More information

Improving the Dielectric Properties of Polymers by Incorporating Nano-particles

Improving the Dielectric Properties of Polymers by Incorporating Nano-particles Improving the Dielectric Properties of Polymers by Incorporating Nano-particles C Zou *, J C Fothergill *, M Fu * J K Nelson ** * University of Leicester, UK ** Rensselaer Polytechnic Institute, US ABSTRACT

More information

Development of a New Solid Insulation with the use of Phenol Formaldehyde Resin Material for a Liquid-Immersed Transformer

Development of a New Solid Insulation with the use of Phenol Formaldehyde Resin Material for a Liquid-Immersed Transformer Development of a New Solid Insulation with the use of Phenol Formaldehyde Resin Material for a Liquid-Immersed Transformer Satvir Singh 1, Vishavdeep Jindal 2, Tanu Aggarwal 3 1Lecturer, Department of

More information

Simulation of Partial Discharge in Solid Dielectric Material

Simulation of Partial Discharge in Solid Dielectric Material IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Simulation of Partial Discharge in Solid Dielectric Material Vishal Dayaram Kahar 1 Ch.V

More information

Electrical connection network within an electrically conductive adhesive

Electrical connection network within an electrically conductive adhesive Electrical connection network within an electrically conductive adhesive D.Busek, P. Mach Department of Electrotechnology, Faculty of Electrical Engineering Technická 2, 166 27 Prague, Czech Republic,

More information

VOLTAGE DISTRIBUTION ACROSS STRING INSULATORS BY SPHERE GAP METHOD

VOLTAGE DISTRIBUTION ACROSS STRING INSULATORS BY SPHERE GAP METHOD VOLTAGE DISTRIBUTION ACROSS STRING INSULATORS BY SPHERE GAP METHOD Prof. Ch.Kavitha Chenna Reddy 1, Dr.S.Sujitha 2 Assistant professor, EEE Department,New Horizon College of Engineering ABSTRACT Insulators

More information

Electric Filed Simulation and Structure Optimization for 40.5kV GIS Based on Finite Element Method

Electric Filed Simulation and Structure Optimization for 40.5kV GIS Based on Finite Element Method 3rd International Conference on Mechanical Engineering and Intelligent Systems (ICMEIS 2015) Electric Filed Simulation and Structure Optimization for 40.5kV GIS Based on Finite Element Method Xian CHENG

More information

UNIT I - INTRODUCTION SYLLABUS

UNIT I - INTRODUCTION SYLLABUS SEM / YEAR: VII/IV QUESTION BANK SUBJECT : EE670 HIGH VOLTAGE ENGINEERING UNIT I - INTRODUCTION SYLLABUS Causes of over voltages and its effects on power system Lightning, switching surges and temporary

More information

APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT

APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT S. Bhowmik, R. Benedictus, H. M. S. Iqbal and M. I. Faraz Faculty of Aerospace Engineering, Delft University of

More information

Anna University B.E/B.Tech Degree Examination November/December 2010, Seventh Semester, Electrical and Electronics Engineering, EE1402-HIGH VOLTAGE ENGINEERING Answer all the questions. Part-A (10*2=20)

More information

Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study

Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study Dr. Ilkka Rytöluoto, Mikael Ritamäki & Kari Lahti Tampere University of Technology (TUT) Laboratory of Electrical

More information

Modeling and Simulation of Air Insulated and Gas Insulated Substations

Modeling and Simulation of Air Insulated and Gas Insulated Substations International Journal of Electrical Engineering. ISSN 0974-2158 Volume 11, Number 2 (2018), pp. 177-187 International Research Publication House http://www.irphouse.com Modeling and Simulation of Air Insulated

More information

Measurement and simulation of the voltage distribution and the electric field on a glass insulator string

Measurement and simulation of the voltage distribution and the electric field on a glass insulator string Available online at www.sciencedirect.com Measurement 41 (2008) 471 480 www.elsevier.com/locate/measurement Measurement and simulation of the voltage distribution and the electric field on a glass insulator

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 189-196 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ EFVD along Porcelain Insulator using the FEM Kian Tsong Ho*, Mahdi Izadi and

More information

Life Science Journal 2013;10(4)

Life Science Journal 2013;10(4) Study on Effect of Size and Location of Void on Electric Field and Potential Distributions in Stator Bar Insulation with finite-element-model Hadi Nabipour-Afrouzi, Zulkurnain Abdul-Malek, Saeed Vahabi-Mashak

More information

Short-term Breakdown and Long-term Failure in Nanodielectrics: A Review

Short-term Breakdown and Long-term Failure in Nanodielectrics: A Review IEEE Transactions on Dielectrics and Electrical Insulation Vol. 17, No. 5; October 2010 1523 Short-term Breakdown and Long-term Failure in Nanodielectrics: A Review Shengtao Li 1, Guilai Yin 1, G. Chen

More information

Finite Element Method Application in Analyzing Magnetic Fields of High Current Bus Duct

Finite Element Method Application in Analyzing Magnetic Fields of High Current Bus Duct International Journal of Science and Engineering Investigations vol. 2, issue 19, August 2013 ISSN: 2251-8843 Finite Element Method Application in Analyzing Magnetic Fields of High Current Bus Duct S.

More information

Engineering, Technology & Applied Science Research Vol. 7, No. 1, 2017,

Engineering, Technology & Applied Science Research Vol. 7, No. 1, 2017, Engineering, Technology & Applied Science Research Vol. 7, No. 1, 2017, 1323-1328 1323 Study of the Behavior of Water Droplets Under the Influence of a Uniform Electric Field on Conventional Polyethylene

More information

Dieter Kind Hermann Karner. High -Voltage Insulation Technology

Dieter Kind Hermann Karner. High -Voltage Insulation Technology Dieter Kind Hermann Karner High -Voltage Insulation Technology Dieter Kind Hermann Kamer High-Voltage Insulation Thchnology Thxtbook for Electrical Engineers lfanslated from the German by Y Narayana Rao

More information

EFFECT OF SURFACE CHARGING ON DC FLASHOVER CHARACTERISTICS OF POLYMERIC INSULATORS

EFFECT OF SURFACE CHARGING ON DC FLASHOVER CHARACTERISTICS OF POLYMERIC INSULATORS EFFECT OF SURFACE CHARGING ON DC FLASHOVER CHARACTERISTICS OF POLYMERIC INSULATORS By IMTIAZ RIFANUL HOQUE SHAHID ALAM Diploma Work No. 73/211 Department of Materials and Manufacturing Technology CHALMERS

More information

Measurement of wettability for polymer materials using non-contact surface resistivity

Measurement of wettability for polymer materials using non-contact surface resistivity Proc. 26 Electrostatics Joint Conference Measurement of wettability for polymer materials using non-contact surface resistivity tester Toshiyuki Sugimoto, Takuya Aoki Graduate school of Science and Engineering

More information