Gravitational Waves: Propagation Speed is Co-ordinate Dependent

Size: px
Start display at page:

Download "Gravitational Waves: Propagation Speed is Co-ordinate Dependent"

Transcription

1 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, Gravitational Waves: Propaation Speed is Co-ordinate Dependent Stephen J. Crothers. Proof: Linearise Einstein s field equations by, h () where the h μν << and η μν represents the Galilean values (,-,-,-). The h μν and their derivatives are small, so all products of them are nelected. Contract the iemann-christoffel curvature tensor ρμνσ to obtain the icci tensor:,,,, () The Γ terms are products of the μν and their first derivatives, therefore nelected, so, which can be broken into two parts,,,,, (3),,,, (4) Choose co-ordinates x so that the second part of eq.(4) vanishes:, x x (5) 0,,, (6) Accordin to eq.(), and so on for hiher derivatives, hence,, h, h, x h x (5b) h h 0 h (6b),,, Contractin eq.(5b) yields the icci scalar: by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30,

2 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, x h x h x x (7) Einstein s field equations (without cosmoloical constant) are, T (8) In terms of h μν these become, usin eq.(5b) and eq.(7), x h x h x x T (8b) The d Almbertian operator is defined as, Hence, (9) x x (0) x y z c t c t where is the differential operator del (or nabla), defined as,,,. x y z Takin the dot product of del with itself ives the Laplacian operator, x y z. Settin x 0 =ct, x =x, x =y, x 3 =z, eq.(8b) can be written as, h h T () These are the linearised field equations. They are subject to the condition (6b), which can be condensed to the followin condition, h h 0 (6c) x Usin eq.(9), eq.(5b) can be written as, by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30,

3 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, For empty space this becomes, h μν = () h μν = 0 (3) which by eq.(0) describes a wave propaatin at the speed of liht in vacuo. But the speed of the waves is co-ordinate dependent, as the constraint at eq.(6) attests: different co-ordinates, different speeds. Einstein chose a set of co-ordinates that yields his presumed speed of propaation: an example of the loical fallacy of assumin as premise that which is to be demonstrated (petitio principii).. General elativity: Its Violation of the Usual Conservation Laws for a Closed System. We make a distinction hereafter between ravitational field and matter in this way, that we denote everythin but the ravitational field as matter. Our use of the word therefore includes not only matter in the ordinary sense, but the electromanetic field as well. Einstein, A., The Foundation of the General Theory of elativity, Annalen der Physik, 49, (96), 4 It must be remembered that besides the enery density of the matter there must also be iven an enery density of the ravitational field, so that there can be no talk of principles of conservation of enery and momentum of matter alone. Einstein, A., The Meanin of elativity, expanded Princeton Science Library Edition, (005) T enery-momentum of Einstein s matter alone t enery-momentum pseudotensor of Einstein s ravitational field alone, defined, t (.) The quantities t we call the enery components of the ravitational field. Einstein, A., The Foundation of the General Theory of elativity, Annalen der Physik, 49, (96), 5 But t is not a tensor and is co-ordinate dependent, contrary to the basic tenet of General elativity. It is to be noted that t is not a tensor. Einstein, A., the Foundation of the General Theory of elativity, Annalen der Physik, 49, (96), 5 Alleedly, t acts 'like a tensor', for linear transformations of co-ordinates under certain conditions. Einstein then takes an ordinary (not tensor) diverence, by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30, 3

4 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, and proclaims, t x 0 (.) This equation expresses the law of conservation of momentum and of enery for the ravitational field. Einstein, A., The Foundation of the General Theory of elativity, Annalen der Physik, 49, (96), 5 Einstein s total enery-momentum equation for his field and sources is, t T E (.3) This is not a tensor equation, so aain only an ordinary diverence, t T x 0 (.4) by which Einstein proclaimed: Thus it results from our field equations of ravitation that the laws of conservation of momentum and enery are satisfied. here, instead of the enery components t of the ravitational field, we have to introduce the totality of the enery components of matter and ravitational field. Einstein, A., The Foundation of the General Theory of elativity, Annalen der Physik, 49, (96), 7 The mathematical error is profound. Contract Einstein s pseudotensor: t t (.4) Thus the invariant t is a first-order intrinsic differential invariant, i.e. t depends solely upon the components of the metric tensor and their first derivatives. But the pure mathematicians proved in 900 that first-order intrinsic differential invariants do not exist (icci-curbastro, G., Levi-Civita, T., Méthodes de calcul différentiel absolu ET leurs applications, Matematische Annalen, B. 54, p.6, 900). Thus, by reductio ad absurdum, Einstein s pseudotensor is a meaninless concoction of mathematical symbols. It cannot therefore be assined to anythin in physics or to make any calculations. Nevertheless, Einstein and cosmoloists assin and calculate. Consider the followin two equivalent forms of Einstein s field equations, T T (.6) T (.7) by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30, 4

5 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, By eq.(.6), accordin to Einstein, if T 0 then 0. But by eq.(.7), if 0 then T 0. In other words, and T must vanish identically: 0 = 0. If there are no material sources then there is no ravitational field, and no universe. Consequently, Einstein s field equations must take the followin, G T 0 (.8) where G Comparin this to eq.(.3) the G constitute the enery-momentum components / of Einstein s ravitational field alone: after all, G describes Einstein s ravitational field. Equation (.8) also constitutes the total enery-momentum equation for Einstein s ravitational field and its material sources combined. space as opposed to what fills space, which is dependent on the coordinates, has no separate existence Einstein, A., elativity and the problem of space, Appendix 5 in the 5 th edition of elativity: the Special and the General Theory, Methuen, London, (954), pp I wish to show that space-time is not necessarily somethin to which one can ascribe a separate existence, independently of the actual objects of physical reality. Einstein, A., Preface to the 5 th edition of elativity: the Special and the General Theory, Methuen, London, (954) Unlike eq.(.3), eq.(.8) is a tensor equation. Its tensor diverence is zero and therefore constitutes the only conservation law for Einstein s ravitational field and its material sources combined. Since the total enery-momentum eq.(.8) is always zero, and the G / and the T must vanish identically because spacetime and matter have no separate existence in General elativity, ravitational enery cannot be localised, i.e. no possibility of ravitational waves. Since the total enery-momentum is always zero the usual conservation laws for enery and momentum of a closed system cannot be satisfied. General elativity is therefore in conflict with a vast array of experiments on a fundamental level. The so-called cosmoloical constant can be easily included as follows, G T 0 (.9) In this case the enery-momentum components of Einstein s ravitational field are G. When G or T is zero, all must vanish identically. by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30, 5

6 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, The mysterious dark enery is arbitrarily attributed to λ by cosmoloists. But accordin to Einstein, λ is not a material source for his ravitational field, instead vauely implicated in his ravitational field alone:... by introducin into Hamilton's principle, instead of the scalar of iemann's tensor, this scalar increased by a universal constant Einstein, A., Cosmoloical Considerations on the General Theory of elativity, Sitzunsberichte der Preussischen Akad. d. Wissenschaften, (97), 4 By eq.(.9) is part of the enery-momentum of the ravitational field, which however necessarily vanishes when T 0. Expand eq.(.9): T 0 (.9b) Einstein's scalar increased by a universal constant is the term ( λ)/. Aain, Einstein s field equations in the absence of matter, 0, have no physical meanin. Therefore the Schwarzschild solution also has no physical meanin. The 'cosmoloical constant' also falls afoul of de Sitter' empty universe, which possesses spacetime curvature (ravity) but contains no matter ( T 0 ), and is therefore physically meaninless. Consequently, the theories of black holes and ravitational waves are invalid ([] Crothers, S.J., On Corda's 'Clarification' of Schwarzschild's Solution, Hadronic Journal, Vol. 39, 06, [] Crothers, S. J., General elativity: In Acknowledement Of Professor Gerardus t Hooft, Nobel Laureate, 4 Auust, 04, 3. The Mathematical Theory of Black Holes: its Violation of the ules of Pure Mathematics and Loic Presumably the ravitational waves reported by LIGO-Viro are present inside some Bi Ban expandin universe as there has been no report that Bi Ban cosmoloy has been abandoned. The LIGO-Viro Collaborations have stated of first discovery : It matches the waveform predicted by eneral relativity for the inspiral and merer of a pair of black holes and the rindown of the resultin sinle black hole. Abbott, B.P. et al., Observation of Gravitational Waves from a Binary Black Hole Merer, PL 6, 060 (06) All black hole metrics are solutions to correspondin specific forms of Einstein's nonlinear field equations. Gravitational waves are however obtained from a linearisation of Einstein s field equations, combined with a selection of co-ordinates that produce the presumed propaation speed c. Because General elativity is a nonlinear theory, the Principle of Superposition does not hold. Let X be some black hole universe and Y by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30, 6

7 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, be some Bi Ban universe. Then the linear combination (i.e. superposition) X + Y is not a universe. Indeed, X and Y pertain to completely different sets of Einstein field equations havin absolutely nothin to do with one another. Similarly if W and Z are both black hole universes, be they the same or not, and if U and V are Bi Ban universes, be they the same or not. A black hole universe cannot co-exist with any other black hole universe or with any Bi Ban universe. Black Hole Universes Bi Ban Universes () Have no k-curvature. () Have a k-curvature. () Are spatially infinite. () Are either spatially finite (k = ) or spatially infinite (k = or k = 0). (3) Are eternal. (3) Not eternal (~3.8 billion years old) (4) Contain only one mass. (4) Contain arbitrarily many masses. (5) Are not expandin (not non-static). (5) Are expandin (non-static). (6) Are asymptotically flat. (6) Are not asymptotically anythin. (7) Cannot be superposed with anythin. (7) Cannot be superposed with anythin. Since a black hole universe is a solution to a specific set of Einstein's nonlinear field equations it is not possible to extract from it any ravitational waves produced from linearised field equations. No ravitational waves can in fact be extracted from Einstein's nonlinear field equations. Superposin solutions obtained from the nonlinear system with those from the linearised system violates the mathematical structure of General elativity. Accordinly, ravitational waves cannot exist in any black hole universe. Neither can they exist in any Bi Ban universe because all Bi Ban models are in fact sinle mass universes by mathematical construction (uniform macroscopic density and pressure). Nonetheless the LIGO-Viro Collaborations superpose everythin. In can be shown that the mathematical theory of black holes latently requires that the absolute value of a real number must take on values less than zero, which is impossible ([] Crothers, S.J., The Painlevé-Gullstrand Extension - A Black Hole Fallacy, American Journal of Modern Physics, 5, Issue -, 06, pp.33-39, [] Crothers, S. J., On the Generation of Equivalent Black Hole Metrics: A eview, American Journal of Space Science, v.3, i., pp.8-44, July 6, 05, 4. The Secret Methods of LIGO For their discovery the LIGO-Viro teams numerically manufactured 50,000 model waveforms ( templates ) from meaninless equations. A 'eneric' noise was initially reported by LIGO, after which LIGO s computers extracted GW5094 from the LIGO manufactured meaninless database as a curve of best fit to the noise: by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30, 7

8 April 08 meetin of the American Physical Society, Columbus, Ohio. Poster presented on 4 th April, The initial detection was made by low-latency searches for eneric ravitationalwave transients [4] and was reported within three minutes of data acquisition [43]. Subsequently, matched-filter analyses that use relativistic models of compact binary waveforms [44] recovered GW5094 as the most sinificant event from each detector for the observations reported here. Abbott, B.P. et al., Observation of Gravitational Waves from a Binary Black Hole Merer, PL 6, 060 (06) With such powerful computin resources and so many derees of freedom it is possible to best fit just about any LIGO instability with an element of its numerically manufactured database of curves. The LIGO-Viro Collaborations have manaed to best fit a numerically manufactured curve for and to entities that do not exist. This amplifies the futility of applyin numerical and perturbation methods to enerate desired outcomes. There are no known Einstein field equations for two or more masses and hence no known solutions thereto. There is no existence theorem by which it can even be asserted that Einstein's field equations contain latent capability for describin confiurations of two or more masses. General elativity cannot account for the simple experimental fact that two fixed suspended masses approach one another upon release. For precisely these reasons all Bi Ban models make the universe a sinle mass: an ideal indivisible fluid of uniform macroscopic density and pressure that permeates the entire universe. ([] Crothers, S. J., Flaws in Black Hole Theory and General elativity, Proceedins of the XXIX th International Workshop on Hih Enery Physics, Protvino, ussia, 6-8 June 03, [] Crothers, S. J. On the Invalidity of the Hawkin-Penrose Sinularity Theorems and Acceleration of the Universe with Neative Cosmoloical Constant, Global Journal of Science Frontier esearch Physics and Space Science, Volume 3 Issue 4, Version.0, 03, [3] Crothers, S. J., On the Generation of Equivalent Black Hole Metrics: A eview, American Journal of Space Science, v.3, i., pp.8-44, 05, [4] Crothers, S.J., LIGO at the University of Queensland, by Merin Black Holes, Hadronic Journal, n.3, Vol. 39, 06, pp.7-30, 8

FLAWS IN BLACK HOLE THEORY AND GENERAL RELATIVITY

FLAWS IN BLACK HOLE THEORY AND GENERAL RELATIVITY FLAWS IN BLACK HOLE THEORY AND GENERAL RELATIVITY Stephen J. Crothers Queensland, Australia http://vixra.or/author/stephen_j_crothers 1 /15 Black Hole and Bi Ban Mutually Exclusive BLACK HOLE UNIVERSE

More information

By Stephen J. Crothers Queensland, Australia 10 th October 2012

By Stephen J. Crothers Queensland, Australia 10 th October 2012 Proof of the Invalidity of the Black Hole and Einstein s Field Equations Letter to Professor Martin Rees, Astronomer Royal, Concerning his Public Lecture at the University of Sydney on 9 th November 0

More information

EU Conference: The Tipping Point. Jan. 4-6, 2013, Albuquerque, NM

EU Conference: The Tipping Point. Jan. 4-6, 2013, Albuquerque, NM 1! http://vixra.or/author/stephen_j_crothers Proof 1. Einstein s field equations,... couple the ravitational field (contained in the curvature of spacetime) with its sources. (Foster, J. & Nihtinale, J.D.,

More information

Reply to the Article Watching the World Cup by Jason J. Sharples

Reply to the Article Watching the World Cup by Jason J. Sharples Reply to the Article Watching the World Cup by Jason J. Sharples Stephen J. Crothers Queensland, Australia steve@plasmaresources.com 25 March 206 FOREWORD In 200 Jason J. Sharples, an Associate Professor

More information

Editorial Manager(tm) for International Journal of Theoretical Physics Manuscript Draft

Editorial Manager(tm) for International Journal of Theoretical Physics Manuscript Draft Editorial Manager(tm) for International Journal of Theoretical Physics Manuscript Draft Manuscript Number: IJTP1960 Title: Point-Mass Singularities, Energy and the Two-Body Problem in Einstein's Gravitational

More information

FLAWS IN BLACK HOLE THEORY AND GENERAL RELATIVITY

FLAWS IN BLACK HOLE THEORY AND GENERAL RELATIVITY 1 FLAWS IN BLACK HOLE THEORY AND GENERAL RELATIVITY STEPHEN J. CROTHERS Alpha Institute for Advanced Study PO Box 1546, Sunshine Plaza, 4558, QLD, Australia E-mail: thenarmis@gmail.com www.sjcrothers.plasmaresources.com/index.html

More information

The Perfect Cosmological Principle

The Perfect Cosmological Principle Cosmoloy AS7009, 0 Lecture Outline The cosmoloical principle: Isotropy Homoeneity Bi Ban vs. Steady State cosmoloy Redshift and Hubble s law Scale factor, Hubble time, Horizon distance Olbers paradox:

More information

Cosmology AS7009, 2008 Lecture 2

Cosmology AS7009, 2008 Lecture 2 Cosmoloy AS7009, 008 Lecture Outline The cosmoloical principle: Isotropy Homoeneity Bi Ban vs. Steady State cosmoloy Redshift and Hubble s s law Scale factor, Hubble time, Horizon distance Olbers paradox:

More information

Counter-Examples to the Kruskal-Szekeres Extension: In Reply to Jason J. Sharples

Counter-Examples to the Kruskal-Szekeres Extension: In Reply to Jason J. Sharples Counter-Examples to the Kruskal-Szekeres Extension: In Reply to Jason J. Sharples Stephen J. Crothers Queensland, Australia steve@plasmaresources.com 20 th April 2016 FOREWORD Jason J. Sharples of the

More information

(for the full article)

(for the full article) http://www.nature.com/nature/journal/v455/n7209/full/455039a.html www.sjcrothers.plasmaresources.com/reynolds-article.pdf (for the full article) Mr. Christopher S. Reynolds Department of Astronomy, University

More information

The Kruskal-Szekeres Extension : Counter-Examples

The Kruskal-Szekeres Extension : Counter-Examples January, 010 PROGRESS IN PHYSICS Volume 1 The Kruskal-Szekeres Extension : Counter-Examples Stephen J. Crothers Queensland, Australia thenarmis@gmail.com The Kruskal-Szekeres coordinates are said to extend

More information

Integration in General Relativity

Integration in General Relativity arxiv:physics/9802027v1 [math-ph] 14 Feb 1998 Interation in General Relativity Andrew DeBenedictis Dec. 03, 1995 Abstract This paper presents a brief but comprehensive introduction to certain mathematical

More information

5 Shallow water Q-G theory.

5 Shallow water Q-G theory. 5 Shallow water Q-G theory. So far we have discussed the fact that lare scale motions in the extra-tropical atmosphere are close to eostrophic balance i.e. the Rossby number is small. We have examined

More information

On Certain Conceptual Anomalies in Einstein s Theory of Relativity

On Certain Conceptual Anomalies in Einstein s Theory of Relativity Volume 1 PROGRESS IN PHYSICS January, 008 On Certain Conceptual Anomalies in Einstein s Theory of Relativity Stephen J. Crothers Queensland, Australia E-mail: thenarmis@yahoo.com There are a number of

More information

Development of the Einstein Hilbert Field Equation into the Einstein Cartan Evans (ECE) Field Equation

Development of the Einstein Hilbert Field Equation into the Einstein Cartan Evans (ECE) Field Equation 10 Development of the Einstein Hilbert Field Equation into the Einstein Cartan Evans (ECE) Field Equation by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and

More information

Bulletin of Pure and Applied Sciences.Vol.24E(No.2)2005:P A SHORT DISCUSSION OF RELATIVISTIC GEOMETRY. Stephen J. Crothers

Bulletin of Pure and Applied Sciences.Vol.24E(No.2)2005:P A SHORT DISCUSSION OF RELATIVISTIC GEOMETRY. Stephen J. Crothers Bulletin of Pure and Applied Sciences.Vol.24E(No.2)25:P.267-273 A SHORT DISCUSSION OF RELATIVISTIC GEOMETRY Stephen J. Crothers Sydney, Australia. E-mail: thenarmis@yahoo.com ABSTRACT The relativists have

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Kaluza-Klein Theory and Lorentz Force Geodesics. Jay R. Yablon * 910 Northumberland Drive Schenectady, New York,

Kaluza-Klein Theory and Lorentz Force Geodesics. Jay R. Yablon * 910 Northumberland Drive Schenectady, New York, Kaluza-Klein Theory and Lorentz orce Geodesics ay. Yablon * 90 Northumberland Drive Schenectady, New York, 309-8 Abstract: We examine a Kaluza-Klein-type theory of classical electrodynamics and ravitation

More information

Wave Character of Metrics and Hyperbolic Geometric Flow

Wave Character of Metrics and Hyperbolic Geometric Flow Wave Character of Metrics and Hyperbolic Geometric Flow De-Xin Kon and Kefen Liu 2 Center of Mathematical Sciences, Zhejian University, Hanzhou 327, China 2 Department of Mathematics, University of California

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

The General Theory of Relativity, in the end, captured inertial motion and its close cousin of free-fall motion in a gravitational field, in the most

The General Theory of Relativity, in the end, captured inertial motion and its close cousin of free-fall motion in a gravitational field, in the most Lab Note, Part : Gravitational and Inertial Mass, and Electromanetism as Geometry, in - Dimensional Spacetime Jay. Yablon (jyablon@nycap.rr.com), ebruary 6, 008 ***Note: This includes Lab Note, Part 3,

More information

THE NATURAL GAUGE OF THE WORLD: WEYL S SCALE FACTOR c William O. Straub Astoria, California March 13, 2007

THE NATURAL GAUGE OF THE WORLD: WEYL S SCALE FACTOR c William O. Straub Astoria, California March 13, 2007 THE NATURAL GAUGE OF THE WORLD: WEYL S SCALE FACTOR c William O. Straub Astoria, California March 13, 2007 We now aim at a nal synthesis. To be able to characterize the physical state of the world at a

More information

Charge, geometry, and effective mass

Charge, geometry, and effective mass Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: geraldemarsh63@yahoo.com Abstract. Charge, like mass in Newtonian mechanics, is an irreducible element of

More information

Gravitational Waves Summary of the presentation for the Proseminar Theoretical Physics

Gravitational Waves Summary of the presentation for the Proseminar Theoretical Physics Gravitational Waves Summary of the presentation for the Proseminar Theoretical Physics Nehir Schmid 06.05.2018 Contents 1 Introduction 1 2 Theoretical Background 1 2.1 Linearized Theory........................................

More information

Professor Gian-Luca Oppo -ats- Mr. Ivor Catt: A Case Study in Electromagnetic Theory

Professor Gian-Luca Oppo -ats- Mr. Ivor Catt: A Case Study in Electromagnetic Theory 1 Introduction Professor Gian-Luca Oppo -ats- Mr Ivor Catt: A Case Study in Electromagnetic Theory Stephen J Crothers 1 (Australia) thenarmis@yahoocom 27 th January 2018 ABSTRACT Digital electronic systems

More information

An Introduction to Gravitational Waves

An Introduction to Gravitational Waves An Introduction to Gravitational Waves Michael Nickerson Abstract This paper presents a brief overview of gravitational waves. Their propagation and generation are presented in more detail, with references

More information

Diffractive Nonlinear Geometrical Optics for Variational Wave Equations and the Einstein Equations

Diffractive Nonlinear Geometrical Optics for Variational Wave Equations and the Einstein Equations Diffractive Nonlinear Geometrical Optics for Variational Wave Equations and the Einstein Equations Giuseppe Alì Istituto per le Applicazioni del Calcolo, Consilio Nazionale delle Ricerche, Napoli, and

More information

arxiv: v1 [gr-qc] 17 Jan 2013

arxiv: v1 [gr-qc] 17 Jan 2013 Schwarzschild solution in -spacetime Tosaporn Ansachon 1, Serey Manida 1, Department of Hih enery and Elementary particle physics, Faculty of Physics, Saint-Petersbur State University, Ulyanovskaya str.

More information

THE FOUNDATIONS OF PHYSICS (SECOND COMMUNICATION)

THE FOUNDATIONS OF PHYSICS (SECOND COMMUNICATION) DAVID HILBERT THE FOUNDATIONS OF PHYSICS (SECOND COMMUNICATION) Originally published as Die Grundlagen der Physik. (Zweite Mitteilung) in Nachrichten von der Königlichen Gesellschaft zu Göttingen. Math.-phys.

More information

Altitude measurement for model rocketry

Altitude measurement for model rocketry Altitude measurement for model rocketry David A. Cauhey Sibley School of Mechanical Aerospace Enineerin, Cornell University, Ithaca, New York 14853 I. INTRODUCTION In his book, Rocket Boys, 1 Homer Hickam

More information

Mario Bunge on gravitational waves and the reality of spacetime

Mario Bunge on gravitational waves and the reality of spacetime Noname manuscript No. (will be inserted by the editor) Mario Bunge on gravitational waves and the reality of spacetime Gustavo E. Romero Received: date / Accepted: date Abstract I discuss the recent claims

More information

Wire antenna model of the vertical grounding electrode

Wire antenna model of the vertical grounding electrode Boundary Elements and Other Mesh Reduction Methods XXXV 13 Wire antenna model of the vertical roundin electrode D. Poljak & S. Sesnic University of Split, FESB, Split, Croatia Abstract A straiht wire antenna

More information

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

THE RISE AND FALL OF BLACK HOLES AND BIG BANGS

THE RISE AND FALL OF BLACK HOLES AND BIG BANGS THE RISE AND FALL OF BLACK HOLES AND BIG BANGS Stephen J. Crothers 28 April 2014 ABSTRACT The generic defining characteristics of all alleged black hole universes contradict the generic defining characteristics

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

Problem Set 2 Solutions

Problem Set 2 Solutions UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Sprin 2009 Problem Set 2 Solutions The followin three problems are due 20 January 2009 at the beinnin of class. 1. (H,R,&W 4.39)

More information

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N.

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N. Chapter 5 1. We are only concerned with horizontal forces in this problem (ravity plays no direct role). We take East as the +x direction and North as +y. This calculation is efficiently implemented on

More information

The Schwarzschild Metric

The Schwarzschild Metric The Schwarzschild Metric The Schwarzschild metric describes the distortion of spacetime in a vacuum around a spherically symmetric massive body with both zero angular momentum and electric charge. It is

More information

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION Wolfgang Rindler Professor of Physics The University of Texas at Dallas OXPORD UNIVERSITY PRESS Contents Introduction l 1 From absolute space

More information

Fourth International Workshop on Theoretical and Phenomenological Aspects of Underground Physics, Toledo (Spain) September

Fourth International Workshop on Theoretical and Phenomenological Aspects of Underground Physics, Toledo (Spain) September Fourth International Workshop on Theoretical and Phenomenological Aspects of Underground Physics, Toledo (Spain) September 17-21 1995 COSMOLOGICAL IMPLICATIONS OF A POSSIBLE CLASS OF PARTICLES ABLE TO

More information

Energy-preserving affine connections

Energy-preserving affine connections Enery-preservin affine connections Andrew D. Lewis 1997/07/28 Abstract A Riemannian affine connection on a Riemannian manifold has the property that is preserves the kinetic enery associated with the metric.

More information

Gravitational radiation from compact binaries in scalar-tensor gravity

Gravitational radiation from compact binaries in scalar-tensor gravity Gravitational radiation from compact binaries in scalar-tensor gravity Ryan Lang University of Florida 10th International LISA Symposium May 23, 2014 Testing general relativity General relativity has withstood

More information

Tensor Calculus, Relativity, and Cosmology

Tensor Calculus, Relativity, and Cosmology Tensor Calculus, Relativity, and Cosmology A First Course by M. Dalarsson Ericsson Research and Development Stockholm, Sweden and N. Dalarsson Royal Institute of Technology Stockholm, Sweden ELSEVIER ACADEMIC

More information

Gravity and action at a distance

Gravity and action at a distance Gravitational waves Gravity and action at a distance Newtonian gravity: instantaneous action at a distance Maxwell's theory of electromagnetism: E and B fields at distance D from charge/current distribution:

More information

General Relativity in AdS

General Relativity in AdS General Relativity in AdS Akihiro Ishibashi 3 July 2013 KIAS-YITP joint workshop 1-5 July 2013, Kyoto Based on work 2012 w/ Kengo Maeda w/ Norihiro Iizuka, Kengo Maeda - work in progress Plan 1. Classical

More information

arxiv: v2 [gr-qc] 9 Jan 2019

arxiv: v2 [gr-qc] 9 Jan 2019 Schwarzschild solution in R-spacetime T. Ansachon, S. N. Manida Department of Hih Enery Physics, Faculty of Physics, Saint-Petersbur State University, Russia. arxiv:1301.4198v [r-qc] 9 Jan 019 Here we

More information

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Richard A. Mould Basic Relativity With 144 Figures Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents Preface vii PARTI 1. Principles of Relativity 3 1.1

More information

a curved geometry along geodesic paths which coincide precisely with the paths one observes for bodies moving under gravitational influences.

a curved geometry along geodesic paths which coincide precisely with the paths one observes for bodies moving under gravitational influences. Lab Note, Part : Gravitational and Inertial Mass, and Electromanetism as Geometry, in - Dimensional Spacetime Jay R. Yablon (jyablon@nycap.rr.com), ebruary 6, 8 1. Introduction It has been understood at

More information

On Einstein s Time Dilation and Length Contraction

On Einstein s Time Dilation and Length Contraction On Einstein s Time Dilation and Length Contraction Stephen J. Crothers Tasmania, Australia thenarmis@yahoo.com 17 February, 2017 ABSTRACT Einstein s time dilation and length contraction in his Special

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. A material called spacetime

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. A material called spacetime Title A material called spacetime Author(s)Greve, Ralf Issue Date 2017-08-21 Doc URL http://hdl.handle.net/2115/67121 Type lecture Note Colloquium of Mechanics, Study Center Mechanics, Dar File Information

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley,

A GENERAL RELATIVITY WORKBOOK. Thomas A. Moore. Pomona College. University Science Books. California. Mill Valley, A GENERAL RELATIVITY WORKBOOK Thomas A. Moore Pomona College University Science Books Mill Valley, California CONTENTS Preface xv 1. INTRODUCTION 1 Concept Summary 2 Homework Problems 9 General Relativity

More information

Geometric and Physical Defects in the Theory of Black Holes

Geometric and Physical Defects in the Theory of Black Holes Mathematical Sciences for Advancement of Science and Technology MSAST 28), Institute for Mathematics, Bioinformatics, Information Technology and Computer Science IMBIC), Salt Lake City, Kolkata Calcutta),

More information

(a) Find the function that describes the fraction of light bulbs failing by time t e (0.1)x dx = [ e (0.1)x ] t 0 = 1 e (0.1)t.

(a) Find the function that describes the fraction of light bulbs failing by time t e (0.1)x dx = [ e (0.1)x ] t 0 = 1 e (0.1)t. 1 M 13-Lecture March 8, 216 Contents: 1) Differential Equations 2) Unlimited Population Growth 3) Terminal velocity and stea states Voluntary Quiz: The probability density function of a liht bulb failin

More information

The cosmic censorship conjectures in classical general relativity

The cosmic censorship conjectures in classical general relativity The cosmic censorship conjectures in classical general relativity Mihalis Dafermos University of Cambridge and Princeton University Gravity and black holes Stephen Hawking 75th Birthday conference DAMTP,

More information

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Sergei Kopeikin University of Missouri-Columbia 1 Content of lecture: Motivations Statement of the problem Notable issues

More information

On Isotropic Coordinates and Einstein s Gravitational Field

On Isotropic Coordinates and Einstein s Gravitational Field July 006 PROGRESS IN PHYSICS Volume 3 On Isotropic Coordinates and Einstein s Gravitational Field Stephen J. Crothers Queensland Australia E-mail: thenarmis@yahoo.com It is proved herein that the metric

More information

Code_Aster. Element CABLE_GAINE

Code_Aster. Element CABLE_GAINE Titre : Élément CABLE_GAINE Date : 28/07/2015 Pae : 1/12 Element CABLE_GAINE Summary: The element CABLE_GAINE presented in this document is to model cables of prestressin bein able to rub or slip into

More information

PHY 133 Lab 1 - The Pendulum

PHY 133 Lab 1 - The Pendulum 3/20/2017 PHY 133 Lab 1 The Pendulum [Stony Brook Physics Laboratory Manuals] Stony Brook Physics Laboratory Manuals PHY 133 Lab 1 - The Pendulum The purpose of this lab is to measure the period of a simple

More information

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.3 HARMONIC MOTION

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.3 HARMONIC MOTION ONINE: MATHEMATICS EXTENSION Topic 6 MECHANICS 6.3 HARMONIC MOTION Vibrations or oscillations are motions that repeated more or less reularly in time. The topic is very broad and diverse and covers phenomena

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

Nonlinear Model Reduction of Differential Algebraic Equation (DAE) Systems

Nonlinear Model Reduction of Differential Algebraic Equation (DAE) Systems Nonlinear Model Reduction of Differential Alebraic Equation DAE Systems Chuili Sun and Jueren Hahn Department of Chemical Enineerin eas A&M University Collee Station X 77843-3 hahn@tamu.edu repared for

More information

Relativity Discussion

Relativity Discussion Relativity Discussion 4/19/2007 Jim Emery Einstein and his assistants, Peter Bergmann, and Valentin Bargmann, on there daily walk to the Institute for advanced Study at Princeton. Special Relativity The

More information

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology) Quantum generation of density perturbations in the early Universe MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 03/07/16@Symposium: New Generation Quantum Theory -Particle Physics, Cosmology, and

More information

A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity by Peter Collier Book

A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity by Peter Collier Book Download PDF/ Epub A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity by Peter Collier Book [Bestsellers] Mathematics of Relativity by Peter Collier

More information

A FUNDAMENTAL PRINCIPLE OF RELATIVITY. By Douglas L. Weller ABSTRACT

A FUNDAMENTAL PRINCIPLE OF RELATIVITY. By Douglas L. Weller ABSTRACT A FUNDAMENTAL PRINCIPLE OF RELATIVITY By Douglas L. Weller ABSTRACT The laws of physics hold equally in reference frames that are in motion with respect to each other. This premise of Albert Einstein s

More information

4/3 Problem for the Gravitational Field

4/3 Problem for the Gravitational Field 4/3 Problem for the ravitational Field Sere. Fedosin PO bo 6488 Sviaeva str. -79 Perm Russia E-mail: intelli@list.ru Abstract The ravitational field potentials outside and inside a uniform massive ball

More information

RELG - General Relativity

RELG - General Relativity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 749 - MAT - Department of Mathematics 748 - FIS - Department

More information

On Certain Conceptual Anomalies in Einstein s Theory of Relativity

On Certain Conceptual Anomalies in Einstein s Theory of Relativity On Certain Conceptual Anomalies in Einstein s Theory of Relativity Stephen J. Crothers Queensland, Australia 28 November 2007 E-mail: thenarmis@yahoo.com There are a number of conceptual anomalies occurring

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

Linearized optimal power flow

Linearized optimal power flow Linearized optimal power flow. Some introductory comments The advantae of the economic dispatch formulation to obtain minimum cost allocation of demand to the eneration units is that it is computationally

More information

From An Apple To Black Holes Gravity in General Relativity

From An Apple To Black Holes Gravity in General Relativity From An Apple To Black Holes Gravity in General Relativity Gravity as Geometry Central Idea of General Relativity Gravitational field vs magnetic field Uniqueness of trajectory in space and time Uniqueness

More information

The direct detection of gravitational waves: The first discovery, and what the future might bring

The direct detection of gravitational waves: The first discovery, and what the future might bring The direct detection of gravitational waves: The first discovery, and what the future might bring Chris Van Den Broeck Nikhef - National Institute for Subatomic Physics Amsterdam, The Netherlands Physics

More information

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity.

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity. Giinter Ludyk Einstein in Matrix Form Exact Derivation of the Theory of Special and General Relativity without Tensors ^ Springer Contents 1 Special Relativity 1 1.1 Galilei Transformation 1 1.1.1 Relativity

More information

Gravitational Waves. Basic theory and applications for core-collapse supernovae. Moritz Greif. 1. Nov Stockholm University 1 / 21

Gravitational Waves. Basic theory and applications for core-collapse supernovae. Moritz Greif. 1. Nov Stockholm University 1 / 21 Gravitational Waves Basic theory and applications for core-collapse supernovae Moritz Greif Stockholm University 1. Nov 2012 1 / 21 General Relativity Outline 1 General Relativity Basic GR Gravitational

More information

Is Matter an emergent property of Space-Time?

Is Matter an emergent property of Space-Time? Is Matter an emergent property of Space-Time? C. Chevalier and F. Debbasch Université Pierre et Marie Curie-Paris6, UMR 8112, ERGA-LERMA, 3 rue Galilée, 94200 Ivry, France. chevalier claire@yahoo.fr, fabrice.debbasch@gmail.com

More information

Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field.

Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field. Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field. 1 C. S. Khodre, 2 K. D.Patil, 3 S. D.Kohale and 3 P. B.Jikar 1 Department of Mathematics,

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

Law of Gravity, Dark Matter and Dark Energy

Law of Gravity, Dark Matter and Dark Energy Law of Gravity, Dark Matter and Dark Energy Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF Blog: http://www.indiana.edu/~fluid https://physicalprinciples.wordpress.com I. Laws of

More information

One of the fundamental problems in differential geometry is to find metrics of constant curvature

One of the fundamental problems in differential geometry is to find metrics of constant curvature Chapter 2 REVIEW OF RICCI FLOW 2.1 THE RICCI FLOW One of the fundamental problems in differential geometry is to find metrics of constant curvature on Riemannian manifolds. The existence of such a metric

More information

PHYM432 Relativity and Cosmology fall Introduction. Dr. David K. Sing

PHYM432 Relativity and Cosmology fall Introduction. Dr. David K. Sing PHYM432 Relativity and Cosmology fall 2012 1. Introduction Dr. David K. Sing 1 PHYM432 General Relativity and Cosmology Fall 2012-2013 Instructor: Dr. David K Sing Office: Physics building room 514 Email

More information

Pedagogical Strategy

Pedagogical Strategy Integre Technical Publishing Co., Inc. Hartle November 18, 2002 1:42 p.m. hartlemain19-end page 557 Pedagogical Strategy APPENDIX D...as simple as possible, but not simpler. attributed to A. Einstein The

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information

Updated to take into account early universe cosmology and Penrose s cyclic conformal cosmology

Updated to take into account early universe cosmology and Penrose s cyclic conformal cosmology Bounds upon raviton Mass usin the difference between raviton propaation speed and HFW transit speed to observe post-newtonian corrections to ravitational potential fields Updated to take into account early

More information

221A Miscellaneous Notes Continuity Equation

221A Miscellaneous Notes Continuity Equation 221A Miscellaneous Notes Continuity Equation 1 The Continuity Equation As I received questions about the midterm problems, I realized that some of you have a conceptual gap about the continuity equation.

More information

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case).

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Manasse R. Mbonye Michigan Center for Theoretical Physics Physics Department, University of Michigan, Ann Arbor,

More information

Lecture VIII: Linearized gravity

Lecture VIII: Linearized gravity Lecture VIII: Linearized gravity Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: November 5, 2012) I. OVERVIEW We are now ready to consider the solutions of GR for the case of

More information

LOCAL SPACE-TIME TRANSLATION SYMMETRY

LOCAL SPACE-TIME TRANSLATION SYMMETRY GENERAL PHYSICS GRAVITATION LOCAL SPACE-TIME TRANSLATION SYMMETRY G. ZET, C. POPA, D. PARTENIE Department of Physics, Gh. Asachi, Technical University, Iasi, Romania Faculty of Physics, Al. I. Cuza University,

More information

Causality, hyperbolicity, and shock formation in Lovelock theories

Causality, hyperbolicity, and shock formation in Lovelock theories Causality, hyperbolicity, and shock formation in Lovelock theories Harvey Reall DAMTP, Cambridge University HSR, N. Tanahashi and B. Way, arxiv:1406.3379, 1409.3874 G. Papallo, HSR arxiv:1508.05303 Lovelock

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

General relativity and the Einstein equations

General relativity and the Einstein equations April 23, 2013 Special relativity 1905 Let S and S be two observers moving with velocity v relative to each other along the x-axis and let (t, x) and (t, x ) be the coordinate systems used by these observers.

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

Testing relativity with gravitational waves

Testing relativity with gravitational waves Testing relativity with gravitational waves Michał Bejger (CAMK PAN) ECT* workshop New perspectives on Neutron Star Interiors Trento, 10.10.17 (DCC G1701956) Gravitation: Newton vs Einstein Absolute time

More information

The Origin of Orbits in Spherically Symmetric Space-Time

The Origin of Orbits in Spherically Symmetric Space-Time 18 The Origin of Orbits in Spherically Symmetric Space-Time by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) and Horst Eckardt, Alpha Institute

More information

Black Hole Physics via Gravitational Waves

Black Hole Physics via Gravitational Waves Black Hole Physics via Gravitational Waves Image: Steve Drasco, California Polytechnic State University and MIT How to use gravitational wave observations to probe astrophysical black holes In my entire

More information