ECE INFORMATION THEORY. Fall 2011 Prof. Thinh Nguyen

Size: px
Start display at page:

Download "ECE INFORMATION THEORY. Fall 2011 Prof. Thinh Nguyen"

Transcription

1 1 ECE INFORMATION THEORY Fall 2011 Prof. Thinh Nguyen

2 LOGISTICS Prerequisites: ECE 353, strong mathematical background Office hours: M, W 11-Noon, KEC3115 Course Content: Entropy, Relative Entropy, and Mutual Information Asymptoptic Equipartition Property Entropy Rates of a Stochastic ti Process Data Compression Shannon Coding Theorems Channel Capacity Differential Entropy Gaussian Channel Rate Distortion Theory (time permitted, most likely not) 2

3 LOGISTICS Textbook: Elements of Information Theory, Thomas Cover and Joy Thomas, Wiley, second edition i Recommended reading: Information Theory, Inference, and Learning Algorithms, D. MacKay A Mathematical Theory of Communication, C. E. Shannon, Vol 27, pp , , July, October, 1948, labs.com/cm/ms/what/shannonday/shannon1948.pdf Class list: ece566-f11@engr.orst.edu 3

4 LOGISTICS Grading Policy Scribing: 5% Homework 30% Midterm (Take home) 30% Final exam/project (Take home) 35% 4

5 WHAT IS INFORMATION? Information theory deals with the concept of information, its measurement and its applications. 5

6 ORIGIN OF INFORMATION THEORY Two schools of thoughts British Semantic information : related to the meaning of messages Pragmatic information : related to the usage and effect of messages American Syntactic: related to the symbols from which messages are composed, and their interrelations 6

7 ORIGIN OF INFORMATION THEORY Consider the following sentences 1. Jacqueline was awarded the gold medal by the judges at the national skating competition. 2. The judges awarded Jacqueline the gold medal at the national skating competition. 3. There is a traffic jam on I-5 between Corvallis and Eugene in Oregon 4. There is a traffic jam on I-5 in Oregon (1) and (2): syntactically different but semantically and pragmatically identical. (3) and (4): syntactically and semantically different, (3) gives more precise information than (4) (3) and (4) are irrelevant for Californians. 7

8 ORIGIN OF INFORMATION THEORY The British tradition is closely related to philosophy, psychology and biology. Influenced scientists include MacKay, Carnap, Bar-Hillel, Very hard if not impossible ibl to quantify The American tradition deals with the syntactic aspects of information. Influenced scientists include Shannon, Renyi, Gallager and Csiszar, Can be rigorously quantified by mathematics 8

9 ORIGIN OF INFORMATION THEORY Basic questions of information theory in the American tradition involve the measurement of syntactic information The fundamental limits on the amount of information which can be transmitted The fundamental limits on the compression of information which can be achieved How to build information processing systems approaching these limits? 9

10 ORIGIN OF INFORMATION THEORY H. Nyquist (1924) published an article wherein he discussed how messages (characters) could be sent over a telegraph channel with maximum possible speed, but without distortion. R. Hartley (1928) who first defined a measure of information as the logarithm of the number of distinguishable messages one can represent using n characters, each can take s possible letters. 10

11 ORIGIN OF INFORMATION THEORY For a message of length n, we have the Hartley s measure of information as: H H n n ( s ) log( s ) nlog( s ) For a message of length of 1, we have the Hartley s measure of information as: H H ( s 1 ) log( s 1 ) 1log( s) This definition corresponds with the intuitive idea that a message consisting of n symbols contains n times as much information as a message consisting of only one symbol. 11

12 ORIGIN OF INFORMATION THEORY f ( s ) nf ( s ) Note that t any function would satisfy our intuition. One can show that the only functions that satisfy such equation is of the form: n f ( s) log ( s) a The choice of a is arbitrary, and is more a matter of normalization. 12

13 AND NOW, THE SHANNON S INFORMATION THEORY (a.k.a communication theory, mathematical information theory, or in short as information theory) 13

14 CLAUDE SHANNON The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. (Claude Shannon 1948) Channel Coding Theorem: It is possible to achieve near perfect communication of information over a noisy channel. In this course we will: Define what we mean by information Show how we can compress the information in a source to its theoretically minimum value and show the tradeoff between data compression and distortion. Prove the Channel Coding Theorem and derive the information capacity of different channels

15 The little formula that starts it all x A H( X) E[ log2 ( X)] p( x)log2 p( x) 15

16 SOME FUNDAMENTAL QUESTIONS (that can be addressed by information theory) What is the minimum number of bits that can be used to represent the following texts? "There is a wisdom that is woe; but there is a woe that is madness. And there is a Catskill eagle in some souls that can alike dive down into the blackest gorges, and soar out of them again and become invisible in the sunny spaces. And even if he for ever flies within the gorge, that gorge is in the mountains; so that even in his lowest swoop the mountain eagle is still higher than other birds upon the plain, even though h they soar." - Moby Dick, Herman Melville 16

17 SOME FUNDAMENTAL QUESTIONS (that can be addressed by information theory) How fast can information be sent reliably over an error prone channel? "Thera is a wisdem that is woe; but thera is a woe that is madness. And there is a Catskill eagle in sme souls that can alike divi down into the blackst goages, and soar out of thea agein and become invisble in the sunny speces. And even if he for ever flies within the gorge, that gorge is in the mountains; so that even in his lotest swoap the mountin eagle is still highhr than other berds upon the plain, even though h they soar." - Moby Dick, Herman Melville 17

18 FROM QUESTIONS TO APPLICATIONS 18

19 SOME NOT SO FUNDAMENTAL QUESTIONS (that can be addressed by information theory) How to make money? (Kelly s Portfolio Theory) What is the optimal dating strategy? 19

20 FUNDAMENTAL ASSUMPTION OF SHANNON S INFORMATION THEORY Physical Model (Laws) E.g., Newtonian universe is deterministic, all events can be predicted d with 100% accuracy by Newton s laws, given the initial conditions. U N I V E R S E If there is no irreducible randomness, the description/history of our universe, therefore can be compressed into a few equations. 20

21 FUNDAMENTAL ASSUMPTION OF SHANNON S INFORMATION THEORY Probabilistic model Some well-defined stochastic process that generates all the observations U N I V E R S E Thus in certain sense, Shannon information theory is somewhat unsatisfactory since it is based on the ignorant model. Nevertheless, it is a good approximation, depending on how accurate the probabilistic model used to describe the phenomenon of interest. 21

22 FUNDAMENTAL ASSUMPTION OF SHANNON S INFORMATION THEORY "There is a wisdom that is woe; but there is a woe that is madness. And there is a Catskill eagle in some souls that can alike dive down into the blackest gorges, and soar out of them again and become invisible in the sunny spaces. And even if he for ever flies within the gorge, that gorge is in the mountains; so that even in his lowest swoop the mountain eagle is still higher than other birds upon the plain, even though they soar." - Moby Dick, Herman Melville We know the texts above is not random, but we can build a probabilistic model for it. For example, a first order approximation could be to build a histogram of different letters in the text, t then approximate the probability that a particular letter appears based on the histogram (assuming iid). 22

23 WHY SHANNON INFORMATION IS SOMEWHAT UNSATISFACTORY? How much Shannon information does this picture contain? 23

24 ALGORITHMIC INFORMATION THEORY (KOLMOGOROV COMPLEXITY) The Kolmogorov complexity K(x) of a sequence x is the minimum size of the program and its inputs needed d to generate x. Example: If x was a sequence of all ones, a highly compressible sequence, the program would simply be a print statement t t in a loop. On the other extreme, if x were a random sequence with no structure, then the only program that could generate it would contain the sequence itself. 24

25 REVIEW OF BASIC PROBABILITY A discrete random variable X takes a value x from the alphabet A with probability p(x). 25

26 EXPECTED VALUE If g(x) is real valued and defined on A then X E [ g( X)] p( x) g( x) x A 26

27 SHANNON INFORMATION CONTENT The Shannon Information Content of an outcome with probability p is log 2 p 27

28 MINESWEEPER Where is the bomb? 16 possibilities - needs 4 bits to specify 28

29 ENTROPY H ( X ) E [ log 2 ( p ( X ))] p ( x)log 2 ( p ( x )) 2 x A 29

30 ENTROPY EXAMPLES Bernoulli Random Variable 30

31 ENTROPY EXAMPLES Four Colored Shapes A = [ ; ; ; ] p(x) = [1/2;1/4;1/8;1/8] 31

32 DERIVATION OF SHANNON ENTROPY H ( X ) n i 1 p i log 2 p i Intuitive Requirements: 1. We want H to be a continuous function of probabilities p i. That is, a i small change in p i should only cause a small change in H 2. If all events are equally likely, that is, p i = 1/n for all i, then H should be a monotonically increasing function of n. The more possible outcomes there are, the more information should be contained in the occurrence of any particular outcome. 3. It does not matter how we divide the group of outcomes, the total of information should be the same. 32

33 DERIVATION OF SHANNON ENTROPY 33

34 DERIVATION OF SHANNON ENTROPY 34

35 DERIVATION OF SHANNON ENTROPY 35

36 DERIVATION OF SHANNON ENTROPY 36

Lecture 1. Introduction

Lecture 1. Introduction Lecture 1. Introduction What is the course about? Logistics Questionnaire Dr. Yao Xie, ECE587, Information Theory, Duke University What is information? Dr. Yao Xie, ECE587, Information Theory, Duke University

More information

3F1 Information Theory, Lecture 1

3F1 Information Theory, Lecture 1 3F1 Information Theory, Lecture 1 Jossy Sayir Department of Engineering Michaelmas 2013, 22 November 2013 Organisation History Entropy Mutual Information 2 / 18 Course Organisation 4 lectures Course material:

More information

Outline of the Lecture. Background and Motivation. Basics of Information Theory: 1. Introduction. Markku Juntti. Course Overview

Outline of the Lecture. Background and Motivation. Basics of Information Theory: 1. Introduction. Markku Juntti. Course Overview : Markku Juntti Overview The basic ideas and concepts of information theory are introduced. Some historical notes are made and the overview of the course is given. Source The material is mainly based on

More information

(Classical) Information Theory III: Noisy channel coding

(Classical) Information Theory III: Noisy channel coding (Classical) Information Theory III: Noisy channel coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract What is the best possible way

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy Coding and Information Theory Chris Williams, School of Informatics, University of Edinburgh Overview What is information theory? Entropy Coding Information Theory Shannon (1948): Information theory is

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 2014 1 / 8 I

More information

Block 2: Introduction to Information Theory

Block 2: Introduction to Information Theory Block 2: Introduction to Information Theory Francisco J. Escribano April 26, 2015 Francisco J. Escribano Block 2: Introduction to Information Theory April 26, 2015 1 / 51 Table of contents 1 Motivation

More information

Information Theory and Coding Techniques

Information Theory and Coding Techniques Information Theory and Coding Techniques Lecture 1.2: Introduction and Course Outlines Information Theory 1 Information Theory and Coding Techniques Prof. Ja-Ling Wu Department of Computer Science and

More information

Introduction to Information Theory. Part 2

Introduction to Information Theory. Part 2 Introduction to Information Theory Part 2 1 A General Communication System CHANNEL Information Source Transmitter Channel Receiver Destination 2 Information: Definition Information is quantified using

More information

1 Background on Information Theory

1 Background on Information Theory Review of the book Information Theory: Coding Theorems for Discrete Memoryless Systems by Imre Csiszár and János Körner Second Edition Cambridge University Press, 2011 ISBN:978-0-521-19681-9 Review by

More information

The Measure of Information Uniqueness of the Logarithmic Uncertainty Measure

The Measure of Information Uniqueness of the Logarithmic Uncertainty Measure The Measure of Information Uniqueness of the Logarithmic Uncertainty Measure Almudena Colacito Information Theory Fall 2014 December 17th, 2014 The Measure of Information 1 / 15 The Measurement of Information

More information

Shannon's Theory of Communication

Shannon's Theory of Communication Shannon's Theory of Communication An operational introduction 5 September 2014, Introduction to Information Systems Giovanni Sileno g.sileno@uva.nl Leibniz Center for Law University of Amsterdam Fundamental

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

Fundamentals of Information Theory Lecture 1. Introduction. Prof. CHEN Jie Lab. 201, School of EIE BeiHang University

Fundamentals of Information Theory Lecture 1. Introduction. Prof. CHEN Jie Lab. 201, School of EIE BeiHang University Fundamentals of Information Theory Lecture 1. Introduction Prof. CHEN Jie Lab. 201, School of EIE BeiHang University Teaching Staff Dr. YU Ze Office: F617, NMB Email: yz613@buaa.edu.cn Dr. SUN Bing Office:

More information

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information.

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information. L65 Dept. of Linguistics, Indiana University Fall 205 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission rate

More information

Part I. Entropy. Information Theory and Networks. Section 1. Entropy: definitions. Lecture 5: Entropy

Part I. Entropy. Information Theory and Networks. Section 1. Entropy: definitions. Lecture 5: Entropy and Networks Lecture 5: Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/ Part I School of Mathematical Sciences, University

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 28 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission

More information

Module 1. Introduction to Digital Communications and Information Theory. Version 2 ECE IIT, Kharagpur

Module 1. Introduction to Digital Communications and Information Theory. Version 2 ECE IIT, Kharagpur Module ntroduction to Digital Communications and nformation Theory Lesson 3 nformation Theoretic Approach to Digital Communications After reading this lesson, you will learn about Scope of nformation Theory

More information

A Mathematical Theory of Communication

A Mathematical Theory of Communication A Mathematical Theory of Communication Ben Eggers Abstract This paper defines information-theoretic entropy and proves some elementary results about it. Notably, we prove that given a few basic assumptions

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

Sequences and Information

Sequences and Information Sequences and Information Rahul Siddharthan The Institute of Mathematical Sciences, Chennai, India http://www.imsc.res.in/ rsidd/ Facets 16, 04/07/2016 This box says something By looking at the symbols

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 10: Information Theory Textbook: Chapter 12 Communication Systems Engineering: Ch 6.1, Ch 9.1~ 9. 92 2009/2010 Meixia Tao @

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

Information in Biology

Information in Biology Lecture 3: Information in Biology Tsvi Tlusty, tsvi@unist.ac.kr Living information is carried by molecular channels Living systems I. Self-replicating information processors Environment II. III. Evolve

More information

Shannon s A Mathematical Theory of Communication

Shannon s A Mathematical Theory of Communication Shannon s A Mathematical Theory of Communication Emre Telatar EPFL Kanpur October 19, 2016 First published in two parts in the July and October 1948 issues of BSTJ. First published in two parts in the

More information

6.02 Fall 2012 Lecture #1

6.02 Fall 2012 Lecture #1 6.02 Fall 2012 Lecture #1 Digital vs. analog communication The birth of modern digital communication Information and entropy Codes, Huffman coding 6.02 Fall 2012 Lecture 1, Slide #1 6.02 Fall 2012 Lecture

More information

Information Theory and Coding Techniques: Chapter 1.1. What is Information Theory? Why you should take this course?

Information Theory and Coding Techniques: Chapter 1.1. What is Information Theory? Why you should take this course? Information Theory and Coding Techniques: Chapter 1.1 What is Information Theory? Why you should take this course? 1 What is Information Theory? Information Theory answers two fundamental questions in

More information

Information in Biology

Information in Biology Information in Biology CRI - Centre de Recherches Interdisciplinaires, Paris May 2012 Information processing is an essential part of Life. Thinking about it in quantitative terms may is useful. 1 Living

More information

Information Theory. Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30010, R.O.C.

Information Theory. Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30010, R.O.C. Information Theory Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30010, R.O.C. Overview : The philosophy behind Information Theory Po-Ning

More information

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5.

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Channel capacity Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Exercices Exercise session 11 : Channel capacity 1 1. Source entropy Given X a memoryless

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

Intro to Information Theory

Intro to Information Theory Intro to Information Theory Math Circle February 11, 2018 1. Random variables Let us review discrete random variables and some notation. A random variable X takes value a A with probability P (a) 0. Here

More information

A Simple Introduction to Information, Channel Capacity and Entropy

A Simple Introduction to Information, Channel Capacity and Entropy A Simple Introduction to Information, Channel Capacity and Entropy Ulrich Hoensch Rocky Mountain College Billings, MT 59102 hoenschu@rocky.edu Friday, April 21, 2017 Introduction A frequently occurring

More information

Classification & Information Theory Lecture #8

Classification & Information Theory Lecture #8 Classification & Information Theory Lecture #8 Introduction to Natural Language Processing CMPSCI 585, Fall 2007 University of Massachusetts Amherst Andrew McCallum Today s Main Points Automatically categorizing

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Information Theory John E Savage What is Information Theory Introduced by Claude Shannon. See Wikipedia Two foci: a) data compression and b) reliable communication

More information

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016 Midterm Exam Time: 09:10 12:10 11/23, 2016 Name: Student ID: Policy: (Read before You Start to Work) The exam is closed book. However, you are allowed to bring TWO A4-size cheat sheet (single-sheet, two-sided).

More information

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 4 Data Transmission and Channel Capacity Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30050, R.O.C. Principle of Data Transmission

More information

Introduction to Information Theory. Part 4

Introduction to Information Theory. Part 4 Introduction to Information Theory Part 4 A General Communication System CHANNEL Information Source Transmitter Channel Receiver Destination 10/2/2012 2 Information Channel Input X Channel Output Y 10/2/2012

More information

ELEMENTS O F INFORMATION THEORY

ELEMENTS O F INFORMATION THEORY ELEMENTS O F INFORMATION THEORY THOMAS M. COVER JOY A. THOMAS Preface to the Second Edition Preface to the First Edition Acknowledgments for the Second Edition Acknowledgments for the First Edition x

More information

Chapter I: Fundamental Information Theory

Chapter I: Fundamental Information Theory ECE-S622/T62 Notes Chapter I: Fundamental Information Theory Ruifeng Zhang Dept. of Electrical & Computer Eng. Drexel University. Information Source Information is the outcome of some physical processes.

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

INTRODUCTION TO INFORMATION THEORY

INTRODUCTION TO INFORMATION THEORY INTRODUCTION TO INFORMATION THEORY KRISTOFFER P. NIMARK These notes introduce the machinery of information theory which is a eld within applied mathematics. The material can be found in most textbooks

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006)

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006) MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK SATELLITE COMMUNICATION DEPT./SEM.:ECE/VIII UNIT V PART-A 1. What is binary symmetric channel (AUC DEC 2006) 2. Define information rate? (AUC DEC 2007)

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

EC2252 COMMUNICATION THEORY UNIT 5 INFORMATION THEORY

EC2252 COMMUNICATION THEORY UNIT 5 INFORMATION THEORY EC2252 COMMUNICATION THEORY UNIT 5 INFORMATION THEORY Discrete Messages and Information Content, Concept of Amount of Information, Average information, Entropy, Information rate, Source coding to increase

More information

Information Theory, Statistics, and Decision Trees

Information Theory, Statistics, and Decision Trees Information Theory, Statistics, and Decision Trees Léon Bottou COS 424 4/6/2010 Summary 1. Basic information theory. 2. Decision trees. 3. Information theory and statistics. Léon Bottou 2/31 COS 424 4/6/2010

More information

MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK. SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A

MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK. SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK DEPARTMENT: ECE SEMESTER: IV SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A 1. What is binary symmetric channel (AUC DEC

More information

Introduction to Information Theory

Introduction to Information Theory Introduction to Information Theory Impressive slide presentations Radu Trîmbiţaş UBB October 2012 Radu Trîmbiţaş (UBB) Introduction to Information Theory October 2012 1 / 19 Transmission of information

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 2: Entropy and Mutual Information Chapter 2 outline Definitions Entropy Joint entropy, conditional entropy Relative entropy, mutual information Chain rules Jensen s inequality Log-sum inequality

More information

PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY

PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY BURTON ROSENBERG UNIVERSITY OF MIAMI Contents 1. Perfect Secrecy 1 1.1. A Perfectly Secret Cipher 2 1.2. Odds Ratio and Bias 3 1.3. Conditions for Perfect

More information

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction to Information Theory By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction [B.P. Lathi] Almost in all the means of communication, none produces error-free communication.

More information

Lecture 8: Shannon s Noise Models

Lecture 8: Shannon s Noise Models Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 8: Shannon s Noise Models September 14, 2007 Lecturer: Atri Rudra Scribe: Sandipan Kundu& Atri Rudra Till now we have

More information

Lecture 1: Introduction, Entropy and ML estimation

Lecture 1: Introduction, Entropy and ML estimation 0-704: Information Processing and Learning Spring 202 Lecture : Introduction, Entropy and ML estimation Lecturer: Aarti Singh Scribes: Min Xu Disclaimer: These notes have not been subjected to the usual

More information

Computing and Communications 2. Information Theory -Entropy

Computing and Communications 2. Information Theory -Entropy 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Entropy Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Entropy Joint entropy

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

Introduction to Information Theory. Part 3

Introduction to Information Theory. Part 3 Introduction to Information Theory Part 3 Assignment#1 Results List text(s) used, total # letters, computed entropy of text. Compare results. What is the computed average word length of 3 letter codes

More information

Towards a Theory of Information Flow in the Finitary Process Soup

Towards a Theory of Information Flow in the Finitary Process Soup Towards a Theory of in the Finitary Process Department of Computer Science and Complexity Sciences Center University of California at Davis June 1, 2010 Goals Analyze model of evolutionary self-organization

More information

Noisy channel communication

Noisy channel communication Information Theory http://www.inf.ed.ac.uk/teaching/courses/it/ Week 6 Communication channels and Information Some notes on the noisy channel setup: Iain Murray, 2012 School of Informatics, University

More information

Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory

Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory 1 The intuitive meaning of entropy Modern information theory was born in Shannon s 1948 paper A Mathematical Theory of

More information

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019 Lecture 11: Information theory DANIEL WELLER THURSDAY, FEBRUARY 21, 2019 Agenda Information and probability Entropy and coding Mutual information and capacity Both images contain the same fraction of black

More information

Reliable Computation over Multiple-Access Channels

Reliable Computation over Multiple-Access Channels Reliable Computation over Multiple-Access Channels Bobak Nazer and Michael Gastpar Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA, 94720-1770 {bobak,

More information

Information Theory - Entropy. Figure 3

Information Theory - Entropy. Figure 3 Concept of Information Information Theory - Entropy Figure 3 A typical binary coded digital communication system is shown in Figure 3. What is involved in the transmission of information? - The system

More information

One Lesson of Information Theory

One Lesson of Information Theory Institut für One Lesson of Information Theory Prof. Dr.-Ing. Volker Kühn Institute of Communications Engineering University of Rostock, Germany Email: volker.kuehn@uni-rostock.de http://www.int.uni-rostock.de/

More information

Entropy Rate of Stochastic Processes

Entropy Rate of Stochastic Processes Entropy Rate of Stochastic Processes Timo Mulder tmamulder@gmail.com Jorn Peters jornpeters@gmail.com February 8, 205 The entropy rate of independent and identically distributed events can on average be

More information

Information Theory (Information Theory by J. V. Stone, 2015)

Information Theory (Information Theory by J. V. Stone, 2015) Information Theory (Information Theory by J. V. Stone, 2015) Claude Shannon (1916 2001) Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379 423. A mathematical

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

ESE 523 Information Theory

ESE 523 Information Theory ESE 53 Inforation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electrical and Systes Engineering Washington University 11 Urbauer Hall 10E Green Hall 314-935-4173 (Lynda Marha Answers) jao@wustl.edu

More information

1. Basics of Information

1. Basics of Information 1. Basics of Information 6.004x Computation Structures Part 1 Digital Circuits Copyright 2015 MIT EECS 6.004 Computation Structures L1: Basics of Information, Slide #1 What is Information? Information,

More information

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy Haykin_ch05_pp3.fm Page 207 Monday, November 26, 202 2:44 PM CHAPTER 5 Information Theory 5. Introduction As mentioned in Chapter and reiterated along the way, the purpose of a communication system is

More information

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel Introduction to Coding Theory CMU: Spring 2010 Notes 3: Stochastic channels and noisy coding theorem bound January 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami We now turn to the basic

More information

COS 341: Discrete Mathematics

COS 341: Discrete Mathematics COS 341: Discrete Mathematics Midterm Exam Fall 2006 Print your name General directions: This exam is due on Monday, November 13 at 4:30pm. Late exams will not be accepted. Exams must be submitted in hard

More information

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Nan Liu and Andrea Goldsmith Department of Electrical Engineering Stanford University, Stanford CA 94305 Email:

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 11: Information Theory Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 15 th, 2015 1 Midterm Degrees Exam Type of Assignment Max. Final Oral* Oral

More information

Discrete Probability Refresher

Discrete Probability Refresher ECE 1502 Information Theory Discrete Probability Refresher F. R. Kschischang Dept. of Electrical and Computer Engineering University of Toronto January 13, 1999 revised January 11, 2006 Probability theory

More information

to mere bit flips) may affect the transmission.

to mere bit flips) may affect the transmission. 5 VII. QUANTUM INFORMATION THEORY to mere bit flips) may affect the transmission. A. Introduction B. A few bits of classical information theory Information theory has developed over the past five or six

More information

AN INFORMATION THEORY APPROACH TO WIRELESS SENSOR NETWORK DESIGN

AN INFORMATION THEORY APPROACH TO WIRELESS SENSOR NETWORK DESIGN AN INFORMATION THEORY APPROACH TO WIRELESS SENSOR NETWORK DESIGN A Thesis Presented to The Academic Faculty by Bryan Larish In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Chapter 2 Review of Classical Information Theory

Chapter 2 Review of Classical Information Theory Chapter 2 Review of Classical Information Theory Abstract This chapter presents a review of the classical information theory which plays a crucial role in this thesis. We introduce the various types of

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 7: Information Theory Cosma Shalizi 3 February 2009 Entropy and Information Measuring randomness and dependence in bits The connection to statistics Long-run

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

How to Quantitate a Markov Chain? Stochostic project 1

How to Quantitate a Markov Chain? Stochostic project 1 How to Quantitate a Markov Chain? Stochostic project 1 Chi-Ning,Chou Wei-chang,Lee PROFESSOR RAOUL NORMAND April 18, 2015 Abstract In this project, we want to quantitatively evaluate a Markov chain. In

More information

VID3: Sampling and Quantization

VID3: Sampling and Quantization Video Transmission VID3: Sampling and Quantization By Prof. Gregory D. Durgin copyright 2009 all rights reserved Claude E. Shannon (1916-2001) Mathematician and Electrical Engineer Worked for Bell Labs

More information

The Method of Types and Its Application to Information Hiding

The Method of Types and Its Application to Information Hiding The Method of Types and Its Application to Information Hiding Pierre Moulin University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ moulin/talks/eusipco05-slides.pdf EUSIPCO Antalya, September 7,

More information

Coding for Discrete Source

Coding for Discrete Source EGR 544 Communication Theory 3. Coding for Discrete Sources Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona Coding for Discrete Source Coding Represent source data effectively

More information

Computational Models

Computational Models Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models Inroduction to the Theory of Computing Instructor: Prof. Benny Chor (benny at cs

More information

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria Source Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Asymptotic Equipartition Property Optimal Codes (Huffman Coding) Universal

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions Engineering Tripos Part IIA THIRD YEAR 3F: Signals and Systems INFORMATION THEORY Examples Paper Solutions. Let the joint probability mass function of two binary random variables X and Y be given in the

More information

Noisy-Channel Coding

Noisy-Channel Coding Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/05264298 Part II Noisy-Channel Coding Copyright Cambridge University Press 2003.

More information

Revision of Lecture 5

Revision of Lecture 5 Revision of Lecture 5 Information transferring across channels Channel characteristics and binary symmetric channel Average mutual information Average mutual information tells us what happens to information

More information

2018/5/3. YU Xiangyu

2018/5/3. YU Xiangyu 2018/5/3 YU Xiangyu yuxy@scut.edu.cn Entropy Huffman Code Entropy of Discrete Source Definition of entropy: If an information source X can generate n different messages x 1, x 2,, x i,, x n, then the

More information

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

6.02 Fall 2011 Lecture #9

6.02 Fall 2011 Lecture #9 6.02 Fall 2011 Lecture #9 Claude E. Shannon Mutual information Channel capacity Transmission at rates up to channel capacity, and with asymptotically zero error 6.02 Fall 2011 Lecture 9, Slide #1 First

More information

Lecture 2: Perfect Secrecy and its Limitations

Lecture 2: Perfect Secrecy and its Limitations CS 4501-6501 Topics in Cryptography 26 Jan 2018 Lecture 2: Perfect Secrecy and its Limitations Lecturer: Mohammad Mahmoody Scribe: Mohammad Mahmoody 1 Introduction Last time, we informally defined encryption

More information

DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY

DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY OUTLINE 3.1 Why Probability? 3.2 Random Variables 3.3 Probability Distributions 3.4 Marginal Probability 3.5 Conditional Probability 3.6 The Chain

More information

Upper Bounds on the Capacity of Binary Intermittent Communication

Upper Bounds on the Capacity of Binary Intermittent Communication Upper Bounds on the Capacity of Binary Intermittent Communication Mostafa Khoshnevisan and J. Nicholas Laneman Department of Electrical Engineering University of Notre Dame Notre Dame, Indiana 46556 Email:{mhoshne,

More information

Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Nonstationary/Unstable Linear Systems

Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Nonstationary/Unstable Linear Systems 6332 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 58, NO 10, OCTOBER 2012 Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Nonstationary/Unstable Linear

More information

Solutions to Homework Set #3 Channel and Source coding

Solutions to Homework Set #3 Channel and Source coding Solutions to Homework Set #3 Channel and Source coding. Rates (a) Channels coding Rate: Assuming you are sending 4 different messages using usages of a channel. What is the rate (in bits per channel use)

More information