Chapter 1. Introduction. Introduction to Heat Transfer

Size: px
Start display at page:

Download "Chapter 1. Introduction. Introduction to Heat Transfer"

Transcription

1 Chapter 1 Introduction to Heat Transfer Islamic Azad University Karaj Branch Dr. M. Khosravy 1 Introduction Thermodynamics: Energy can be transferred between a system and its surroundgs. A system teracts with its surroundgs by exchangg work and heat Deals with equilibrium states Does not give formation ab: Rates at which energy is transferred Mechanisms through with energy is transferred In this chapter we will learn! What is heat transfer! How is heat transferred! Relevance and importance Dr. M. Khosravy

2 Defitions Heat transfer is thermal energy transfer that is duced by a temperature difference (or gradient) Modes of heat transfer Conduction heat transfer: Occurs when a temperature gradient exists through a solid or a stationary fluid (liquid or gas). Convection heat transfer: Occurs with a movg fluid, or between a solid surface and a movg fluid, when they are at different temperatures Thermal radiation: Heat transfer between two surfaces (that are not contact), often the absence of an terveng medium. Dr. M. Khosravy 3 Example: Design of a contaer A closed contaer filled with hot coffee is a room whose air and walls are at a fixed temperature. Identify all heat transfer processes that contribute to coolg of the coffee. Comment on features that would contribute to a superior contaer design. Dr. M. Khosravy 4

3 1. Conduction Transfer of energy from the more energetic to less energetic particles of a substance by collisions between atoms and/or molecules.! Atomic and molecular activity random molecular motion (diffusion) T 1 T 1 >T x o q x x T T Dr. M. Khosravy 5 1. Conduction Consider a brick wall, of thickness L=0.3 m which a cold wter day is exposed to a constant side temperature, T 1 =0 C and a constant side temperature, T =-0 C.! Under steady-state conditions the temperature varies learly as a function of x. Wall Area, A! The rate of conductive heat T 1 =0 C q x transfer the x-direction depends on T T = -0 C x L=0.3 m T1! T L q x Dr. M. Khosravy 6

4 1. Conduction The proportionality constant is a transport property, known as thermal conductivity k (units W/m.K) T1 T! T q x = k = k L L For the brick wall, k=0.7 W/m.K (assumed constant), therefore q x = 96 W/m? How would this value change if stead of the brick wall we had a piece of polyurethane sulatg foam of the same dimensions? (k=0.06 W/m.K)! q x is the heat flux (units W/m or (J/s)/m ), which is the heat transfer rate the x-direction per unit area perpendicular to the direction of transfer.! The heat rate, q x (units W=J/s) through a plane wall of area A is the product of the flux and the area: q x = q x. A Dr. M. Khosravy 7 1. Conduction In the general case the rate of heat transfer the x-direction is expressed terms of the Fourier law: q x =!k dt dx T 1 (high) q x Mus sign because heat flows from high to low T! For a lear profile dt dx ( T = ( x! T1 )! x ) < 1 0 x 1 x x T (low) Dr. M. Khosravy 8

5 . Convection Energy transfer by random molecular motion (as conduction) plus bulk (macroscopic) motion of the fluid. Convection: transport by random motion of molecules and by bulk motion of fluid. Advection: transport due solely to bulk fluid motion.! Forced convection: Caused by external means! Natural (free) convection: flow duced by buoyancy forces, arisg from density differences arisg from temperature variations the fluid The above cases volve sensible heat (ternal energy) of the fluid! Latent heat exchange is associated with phase changes boilg and condensation. Dr. M. Khosravy 9. Convection Air at 0 C blows over a hot plate, which is mataed at a temperature T s =300 C and has dimensions 0x40 cm. Air q T!! = 0 C T! S = 300 C The convective heat flux is proportional to q x # T T S! Dr. M. Khosravy 10

6 . Convection The proportionality constant is the convection heat transfer coefficient, h (W/m.K) q x = h( T T S! ) Newton s law of Coolg For air h=5 W/m.K, therefore the heat flux is q x = 7,000 W/m? How would this value change if stead of blowg air we had still air (h=5 W/m.K) or flowg water (h=50 W/m.K) The heat rate, is q x = q x. A = q x. (0. x 0.4) = 560 W. The heat transfer coefficient depends on surface geometry, nature of the fluid motion, as well as fluid properties. For typical ranges of values, see Table 1.1 textbook. In this solution we assumed that heat flux is positive when heat is transferred from the surface to the fluid Dr. M. Khosravy Radiation Thermal radiation is energy emitted by matter Energy is transported by electromagnetic waves (or photons). Can occur from solid surfaces, liquids and gases. Dos not require presence of a medium Surroundgs at T sur q cident = G Surface at T s q emitted = E! Emissive power E is the rate at which energy is released per unit area (W/ m ) (radiation emitted from the surface)! Irradiation G is the rate of cident radiation per unit area (W/m ) of the surface (radiation absorbed by the surface), origatg from its surroundgs Dr. M. Khosravy 1

7 3. Radiation For an ideal radiator, or blackbody: q = E =! T emitted b 4 s Stefan-Boltzmann law where T s is the absolute temperature of the surface (K) and is the Stefan- Boltzmann constant, ( = 5.67x10-8 W/m.K 4 ) For a real (non-ideal) surface: 4 emitted E = T s q =! is the emissivity 0!! 1 The irradiation G, origatg from the surroundgs is: 4 cident = G = T sur q! is the absorptivity For a grey surface, = 0! a! 1 Dr. M. Khosravy Radiation Assumg =, the net radiation heat transfer from the surface, per unit area is rad 4 s q = #( T! T The net radiation heat exchange can be also expressed the form: 4 sur ) q = h A T! rad r ( s Tsur) where s h =!( T + T )( T + T r s sur sur ) Dr. M. Khosravy 14

8 Summary: Heat Transfer Processes Identify the heat transfer processes that determe the temperature of an asphalt pavement on a summer day Dr. M. Khosravy 15 Summary: Heat Transfer Processes Identify the heat transfer processes that occur on your forearm, when you are wearg a short-sleeved shirt, while you are sittg a room. Suppose you mata the thermostat of your home at 15 C through the wter months. You are able to tolerate this if the side air temperature exceedes 10 C, but feel cold if the temperature becomes lower. Are you imagg thgs? Dr. M. Khosravy 16

9 Example 1 Satellites and spacecrafts are exposed to extremely high radiant energy from the sun. Propose a method to dissipate the heat, so that the surface temperature of a spacecraft orbit can be mataed to 300 K. Given =0.4, =0.7, q solar = 1000 W, T s =300K, T space =0 K, = 5.67x10-8 W/m.K 4 Dr. M. Khosravy 17 Example (1. Textbook) An unsulated steam pipe passes through a room which the air and the walls are at 5 C. The side diameter of the pipe is 70 mm, and its surface temperature and emissivity are 00 C and 0.8 respectively. What are the surface emissive power (E), and irradiation (G)? If the coefficient associated with free convection heat transfer from the surface to the air is h=15 W/m.K, what is the rate of heat loss from the surface per unit length of pipe, q? Dr. M. Khosravy 18

10 Remder: The General Balance Equation Accumulation = Creation Destruction + Flow Flow Rate Equation Rate of Rate of Rate of Rate of Rate of Accumulation = Creation Destruction + Flow Flow Applicable to any extensive property: mass, energy, entropy, momentum, electric charge Dr. M. Khosravy 19 Remder: System and Control Volume A system is defed as an arbitrary volume of a substance across whose boundaries no mass is exchanged. The system may experience change its momentum or energy but there is no transfer of mass between the system and its surroundgs. The system is closed. A control volume is an arbitrary volume across whose boundaries mass, momentum and energy are transferred. The control volume may be stationary or motion. Mass can be exchanged across its boundaries. Useful fluid mechanics, heat and mass transfer Dr. M. Khosravy 0

11 Remder: Approaches for Analysis of Flow In analyzg fluid motion we may take two paths: 1. Workg with a fite region (=the control volume), makg a balance of flow versus flow and determg flow effects such as forces, or total energy exchange. This is the control volume method. This approach is also called macroscopic or tegral method of analysis.. Analysg the detailed flow pattern at every pot (x,y,z) the field. This is the differential analysis, sometimes also called microscopic. Dr. M. Khosravy 1 Conservation of Energy Surroundgs, S Control Volume (CV) Boundary, B (Control Surface, CS) Addition through let E! -Accumulation (Storage) -Generation E! st E! g Loss through let E! Energy conservation on a rate basis: Units W=J/s de dt st E! + E! g! E! = = E! st (1.1)! Inflow and flow are surface phenomena! Generation and accumulation are volumetric phenomena Dr. M. Khosravy

12 The Energy Balance Dr. M. Khosravy 3 The Energy Balance & V # u g z m! + q + W! $ + +! %! Rate of Energy Flow to CV: t & V # u g z m! + q + W! $ + +! %! Rate of Energy Flow of CV: t! Rate of Energy Accumulation: d dt &, $ m * u % + t V )# + + g z '! ( CV u t :ternal energy, V: velocity, z: potential energy, q: heat rate, W: work Dr. M. Khosravy 4

13 The Energy Balance! Substitutg equation (1.1) and assumg steady-state conditions: &, $ * u $ % + t &, $ * u $ % + t V + V + + g + g ) z ' ( ) z ' ( m! m! + q + q + W! #! -! + W! #!! = 0 q Convention net, = net, q! q W! = W!! W! q is positive when transferred from surroundgs to system. W is positive when transferred from system to surroundgs Dr. M. Khosravy 5 The Energy Balance For steady-state conditions the energy balance reduces to: ' % u & t V $ # ' % & V g z m!! % + ut g z m! + q! W! net, $ # = 0 (1.) The work term is divided two contributions: Flow work, associated to pressure forces (=p, where is the specific volume) and (shaft) work done by the system. The net work is: Injection Work W!! [(P!!! net, = Wshaft +!) m] [( P ) m] Dr. M. Khosravy 6

14 Steady-Flow Energy Equation ' V m! % u + p( + & + q! W! = 0 Recall: shaft Enthalpy per unit mass: + g $ z # i = ut + p! '! m! % u & V + p( + m! =! VA Mass flow rate (kg/s) c m!! = VAc =! Volumetric flow rate (m 3 /s) + g $ z # + Units of [J/s] and i! i ) = c ( T! T ) ( p Dr. M. Khosravy 7 Simplified steady-flow energy equation For steady state conditions, no changes ketic or potential energy, no thermal energy generation, neglible pressure drop: q = mc! ( T! T ) p Dr. M. Khosravy 8

15 Example (Problem 1.36 textbook) In an orbitg space station, an electronic package is housed a compartment havg a surface area A s =1 m, which is exposed to space. Under normal operatg conditions, the electronics dissipate 1kW, all of which must be transferred from the exposed surface to space. (a) If the surface emissivity is 1.0 and the surface is not exposed to the sun, what is its steady-state temperature? (b) If the surface is exposed to a solar flux of 750 W/m and its absorptivity to solar radiation is 0.5, what is its steady-state temperature? Dr. M. Khosravy 9 Surface Energy Balance For a control surface: T 1 q cond q rad E!! E! or = 0 q conv q cond! q conv! q rad = 0 T T x T! Dr. M. Khosravy 30

16 Example (Problem 1.55 textbook) The roof of a car a parkg lot absorbs a solar radiant flux of 800 W/m, while the underside is perfectly sulated. The convection coefficient between the roof and the ambient air is 1 W/m.K. a) Neglectg radiation exchange with the surroundgs, calculate the temperature of the roof under steady-state conditions, if the ambient air temperature is 0 C. b) For the same ambient air temperature, calculate the temperature of the roof it its surface emissivity is 0.8 Dr. M. Khosravy 31 Chapter 1: Summary Modes of Heat Transfer: Conduction Convection Radiation dt q x =!k 4 4 qx = h( TS T! ) q rad = #( Ts! Tsur) dx q x (W/m ) is the heat flux q x (W=J/s) is the heat rate q = h A T! rad r ( s Tsur) Energy Balances written on a rate basis (J/s):! Conservation of Energy for a Control Volume! Surface Energy Balance (does not consider volumetric phenomena) Dr. M. Khosravy 3

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2 Heat Transfer: Physical Origins and Rate Equations Chapter One Sections 1.1 and 1. Heat Transfer and Thermal Energy What is heat transfer? Heat transfer is thermal energy in transit due to a temperature

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

Applied Thermodynamics HEAT TRANSFER. Introduction What and How?

Applied Thermodynamics HEAT TRANSFER. Introduction What and How? LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE: 3 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING PROGRAMME: ENGR. ALIYU, S.J Course code: MCE 311 Course title: Applied Thermodynamics

More information

Law of Heat Transfer

Law of Heat Transfer Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics

More information

Unit B-4: List of Subjects

Unit B-4: List of Subjects ES312 Energy Transfer Fundamentals Unit B: First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-2: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Introduction W Q. Energy can move in and out of a system in two forms Work (W) and Heat (Q) C H A P T E R. Thermodynamics is about:

Introduction W Q. Energy can move in and out of a system in two forms Work (W) and Heat (Q) C H A P T E R. Thermodynamics is about: M 4792 IUO: O O D MZL BDUL WID http://wwwfkmutmmy/~mazlan X: eat ransfer ractical pproach by Yunus engel Mc Graw ill Introduction Basic of eat ransfer Dr Mazlan bdul Wahid aculty of Mechanical ngineering

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature.

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Heat Transfer Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Cold objects in a warmer room will heat up to room temperature. Question

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

DR.PRADIP DUTTA Department of Mechanical Engineering Indian Institute of Science Bangalore

DR.PRADIP DUTTA Department of Mechanical Engineering Indian Institute of Science Bangalore DR.PRADIP DUTTA Department of Mechanical Engineering Indian Institute of Science Bangalore What is Heat Transfer? Energy in transit due to temperature difference. Thermodynamics tells us: How much heat

More information

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets.

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets. QUESTION An understanding of the basic laws governing heat transfer is imperative to everything you will learn this semester. Write the equation for and explain the following laws governing the three basic

More information

PROBLEM 1.3. dt T1 T dx L 0.30 m

PROBLEM 1.3. dt T1 T dx L 0.30 m PROBLEM 1.3 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of outer surface temperatures ranging from -15 to

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Thermodynamics and Statistical Physics Key contents: Temperature scales Thermal expansion Temperature and heat, specific heat Heat and

More information

Relationship to Thermodynamics. Chapter One Section 1.3

Relationship to Thermodynamics. Chapter One Section 1.3 Relationship to Thermodynamics Chapter One Section 1.3 Alternative Formulations Alternative Formulations Time Basis: CONSERVATION OF ENERGY (FIRST LAW OF THERMODYNAMICS) An important tool in heat transfer

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics During an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information

Physics Mechanics

Physics Mechanics 1 Physics 170 - Mechanics Lecture 35 Heat 2 Definition and Units of Heat Heat is a form of energy, and therefore is measured in joules. There are other units of heat, the most common one is the kilocalorie:

More information

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104.

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104. Chapter 1: 0, 3, 35, 1, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 10. 1-0 The filament of a 150 W incandescent lamp is 5 cm long and has a diameter of 0.5 mm. The heat flux on the surface of the filament,

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C)

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C) PROBLEM 1.2 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from -15 to 38

More information

Lecture 22. Temperature and Heat

Lecture 22. Temperature and Heat Lecture 22 Temperature and Heat Today s Topics: 0 th Law of Thermodynamics Temperature Scales Thermometers Thermal Expansion Heat, Internal Energy and Work Heat Transfer Temperature and the Zeroth Law

More information

H E A T T R A N S F E R. LECTURER: MOHSIN MOHD SIES C H A P T E R

H E A T T R A N S F E R. LECTURER: MOHSIN MOHD SIES   C H A P T E R M 4463 LU: MOI MOD I http://www.fkm.utm.my/~mohsin Introduction Basic of eat ransfer Introduction hermodynamics: nergy can be transferred between a system and its surroundings. system interacts with its

More information

Lecture 2: Fundamentals. Sourav Saha

Lecture 2: Fundamentals. Sourav Saha ME 267: Mechanical Engineering Fundamentals Credit hours: 3.00 Lecture 2: Fundamentals Sourav Saha Lecturer Department of Mechanical Engineering, BUET Email address: ssaha09@me.buet.ac.bd, souravsahame17@gmail.com

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 3- Examples on problems having different heat transfer modes Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Examples Multimode heat transfer Heat exchanger

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

- Apply closed system energy balances, observe sign convention for work and heat transfer.

- Apply closed system energy balances, observe sign convention for work and heat transfer. CHAPTER : ENERGY AND THE FIRST LAW OF THERMODYNAMICS Objectives: - In this chapter we discuss energy and develop equations for applying the principle of conservation of energy. Learning Outcomes: - Demonstrate

More information

3. First Law of Thermodynamics and Energy Equation

3. First Law of Thermodynamics and Energy Equation 3. First Law of Thermodynamics and Energy Equation 3. The First Law of Thermodynamics for a ontrol Mass Undergoing a ycle The first law for a control mass undergoing a cycle can be written as Q W Q net(cycle)

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING Delft University of Technology DEPRTMENT OF EROSPCE ENGINEERING Course: Physics I (E-04) Course year: Date: 7-0-0 Time: 4:00-7:00 Student name and itials (capital letters): Student number:. You have attended

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 524 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

Thermodynamics - Heat Transfer June 04, 2013

Thermodynamics - Heat Transfer June 04, 2013 THERMODYNAMICS - Heat and Heat Transfer: Heat (Q) is a form of Energy that is transferred between an object and another object or its surrounding environment due to a difference in Temperature. Heat is

More information

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices. Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

Conduction is the transfer of heat by the direct contact of particles of matter.

Conduction is the transfer of heat by the direct contact of particles of matter. Matter and Energy Chapter 9 energy flows from a material at a higher temperature to a material at a lower temperature. This process is called heat transfer. How is heat transferred from material to material,

More information

Modeling of Environmental Systems

Modeling of Environmental Systems Modeling of Environmental Systems While the modeling of predator-prey dynamics is certainly simulating an environmental system, there is more to the environment than just organisms Recall our definition

More information

Thermodynamics and Energy. First Law of Thermodynamics and Energy Transfer Mechanisms. Applications of Thermodynamics

Thermodynamics and Energy. First Law of Thermodynamics and Energy Transfer Mechanisms. Applications of Thermodynamics Thermodynamics and Energy The most fundamental laws of nature: First Law of Thermodynamics and Energy Transfer Mechanisms Physics Enhancement Programme Dr. M.H. CHAN Principle of Conservation of Energy

More information

Thermodynamics [ENGR 251] [Lyes KADEM 2007]

Thermodynamics [ENGR 251] [Lyes KADEM 2007] CHAPTER V The first law of thermodynamics is a representation of the conservation of energy. It is a necessary, but not a sufficient, condition for a process to occur. Indeed, no restriction is imposed

More information

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature Heat Transfer Conduction, Convection, and Radiation Review: Temperature! Temperature is:! The quantity that tells how hot or cold something is compared with a standard! A measure of the average kinetic

More information

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014) PTT 77/3 APPLIED THERMODYNAMICS SEM 1 (013/014) 1 Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical Nuclear The total energy of a system on a unit mass:

More information

Chapter 13 The Transfer of Heat

Chapter 13 The Transfer of Heat Chapter 13 The Transfer of Heat Transfer of heat from one point to another 1) Convection 2) Conduction 3) Radiation 13.1 Convection CONVECTION The process in which heat is carried from one place to another

More information

PROBLEM Node 5: ( ) ( ) ( ) ( )

PROBLEM Node 5: ( ) ( ) ( ) ( ) PROBLEM 4.78 KNOWN: Nodal network and boundary conditions for a water-cooled cold plate. FIND: (a) Steady-state temperature distribution for prescribed conditions, (b) Means by which operation may be extended

More information

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed.

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed. Physics 111 Lecture 36 (Walker: 16.4-6) Heat Capacity & Specific Heat Heat Transfer May 1, 2009 Quiz (Chaps. 14 & 16) on Wed. May 6 Lecture 36 1/26 Heat Capacity (C) The heat capacity C of an object is

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1 EAS488/B8800 Climate & Climate Change Homework 2: Atmospheric Radiation and Climate, surface energy balance, and atmospheric general circulation Posted: 3/12/18; due: 3/26/18 Answer keys 1. (10 points)

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Chapter 2. Energy and the First Law of Thermodynamics

Chapter 2. Energy and the First Law of Thermodynamics Chapter 2 Energy and the First Law of Thermodynamics Closed System Energy Balance Energy is an extensive property that includes the kinetic and gravitational potential energy of engineering mechanics.

More information

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows.

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows. Outline Stock Flow and temperature Earth as a black body Equation models for earth s temperature { { Albedo effect Greenhouse effect Balancing earth s energy flows Exam questions How does earth maintain

More information

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1 Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation Energy is the capacity to perform work (but physicists have a special definition for work, too!) Part of the trouble is that scientists have appropriated

More information

Radiation Heat Transfer

Radiation Heat Transfer Heat Lectures 0- CM30 /5/06 CM30 ransport I Part II: Heat ransfer Radiation Heat ransfer In Unit Operations Heat Shields Professor Faith Morrison Department of Chemical Engineering Michigan echnological

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

HEAT AND MASS TRANSFER. List of Experiments:

HEAT AND MASS TRANSFER. List of Experiments: HEAT AND MASS TRANSFER List of Experiments: Conduction Heat Transfer Unit 1. Investigation of Fourier Law for linear conduction of heat along a simple bar. 2. Study the conduction of heat along a composite

More information

Latest Heat Transfer

Latest Heat Transfer Latest Heat Transfer 1. Unit of thermal conductivity in M.K.S. units is (a) kcal/kg m2 C (b) kcal-m/hr m2 C (c) kcal/hr m2 C (d) kcal-m/hr C (e) kcal-m/m2 C. 2. Unit of thermal conductivity in S.I. units

More information

ENERGY AND FIRST LAW OF THERMODYNAMICS. By Ertanto Vetra

ENERGY AND FIRST LAW OF THERMODYNAMICS. By Ertanto Vetra ENERGY AND FIRST LAW OF THERMODYNAMICS 1 By Ertanto Vetra Objective Introduce the concept of energy and define its various forms. Discuss the nature of internal energy. Define the concept of heat and the

More information

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient Lecture 28 Contents Heat transfer importance Conduction Convection Free Convection Forced convection Radiation Radiation coefficient Illustration on heat transfer coefficient 1 Illustration on heat transfer

More information

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties.

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties. PROBLEM 5.5 KNOWN: Diameter and radial temperature of AISI 00 carbon steel shaft. Convection coefficient and temperature of furnace gases. FIND: me required for shaft centerline to reach a prescribed temperature.

More information

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23! Thermodynamics Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!) Chapter18 Thermodynamics Thermodynamics is the study of the thermal

More information

Arctice Engineering Module 3a Page 1 of 32

Arctice Engineering Module 3a Page 1 of 32 Welcome back to the second part of the second learning module for Fundamentals of Arctic Engineering online. We re going to review in this module the fundamental principles of heat transfer. Exchange of

More information

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE Chapter 2 Energy and the 1st Law of Thermodynamics 1 2 Homework Assignment # 2 Problems: 1, 7, 14, 20, 30, 36, 42, 49, 56 Design and open end problem: 2.1D Due Monday 22/12/2014 3 Work and Kinetic Energy

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Energy and Radiation GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Last lecture: the Atmosphere! Mainly nitrogen (78%) and oxygen (21%)! T, P and ρ! The Ideal Gas Law! Temperature profiles Lecture outline!

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

LECTURE NOTES. Heat Transfer. III B. Tech II Semester (JNTUA-R15) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS)

LECTURE NOTES. Heat Transfer. III B. Tech II Semester (JNTUA-R15) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) LECTURE NOTES on Heat Transfer III B. Tech II Semester (JNTUA-R15) Mr. K.SURESH, Assistant Professor CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati 517

More information

Quiz C&J page 316 (top), Check Your Understanding #6:... use a straw

Quiz C&J page 316 (top), Check Your Understanding #6:... use a straw Quiz on Chapter 11 Quiz 9 1. C&J page 316 (top), Check Your Understanding #6:... use a straw Quiz 9 1. C&J page 316 (top), Check Your Understanding #6:... use a straw 2. What volume of helium has the same

More information

TRANSMISSION OF HEAT

TRANSMISSION OF HEAT TRANSMISSION OF HEAT Synopsis :. In general heat travels from one point to another whenever there is a difference of temperatures.. Heat flows from a body at higher temperature to a lower temperature..

More information

Energy in Thermal Processes. Heat and Internal Energy

Energy in Thermal Processes. Heat and Internal Energy Energy in Thermal Processes Heat and Internal Energy Internal energy U: associated with the microscopic components of a system: kinetic and potential energies. The larger the number of internal degrees

More information

Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015

Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit

More information

Introduction to Thermal Radiation

Introduction to Thermal Radiation Introduction to Thermal Radiation Figures except for the McDonnell Douglas figures come from Incorpera & DeWitt, Introduction to Heat and Mass Transfer or Cengel, Heat Transfer: Practical pproach Thermal

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Chapter 1 - Temperature and Heat

Chapter 1 - Temperature and Heat Chapter 1 - and Heat and Heat It doesn t make a difference what temperature a room is, it s always room temperature. -Steven Wright David J. Starling Penn State Hazleton Fall 2013 and Heat Thermodynamics

More information

Handout 10: Heat and heat transfer. Heat capacity

Handout 10: Heat and heat transfer. Heat capacity 1 Handout 10: Heat and heat transfer Heat capacity Consider an experiment in Figure 1. Heater is inserted into a solid substance of mass m and the temperature rise T degrees Celsius is measured by a thermometer.

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Heat & Mass Transfer. Week_01. Instructor: Mr. Adnan Qamar. Mechanical Engineering Department

Heat & Mass Transfer. Week_01. Instructor: Mr. Adnan Qamar. Mechanical Engineering Department Heat & Mass Transfer Week_01 Instructor: Mr. Adnan Qamar Mechanical Engineering Department 1 Course Outline ME-312 Heat and Mass Transfer Introduction to conduction, convection and radiation heat transfer,

More information

Chapter 18. Temperature, Heat, and the First Law of Thermodynamics Temperature

Chapter 18. Temperature, Heat, and the First Law of Thermodynamics Temperature Chapter 18 Temperature, Heat, and the First Law of Thermodynamics 18.2 Temperature 18.3: The Zeroth aw of Thermodynamics If bodies A and B are each in thermal equilibrium with a third body T, then A and

More information

Thermodynamics 2013/2014, lecturer: Martin Zápotocký

Thermodynamics 2013/2014, lecturer: Martin Zápotocký Thermodynamics 2013/2014, lecturer: Martin Zápotocký 2 lectures: 1. Thermodynamic processes, heat and work, calorimetry, 1 st and 2 nd law of thermodynamics 2. Entropy, thermodynamic potentials, nonequilibrium

More information

Part II First Law of Thermodynamics

Part II First Law of Thermodynamics Part II First Law of Thermodynamics Introduction The first law deals with macroscopic properties, work, energy, enthalpy, etc. One of the most fundamental laws of nature is the conservation of energy principle.

More information

Heat Transfer I ENGR 6901 Fall, Dr. Y.S. Muzychka ER 4021

Heat Transfer I ENGR 6901 Fall, Dr. Y.S. Muzychka ER 4021 1 Heat Transfer I ENGR 6901 Fall, 2014 Dr. Y.S. Muzychka ER 4021 Course Materials 2 Course Text: Fundamentals of Heat and Mass Transfer Bergman, Levine, Incropera and DeWiQ, 7 th EdiSon 6 th EdiSon is

More information

Physics 2: Fluid Mechanics and Thermodynamics

Physics 2: Fluid Mechanics and Thermodynamics Physics 2: Fluid Mechanics and Thermodynamics Đào Ngọc Hạnh Tâm Office: A1.503, email: dnhtam@hcmiu.edu.vn HCMIU, Vietnam National University Acknowledgment: Most of these slides are supported by Prof.

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

Chapter 11 Thermal Transport

Chapter 11 Thermal Transport Chapter 11 Thermal Transport GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define the following terms, and use them in an operational

More information

Mechanisms of heat transfer

Mechanisms of heat transfer Lecture 4 Mechanisms of heat transfer Pre-reading: 17.7 Review Heat can be transferred from one object to another due to a temperature difference. The properties of many objects change with temperature:

More information

Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 14 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

CHAPTER 17 WORK, HEAT, & FIRST LAW OF THERMODYNAMICS

CHAPTER 17 WORK, HEAT, & FIRST LAW OF THERMODYNAMICS CHAPTER 17 WORK, HEAT, and the FIRST LAW OF THERMODYNAMICS In this chapter, we will examine various thermal properties of matter, as well as several mechanisms by which energy can be transferred to and

More information

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook.

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook. Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 4 Energy balances Partly based on Chater 4 of the De Nevers textbook Energy fluid mechanics As for any quantity, we can set u an energy balance for a secific

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Heat Transfer Heat transfer rate by conduction is related to the temperature gradient by Fourier s law. For the one-dimensional heat transfer problem in Fig. 1.8, in which temperature varies in the y-

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation Paper No. : 04 Paper Title: Unit Operations in Food Processing Module-07: Heat Transfer 3: Heat Radiation 7.1 Introduction Radiation heat transfer is the transfer of heat energy in the form of electromagnetic

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Physics 101: Lecture 26 Conduction, Convection, Radiation

Physics 101: Lecture 26 Conduction, Convection, Radiation Final Physics 101: Lecture 26 Conduction, Convection, Radiation Today s lecture will cover Textbook Chapter 14.4-14.9 Physics 101: Lecture 26, Pg 1 Review Heat is FLOW of energy Flow of energy may increase

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

Cooling of Electronics Lecture 2

Cooling of Electronics Lecture 2 Cooling of Electronics Lecture 2 Hans Jonsson Agenda Lecture 2 Introduction to Cooling of Electronics Cooling at different levels Cooling demand calculations Introduction to Cooling of Electronics Both

More information