Economics Noncooperative Game Theory Lectures 3. October 15, 1997 Lecture 3

Size: px
Start display at page:

Download "Economics Noncooperative Game Theory Lectures 3. October 15, 1997 Lecture 3"

Transcription

1 Economics Noncooperative Game Theory October 15, 1997 Lecture 3 Professor Andrew McLennan Nash Equilibrium I. Introduction A. Philosophy 1. Repeated framework a. One plays against dierent opponents each time, so that retaliation and rewards for prior behavior are impossible. b. One does not know the history of specic opponents, so reputation building is impossible. c. The \social norm" is observed by all agents, and is used to form expectations about opponents' behavior. d. The paper by Okuno-Fujiwara and Postlewaite (GEB 1995) presents a detailed analysis of this interpretation. 2. This interpretation depends on a notion of \similarity" between games. a. This may be culturally determined. b. Essentially this is the philosophical problem of induction. B. Importance of Nash's existence theorem 1. It is mathematically useful of course. 2. It guarantees that the solution concept is not ad hoc in the sense of applying only to some games. Insofar as solution concepts are theories of rational behavior, they should be applicable to all environments. C. Outline 1. We develop the mathematical properties of the best response correspondence. 2. Then the Kakutani xed point theorem is applied. 1

2 3. Computation is discussed. 4. An alternative proof of existence using the Brouwer xed point theorem is given. 5. The existence of symmetric equilibria is shown. II. Review of the Best Response Correspondence A. Recall the formula for agent i's expected payo: u i () = X Si = X Si i (s i )[ X S,1( j6=i j (s j )) u i (s i ;s,i )] i (s i ) u i (s i ;,i ) 1. u i is continuous. 2. u i is the restriction to (S 1 ) ::: (S n ) ofamultilinear function u i : IR S 1 :::IR S n! IR: B. BR i () =f 0 i 2(S i)ju i ( 0 i ;,i)u i ( 00 i ;,i) for all 00 i 2 (S i)g: Lemma 1: BR i () is the face of (S i ) spanned by the pure strategies in BR i (): Consequently it is nonempty and convex. Proof: This follows from the multilinearity of u i : C. Denition: A correspondence is a set valued function f : X! Y (i.e. f(x) Y ) such that f(x) 6= ; for all x 2 X: If X and Y are topological spaces, f is upper semicontinuous if its graph Gr(f) = f(x; y)jy 2 f(x)g is closed. 1. Remark: In the mathematical literature correspondences are sometimes called multifunctions and are said to be upper semicontinuous if, for every x 2 X and every neighborhoods V of f(x); there is a neighborhood U of x such that f(x 0 ) V for all x 0 2 U: If Y is compact the two notions of upper semicontinuity coincide. (Exercise) 2

3 Lemma 2: BR i () is an upper semicontinuous correspondence. Proof: Suppose f m g is a sequence in ; 0m i 2BR i ( m ) for all m; m! ; and 0m i! 0 i : If 0 i is not in BR i () then there is 00 i with u i ( 0 i ;,i)<u i ( 00 i ;,i): The continuityof u i 0m i 2 BR i ( m ): then implies that u i (i 0m ;,i m )<u i(i 00;m,i) for large m; contradicting D. Denition: The best response correspondence is BR :! dened by BR() = i2i BR i (): Corollary: BR is an upper semicontinuous and convex valued. Proof: :Obvious. III. The Existence Proof The Kakutani Fixed Point Theorem: If C is a convex compact subset of IR m ; and f : C! C is an u.s.c. convex valued correspondence, then f has a xed point, that is, there is x 2 C with x 2 f(x): A. Remarks 1. This is proved by \bootstrapping" the Brouwer xed point theorem. This is discussed later. 2. This theorem was generalized by Eilenberg and Montgomery in the late 1940's to allow, among other things, correspondences that are contractible valued. (A topological space X is contractible if there is a continuous contraction c : X [0; 1]! X; that is, c 0 = c(; 0) = Id X and c 1 (X) =fptg: Exercise { convex sets are contractible.) 3. Another generalization due to Fan and Glicksburg shows that it is enough to assume that C is a compact convex subset of a (possibly innite dimensional) topological vector space. 3

4 B. Denition: A Nash equilibrium is a xed point of BR: Theorem: Every normal form game has a nonempty set of Nash equilibria. IV.Computation A. In general the computation of the set of Nash equilibria can be very tedious. B. A Nash equilibrium has the following two parts: 1. The sets of pure best responses for the various agents. 2. The probabilities assigned to the pure best responses. C. The algorithm 1. For each collection of subsets ; 6= T i S i compute the solution of the equilibrium conditions: a. all pure strategies in T i have the same expected payo; and b. T i i(s i )=1: c. This system of equations is algebraic of degree n, 1: 2. Given a solution of the rst stage, check whether: a. all probabilities are nonnegative; and b. all pure strategies in S i, T i are inferior. 3. Often logic allows a drastic reduction in the number of cases that need to be considered. D. An Example 1n2 ` c r 0 U (8; 6) (3; 1) (4; 8) M (1; 7) (5; 5) (9; 3) D (6; 2) (7; 9) (2; 4) 1 C A 1. Pure strategy equilibria a. We look at the best responses i. U ) r ) M ) ` ) U 4

5 ii. D ) c ) D b. Thus (D; c) is the only pure equilibrium. 2. Equilibria with mixtures over two strategies a. We look at the consequences in the best response correspondence of not playing assigning positive probability to a pure strategy. i. U ) r )M ) `) U ii. Thus T 1 = fm; Dg or fu; Dg and T 2 = f`; cg or fc; rg are not possible. iii. D ) c ) D; so T 1 = fu; Mg and T 2 = f`; rg must be checked out. The system 8q` +4q r =1q`+9q r ;q`+q r =1; 8p U +p M =4p U +9p M ;p U +p M =1; has the solution (p U ;p M )=(2=3;1=3); (q`; q r )=(5=12; 7=12): Since the probabilities are positive and D ) c ) D; this is an equilibrium. 3. Totally mixed equilibria. a. In principle we should solve two systems of three equations and three unknowns. b. Since I cleverly chose the payos so that the payo matrix for each agent is a magic square { the sums of all rows, columns, and diagonals are the same { (p U ;p M ;p D )=(1=3;1=3;1=3) and (q`; q c ;q r )=(1=3;1=3;1=3) is the unique totally mixed equilibrium. V. More on Fixed Point Theory A. It is very important to understand xed point theorems. 1. Nash equilibrium, and the techniques used to prove existence, are central. 5

6 2. More sophisticated aspects of xed point theory are used in developing some solution concepts. 3. We will do the following: a. Argue that Brouwer's xed point theorem is plausible; b. Sketch the argument passing from Brouwer's theorem to Kakutani's; c. Show how the existence of Nash equilibria can be demonstrated using Brouwer's theorem. B. The Brouwer Theorem Brouwer's Fixed Point Thoerem: If C is a compact convex subset of IR m (or homeomorphic to one), and g : C! C is a continuous function, then g has a xed point. 1. For economists the best source of a proof is Topology from the Dierentiable Viewpoint by John Milnor, pp. 1 { 19, since one also learns Sard's Theorem and the avor of dierentiable topology. 2. We present one step in this argument. Any compact convex subset of IR m is homeomorphic to D` = fx 2 IR` jkxk1g for some `: (Exercise) Let S`,1 = fx 2 IR` jkxk =1g be the (`, 1){sphere. If g : D`! D` has no xed point, let h : D`! S`,1 be the function that maps each x to the intersection of S`,1 with the ray from g(x) through x: (Draw a picture.) Then h is continuous, and h(x) =x for all x 2 S`,1 : This is intuitively impossible (a drumhead cannot be stretched onto the rim of the drum without tearing), but it is nonetheless not at all easy to prove. 3. The argument passing from Brouwer's theorem to Kakutani's is a matter of approximating the graph of the correspondence with the graphs of functions. [Illustration] The limit points of a sequence of xed points of a sequence of ner and ner 6

7 approximations must be xed points of the correspondence. C. A Proof of Existence of Nash Equilibria Using Brouwer's Theorem 1. For 2 and s i 2 S i let ' i (; s i ) = maxf0; u i (s i ;,i ),u i ()g; and dene the better response function for i to be i :!(S i ) given by i ()(s i )=( i (s i )+' i (; s i ))=(1 + S i ' i(; s 0 i )): Lemma 3: i :!(S i ) is continuous. Proof: Obvious. Lemma 4: i () = i if and only if i 2 BR i (): Proof: If i 2 BR() then ' i ( ; s i ) = 0 for all s i 2 S i ; so i () = i : Conversely, if i ()= i then there is 0 such that ' i (; s i )= i (s i ) for all s i 2 S i ; and if >0 then it must be the case that all the pure strategies receiving positive probability in i must have an expected payo greater than i ; an impossibility. 2. Let () =( 1 (); :::; n ()): Then our results above imply that :! is a continuous function whose xed points are precisely the Nash equilibria. The existence of Nash equilibria now follows from Brouwer's theorem. VI. Symmetry A. Introduction 1. In some games there are agents who are clones of each other, and one may want equilibria in which they all play the same way. 2. There may be rearrangements of the strategies of the agents that leave the payo matrices unchanged, and one may wish to consider equilibria in which the strategic probabilities are invariant with respect to such rearrangements. 3. There are reasons to regard symmetric equilibria with suspicion. 7

8 a. I know only one instance in which this notion appears in the literature, and the symmetric equilibrium for that game is, in my opinion, the least plausible. b. For the following simple example the only symmetric equilibrium is (p L ;p R ) = (1=2; 1=2); (q`; q r )=(1=2;1=2); and it is easy to argue that it is implausible. 0 1n2 ` r L (1; 1) (0; 0) R (0; 0) (1; 1) 4. On the other hand Nash was very smart, in fact smarter in some ways than was apparent when he wrote, so it is advisable to pay attention to his thought. B. Denition: A symmetry of N is a collection of bijections =( :I!I; ( i : S i! S (i)) i2i ) with the property that u i (s) =u (i)(( i (s i )) i2i ) for all i and s: We abbreviate this equation with the notation u i (s) =u (i) ((s)): 1. If is a symmetry, we extend to a map :! dened by () (i) ((s i )) = i (s i ): 2. Let Sym be the set of strategy vectors such that () = for all symmetries : 1 C A Lemma 5: Sym is nonempty, closed, and convex. Proof: For all symmetries and all i we have # (S i )= # (S (i) ); so 2 dened by i (s i )=1= # (S i ) is an element of Sym : Since :! is continuous, if ( m )= m for m =1;2; ::: and m! ; then () =; so Sym is closed. Also, it is easy to compute that ( +(1,) 0 )=()+(1,)( 0 ); so if and 0 are symmetric, so is +(1,) 0 : 8

9 Lemma 6: (()) = (()) for all 2 : Proof: We compute that u i () = S ( j2i j (s j ))u i (s) = S ( j2i () j ((s j )))u (i) ((s)) = u (i) (()); '(; s i ) = maxf0; u i (s i ;,i ),u i ()g = maxf0; u (i) ((s i ;,i )), u (i) (())g = ' (i) ((); (s i )); and i ((s i )=( i (s i )+' i (; s i ))=(1 + S i ' i(; s 0 i)) = (() (i) ((s i )) + ' (i) ((); (s i ))) (1 + S(i) ' (i) ((); s 0 (i) )) = (i) (())((s i )): Combining this with the denition of (()) yields the equation (()) (i) ((s i )) = i ()(s i )= (i) (())((s i )): Corollary: If 2 Sym ; then () 2 Sym. Proof: For any 2 Sym and any symmetry we have (()) = (()) = (): Theorem: There is a Nash equilibrium in Sym : Proof: : Sym! Sym satises the assumptions of the Brouwer xed point theorem. VII. Innite Spaces of Pure Strategies A. For i 2 I; let S i be a compact metric space of pure strategies, let S = S 1 :::S n ; and let u i : S! IR be a continuous function. 9

10 B. Let (S i ) be the set of Borel probability measures on S i endowed with the weak topology. (This won't be on the exam!) Let = i2i (S i ): C. Denition: A Nash equilibrium is 2 such that for each i; Z S 1 ::: Z Sn u i (s)d 1 ::: d i ::: d n Z S 1 ::: Z Sn u i (s)d 1 ::: d i ::: d n for all i 2 (S i ): Theorem: Under the assumptions above, there are Nash equilibria. Proof: The proof is the same as the one given above using Kakutani's xed point theorem, executed at a higher level of generality. One shows that each u i is continuous, that (S i ) is compact and convex, and that the best response correspondence is upper semicontinuous and convex valued. The desired conclusion follows from the Fan-Glicksburg xed point theorem, provided one knows the requisite functional analysis. 10

Brouwer Fixed-Point Theorem

Brouwer Fixed-Point Theorem Brouwer Fixed-Point Theorem Colin Buxton Mentor: Kathy Porter May 17, 2016 1 1 Introduction to Fixed Points Fixed points have many applications. One of their prime applications is in the mathematical field

More information

SOLUTIONS TO THE FINAL EXAM

SOLUTIONS TO THE FINAL EXAM SOLUTIONS TO THE FINAL EXAM Short questions 1 point each) Give a brief definition for each of the following six concepts: 1) normal for topological spaces) 2) path connected 3) homeomorphism 4) covering

More information

Lecture Notes on Game Theory

Lecture Notes on Game Theory Lecture Notes on Game Theory Levent Koçkesen Strategic Form Games In this part we will analyze games in which the players choose their actions simultaneously (or without the knowledge of other players

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

Constructive Proof of the Fan-Glicksberg Fixed Point Theorem for Sequentially Locally Non-constant Multi-functions in a Locally Convex Space

Constructive Proof of the Fan-Glicksberg Fixed Point Theorem for Sequentially Locally Non-constant Multi-functions in a Locally Convex Space Constructive Proof of the Fan-Glicksberg Fixed Point Theorem for Sequentially Locally Non-constant Multi-functions in a Locally Convex Space Yasuhito Tanaka, Member, IAENG, Abstract In this paper we constructively

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES

REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES J. Korean Math. Soc. 42 (2005), No. 1, pp. 101 110 REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES Hoonjoo Kim and Sehie Park Abstract. Let (X, D; ) be a G-convex space

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

15 Real Analysis II Sequences and Limits , Math for Economists Fall 2004 Lecture Notes, 10/21/2004

15 Real Analysis II Sequences and Limits , Math for Economists Fall 2004 Lecture Notes, 10/21/2004 14.102, Math for Economists Fall 2004 Lecture Notes, 10/21/2004 These notes are primarily based on those written by Andrei Bremzen for 14.102 in 2002/3, and by Marek Pycia for the MIT Math Camp in 2003/4.

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let f : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

ON GENERAL BEST PROXIMITY PAIRS AND EQUILIBRIUM PAIRS IN FREE GENERALIZED GAMES 1. Won Kyu Kim* 1. Introduction

ON GENERAL BEST PROXIMITY PAIRS AND EQUILIBRIUM PAIRS IN FREE GENERALIZED GAMES 1. Won Kyu Kim* 1. Introduction JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 19, No.1, March 2006 ON GENERAL BEST PROXIMITY PAIRS AND EQUILIBRIUM PAIRS IN FREE GENERALIZED GAMES 1 Won Kyu Kim* Abstract. In this paper, using

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

EXISTENCE OF PURE EQUILIBRIA IN GAMES WITH NONATOMIC SPACE OF PLAYERS. Agnieszka Wiszniewska Matyszkiel. 1. Introduction

EXISTENCE OF PURE EQUILIBRIA IN GAMES WITH NONATOMIC SPACE OF PLAYERS. Agnieszka Wiszniewska Matyszkiel. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 16, 2000, 339 349 EXISTENCE OF PURE EQUILIBRIA IN GAMES WITH NONATOMIC SPACE OF PLAYERS Agnieszka Wiszniewska Matyszkiel

More information

Richard DiSalvo. Dr. Elmer. Mathematical Foundations of Economics. Fall/Spring,

Richard DiSalvo. Dr. Elmer. Mathematical Foundations of Economics. Fall/Spring, The Finite Dimensional Normed Linear Space Theorem Richard DiSalvo Dr. Elmer Mathematical Foundations of Economics Fall/Spring, 20-202 The claim that follows, which I have called the nite-dimensional normed

More information

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B = CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A B, A B =, A, B open in X, and non-empty. (We ll abbreviate disjoint union of two subsets A and

More information

Analysis on Graphs. Alexander Grigoryan Lecture Notes. University of Bielefeld, WS 2011/12

Analysis on Graphs. Alexander Grigoryan Lecture Notes. University of Bielefeld, WS 2011/12 Analysis on Graphs Alexander Grigoryan Lecture Notes University of Bielefeld, WS 0/ Contents The Laplace operator on graphs 5. The notion of a graph............................. 5. Cayley graphs..................................

More information

Chapter 9. Mixed Extensions. 9.1 Mixed strategies

Chapter 9. Mixed Extensions. 9.1 Mixed strategies Chapter 9 Mixed Extensions We now study a special case of infinite strategic games that are obtained in a canonic way from the finite games, by allowing mixed strategies. Below [0, 1] stands for the real

More information

Fixed Point Theorems 1

Fixed Point Theorems 1 John Nachbar Washington University in St. Louis October 10, 2017 1 Overview Fixed Point Theorems 1 Definition 1. Given a set X and a function f : X X, x X is a fixed point of f iff f(x ) = x. Many existence

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

Lecture 6: April 25, 2006

Lecture 6: April 25, 2006 Computational Game Theory Spring Semester, 2005/06 Lecture 6: April 25, 2006 Lecturer: Yishay Mansour Scribe: Lior Gavish, Andrey Stolyarenko, Asaph Arnon Partially based on scribe by Nataly Sharkov and

More information

Mathematical Institute, University of Utrecht. June 11, 1997

Mathematical Institute, University of Utrecht. June 11, 1997 A unifying approach to existence of Nash equilibria Erik J. Balder Mathematical Institute, University of Utrecht Utrecht, the Netherlands June 11, 1997 An approach initiated in 4] is shown to unify results

More information

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE JOHANNES EBERT 1.1. October 11th. 1. Recapitulation from differential topology Definition 1.1. Let M m, N n, be two smooth manifolds

More information

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0 1. Classification of 1-manifolds Theorem 1.1. Let M be a connected 1 manifold. Then M is diffeomorphic either to [0, 1], [0, 1), (0, 1), or S 1. We know that none of these four manifolds are not diffeomorphic

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Mathematics 530. Practice Problems. n + 1 }

Mathematics 530. Practice Problems. n + 1 } Department of Mathematical Sciences University of Delaware Prof. T. Angell October 19, 2015 Mathematics 530 Practice Problems 1. Recall that an indifference relation on a partially ordered set is defined

More information

Notes for Functional Analysis

Notes for Functional Analysis Notes for Functional Analysis Wang Zuoqin (typed by Xiyu Zhai) October 16, 2015 1 Lecture 11 1.1 The closed graph theorem Definition 1.1. Let f : X Y be any map between topological spaces. We define its

More information

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8 BROUWER FIXED POINT THEOREM DANIELE CARATELLI Abstract. This paper aims at proving the Brouwer fixed point theorem for smooth maps. The theorem states that any continuous (smooth in our proof) function

More information

Positive Models of Private Provision of Public Goods: A Static Model. (Bergstrom, Blume and Varian 1986)

Positive Models of Private Provision of Public Goods: A Static Model. (Bergstrom, Blume and Varian 1986) Positive Models of Private Provision of Public Goods: A Static Model (Bergstrom, Blume and Varian 1986) Public goods will in general be under-supplied by voluntary contributions. Still, voluntary contributions

More information

THE FUNDAMENTAL GROUP AND BROUWER S FIXED POINT THEOREM AMANDA BOWER

THE FUNDAMENTAL GROUP AND BROUWER S FIXED POINT THEOREM AMANDA BOWER THE FUNDAMENTAL GROUP AND BROUWER S FIXED POINT THEOREM AMANDA BOWER Abstract. The fundamental group is an invariant of topological spaces that measures the contractibility of loops. This project studies

More information

THE JORDAN-BROUWER SEPARATION THEOREM

THE JORDAN-BROUWER SEPARATION THEOREM THE JORDAN-BROUWER SEPARATION THEOREM WOLFGANG SCHMALTZ Abstract. The Classical Jordan Curve Theorem says that every simple closed curve in R 2 divides the plane into two pieces, an inside and an outside

More information

Lecture 9 : PPAD and the Complexity of Equilibrium Computation. 1 Complexity Class PPAD. 1.1 What does PPAD mean?

Lecture 9 : PPAD and the Complexity of Equilibrium Computation. 1 Complexity Class PPAD. 1.1 What does PPAD mean? CS 599: Algorithmic Game Theory October 20, 2010 Lecture 9 : PPAD and the Complexity of Equilibrium Computation Prof. Xi Chen Scribes: Cheng Lu and Sasank Vijayan 1 Complexity Class PPAD 1.1 What does

More information

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers Chapter 3 Real numbers The notion of real number was introduced in section 1.3 where the axiomatic denition of the set of all real numbers was done and some basic properties of the set of all real numbers

More information

Near-Potential Games: Geometry and Dynamics

Near-Potential Games: Geometry and Dynamics Near-Potential Games: Geometry and Dynamics Ozan Candogan, Asuman Ozdaglar and Pablo A. Parrilo January 29, 2012 Abstract Potential games are a special class of games for which many adaptive user dynamics

More information

6.891 Games, Decision, and Computation February 5, Lecture 2

6.891 Games, Decision, and Computation February 5, Lecture 2 6.891 Games, Decision, and Computation February 5, 2015 Lecture 2 Lecturer: Constantinos Daskalakis Scribe: Constantinos Daskalakis We formally define games and the solution concepts overviewed in Lecture

More information

Selected Topics in the Theory of Fixed Points. Andrew McLennan. Department of Economics. University of Minnesota Management and Economics

Selected Topics in the Theory of Fixed Points. Andrew McLennan. Department of Economics. University of Minnesota Management and Economics Selected Topics in the Theory of Fixed Points Andrew McLennan Department of Economics University of Minnesota 1035 Management and Economics 271 19th Avenue South Minneapolis, MN 55455 May 1988 Revised

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES CHRISTOPHER HEIL 1. Compact Sets Definition 1.1 (Compact and Totally Bounded Sets). Let X be a metric space, and let E X be

More information

INTRODUCTION TO NETS. limits to coincide, since it can be deduced: i.e. x

INTRODUCTION TO NETS. limits to coincide, since it can be deduced: i.e. x INTRODUCTION TO NETS TOMMASO RUSSO 1. Sequences do not describe the topology The goal of this rst part is to justify via some examples the fact that sequences are not sucient to describe a topological

More information

Virtual Robust Implementation and Strategic Revealed Preference

Virtual Robust Implementation and Strategic Revealed Preference and Strategic Revealed Preference Workshop of Mathematical Economics Celebrating the 60th birthday of Aloisio Araujo IMPA Rio de Janeiro December 2006 Denitions "implementation": requires ALL equilibria

More information

Winter Lecture 10. Convexity and Concavity

Winter Lecture 10. Convexity and Concavity Andrew McLennan February 9, 1999 Economics 5113 Introduction to Mathematical Economics Winter 1999 Lecture 10 Convexity and Concavity I. Introduction A. We now consider convexity, concavity, and the general

More information

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Closed sets We have been operating at a fundamental level at which a topological space is a set together

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Real Analysis with Economic Applications. Efe A. Ok PRINCETON UNIVERSITY PRESS I PRINCETON AND OXFORD

Real Analysis with Economic Applications. Efe A. Ok PRINCETON UNIVERSITY PRESS I PRINCETON AND OXFORD Real Analysis with Economic Applications Efe A. Ok PRINCETON UNIVERSITY PRESS I PRINCETON AND OXFORD Contents Preface xvii Prerequisites xxvii Basic Conventions xxix PART I SET THEORY 1 CHAPTER A Preliminaries

More information

Economics 205, Fall 2002: Final Examination, Possible Answers

Economics 205, Fall 2002: Final Examination, Possible Answers Economics 05, Fall 00: Final Examination, Possible Answers Comments on the Exam Grades: 43 possible; high: 413; median: 34; low: 36 I was generally happy with the answers to questions 3-8, satisfied with

More information

A Note on the Existence of Ratifiable Acts

A Note on the Existence of Ratifiable Acts A Note on the Existence of Ratifiable Acts Joseph Y. Halpern Cornell University Computer Science Department Ithaca, NY 14853 halpern@cs.cornell.edu http://www.cs.cornell.edu/home/halpern August 15, 2018

More information

Algorithmic Game Theory and Applications. Lecture 4: 2-player zero-sum games, and the Minimax Theorem

Algorithmic Game Theory and Applications. Lecture 4: 2-player zero-sum games, and the Minimax Theorem Algorithmic Game Theory and Applications Lecture 4: 2-player zero-sum games, and the Minimax Theorem Kousha Etessami 2-person zero-sum games A finite 2-person zero-sum (2p-zs) strategic game Γ, is a strategic

More information

SEQUENTIAL EQUILIBRIA IN BAYESIAN GAMES WITH COMMUNICATION. Dino Gerardi and Roger B. Myerson. December 2005

SEQUENTIAL EQUILIBRIA IN BAYESIAN GAMES WITH COMMUNICATION. Dino Gerardi and Roger B. Myerson. December 2005 SEQUENTIAL EQUILIBRIA IN BAYESIAN GAMES WITH COMMUNICATION By Dino Gerardi and Roger B. Myerson December 2005 COWLES FOUNDATION DISCUSSION AER NO. 1542 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE

More information

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K. R.J. Douglas, Isaac Newton

More information

SARD S THEOREM ALEX WRIGHT

SARD S THEOREM ALEX WRIGHT SARD S THEOREM ALEX WRIGHT Abstract. A proof of Sard s Theorem is presented, and applications to the Whitney Embedding and Immersion Theorems, the existence of Morse functions, and the General Position

More information

The Fundamental Group and Covering Spaces

The Fundamental Group and Covering Spaces Chapter 8 The Fundamental Group and Covering Spaces In the first seven chapters we have dealt with point-set topology. This chapter provides an introduction to algebraic topology. Algebraic topology may

More information

Math 42, Discrete Mathematics

Math 42, Discrete Mathematics c Fall 2018 last updated 12/05/2018 at 15:47:21 For use by students in this class only; all rights reserved. Note: some prose & some tables are taken directly from Kenneth R. Rosen, and Its Applications,

More information

TOPOLOGY TAKE-HOME CLAY SHONKWILER

TOPOLOGY TAKE-HOME CLAY SHONKWILER TOPOLOGY TAKE-HOME CLAY SHONKWILER 1. The Discrete Topology Let Y = {0, 1} have the discrete topology. Show that for any topological space X the following are equivalent. (a) X has the discrete topology.

More information

by burning money Sjaak Hurkens y CentER, Tilburg University P.O. Box November 1994 Abstract

by burning money Sjaak Hurkens y CentER, Tilburg University P.O. Box November 1994 Abstract Multi-sided pre-play communication by burning money Sjaak Hurkens y CentER, Tilburg University P.O. Box 90153 5000 LE Tilburg, The Netherlands November 1994 Abstract We investigate the consequences of

More information

UNIVERSITY OF VIENNA

UNIVERSITY OF VIENNA WORKING PAPERS Konrad Podczeck Note on the Core-Walras Equivalence Problem when the Commodity Space is a Banach Lattice March 2003 Working Paper No: 0307 DEPARTMENT OF ECONOMICS UNIVERSITY OF VIENNA All

More information

Math Camp Notes: Everything Else

Math Camp Notes: Everything Else Math Camp Notes: Everything Else Systems of Dierential Equations Consider the general two-equation system of dierential equations: Steady States ẋ = f(x, y ẏ = g(x, y Just as before, we can nd the steady

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

Assignment 1: From the Definition of Convexity to Helley Theorem

Assignment 1: From the Definition of Convexity to Helley Theorem Assignment 1: From the Definition of Convexity to Helley Theorem Exercise 1 Mark in the following list the sets which are convex: 1. {x R 2 : x 1 + i 2 x 2 1, i = 1,..., 10} 2. {x R 2 : x 2 1 + 2ix 1x

More information

Zangwill s Global Convergence Theorem

Zangwill s Global Convergence Theorem Zangwill s Global Convergence Theorem A theory of global convergence has been given by Zangwill 1. This theory involves the notion of a set-valued mapping, or point-to-set mapping. Definition 1.1 Given

More information

Mixed Nash Equilibria

Mixed Nash Equilibria lgorithmic Game Theory, Summer 2017 Mixed Nash Equilibria Lecture 2 (5 pages) Instructor: Thomas Kesselheim In this lecture, we introduce the general framework of games. Congestion games, as introduced

More information

Finite and Infinite Sets

Finite and Infinite Sets Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

1 The Local-to-Global Lemma

1 The Local-to-Global Lemma Point-Set Topology Connectedness: Lecture 2 1 The Local-to-Global Lemma In the world of advanced mathematics, we are often interested in comparing the local properties of a space to its global properties.

More information

After taking the square and expanding, we get x + y 2 = (x + y) (x + y) = x 2 + 2x y + y 2, inequality in analysis, we obtain.

After taking the square and expanding, we get x + y 2 = (x + y) (x + y) = x 2 + 2x y + y 2, inequality in analysis, we obtain. Lecture 1: August 25 Introduction. Topology grew out of certain questions in geometry and analysis about 100 years ago. As Wikipedia puts it, the motivating insight behind topology is that some geometric

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY BRIAN OSSERMAN Classical algebraic geometers studied algebraic varieties over the complex numbers. In this setting, they didn t have to worry about the Zariski

More information

Lecture Notes on Bargaining

Lecture Notes on Bargaining Lecture Notes on Bargaining Levent Koçkesen 1 Axiomatic Bargaining and Nash Solution 1.1 Preliminaries The axiomatic theory of bargaining originated in a fundamental paper by Nash (1950, Econometrica).

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

7. Homotopy and the Fundamental Group

7. Homotopy and the Fundamental Group 7. Homotopy and the Fundamental Group The group G will be called the fundamental group of the manifold V. J. Henri Poincaré, 895 The properties of a topological space that we have developed so far have

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

Notes on Fixed Point Theorems

Notes on Fixed Point Theorems Notes on Fixed Point Theorems 4 Basic Definitions In this section of the notes we will consider some of the basic fixed point theorems of analysis, the Brouwer and Kakutani theorems and their extensions

More information

Tijmen Daniëls Universiteit van Amsterdam. Abstract

Tijmen Daniëls Universiteit van Amsterdam. Abstract Pure strategy dominance with quasiconcave utility functions Tijmen Daniëls Universiteit van Amsterdam Abstract By a result of Pearce (1984), in a finite strategic form game, the set of a player's serially

More information

814 Sehie Park Hoonjoo Kim equilibrium points of n-person games with constraint preference correspondences on non-compact H-spaces. In 1967, motivated

814 Sehie Park Hoonjoo Kim equilibrium points of n-person games with constraint preference correspondences on non-compact H-spaces. In 1967, motivated J. Korean Math. Soc. 36 (1999), No. 4, pp. 813{828 COINCIDENCE THEOREMS ON A PRODUCT OF GENERALIZED CONVEX SPACES AND APPLICATIONS TO EQUILIBRIA Sehie Park Hoonjoo Kim Abstract. In this paper, we give

More information

Metric spaces and metrizability

Metric spaces and metrizability 1 Motivation Metric spaces and metrizability By this point in the course, this section should not need much in the way of motivation. From the very beginning, we have talked about R n usual and how relatively

More information

Essential equilibria in normal-form games

Essential equilibria in normal-form games Journal of Economic Theory 145 (2010) 421 431 www.elsevier.com/locate/jet Note Essential equilibria in normal-form games Oriol Carbonell-Nicolau 1 Department of Economics, Rutgers University, 75 Hamilton

More information

If X is a compact space and K X is a closed subset, then K is

If X is a compact space and K X is a closed subset, then K is 6. Compactness...compact sets play the same role in the theory of abstract sets as the notion of limit sets do in the theory of point sets. Maurice Frechet, 1906 Compactness is one of the most useful topological

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2 1 A Good Spectral Theorem c1996, Paul Garrett, garrett@math.umn.edu version February 12, 1996 1 Measurable Hilbert bundles Measurable Banach bundles Direct integrals of Hilbert spaces Trivializing Hilbert

More information

CHAPTER 7. Connectedness

CHAPTER 7. Connectedness CHAPTER 7 Connectedness 7.1. Connected topological spaces Definition 7.1. A topological space (X, T X ) is said to be connected if there is no continuous surjection f : X {0, 1} where the two point set

More information

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X):

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X): 2 RICHARD MELROSE 3. Lecture 3: K-groups and loop groups Wednesday, 3 September, 2008 Reconstructed, since I did not really have notes { because I was concentrating too hard on the 3 lectures on blow-up

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

290 J.M. Carnicer, J.M. Pe~na basis (u 1 ; : : : ; u n ) consisting of minimally supported elements, yet also has a basis (v 1 ; : : : ; v n ) which f

290 J.M. Carnicer, J.M. Pe~na basis (u 1 ; : : : ; u n ) consisting of minimally supported elements, yet also has a basis (v 1 ; : : : ; v n ) which f Numer. Math. 67: 289{301 (1994) Numerische Mathematik c Springer-Verlag 1994 Electronic Edition Least supported bases and local linear independence J.M. Carnicer, J.M. Pe~na? Departamento de Matematica

More information

Economics 204. The Transversality Theorem is a particularly convenient formulation of Sard s Theorem for our purposes: with r 1+max{0,n m}

Economics 204. The Transversality Theorem is a particularly convenient formulation of Sard s Theorem for our purposes: with r 1+max{0,n m} Economics 204 Lecture 13 Wednesday, August 12, 2009 Section 5.5 (Cont.) Transversality Theorem The Transversality Theorem is a particularly convenient formulation of Sard s Theorem for our purposes: Theorem

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

3. block. BV M. Bökstedt and H. Vosegaard, Notes on point-set topology, electronically available at

3. block. BV M. Bökstedt and H. Vosegaard, Notes on point-set topology, electronically available at Location Department of Mathematical Sciences,, G5-109. Main A T. Apostol, Mathematical Analysis, Addison-Wesley. BV M. Bökstedt and H. Vosegaard, Notes on point-set topology, electronically available at

More information

Analysis III Theorems, Propositions & Lemmas... Oh My!

Analysis III Theorems, Propositions & Lemmas... Oh My! Analysis III Theorems, Propositions & Lemmas... Oh My! Rob Gibson October 25, 2010 Proposition 1. If x = (x 1, x 2,...), y = (y 1, y 2,...), then is a distance. ( d(x, y) = x k y k p Proposition 2. In

More information

Mathematics II, course

Mathematics II, course Mathematics II, course 2013-2014 Juan Pablo Rincón Zapatero October 24, 2013 Summary: The course has four parts that we describe below. (I) Topology in Rn is a brief review of the main concepts and properties

More information

Near-Potential Games: Geometry and Dynamics

Near-Potential Games: Geometry and Dynamics Near-Potential Games: Geometry and Dynamics Ozan Candogan, Asuman Ozdaglar and Pablo A. Parrilo September 6, 2011 Abstract Potential games are a special class of games for which many adaptive user dynamics

More information

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a Q: What s purple and commutes? A: An abelian grape! Anonymous Group Theory Last lecture, we learned about a combinatorial method for characterizing spaces: using simplicial complexes as triangulations

More information

6.254 : Game Theory with Engineering Applications Lecture 7: Supermodular Games

6.254 : Game Theory with Engineering Applications Lecture 7: Supermodular Games 6.254 : Game Theory with Engineering Applications Lecture 7: Asu Ozdaglar MIT February 25, 2010 1 Introduction Outline Uniqueness of a Pure Nash Equilibrium for Continuous Games Reading: Rosen J.B., Existence

More information

4.6 Montel's Theorem. Robert Oeckl CA NOTES 7 17/11/2009 1

4.6 Montel's Theorem. Robert Oeckl CA NOTES 7 17/11/2009 1 Robert Oeckl CA NOTES 7 17/11/2009 1 4.6 Montel's Theorem Let X be a topological space. We denote by C(X) the set of complex valued continuous functions on X. Denition 4.26. A topological space is called

More information

MTG 5316/4302 FALL 2018 REVIEW FINAL

MTG 5316/4302 FALL 2018 REVIEW FINAL MTG 5316/4302 FALL 2018 REVIEW FINAL JAMES KEESLING Problem 1. Define open set in a metric space X. Define what it means for a set A X to be connected in a metric space X. Problem 2. Show that if a set

More information

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra MTH6140 Linear Algebra II Notes 2 21st October 2010 2 Matrices You have certainly seen matrices before; indeed, we met some in the first chapter of the notes Here we revise matrix algebra, consider row

More information

Lecture Notes on Metric Spaces

Lecture Notes on Metric Spaces Lecture Notes on Metric Spaces Math 117: Summer 2007 John Douglas Moore Our goal of these notes is to explain a few facts regarding metric spaces not included in the first few chapters of the text [1],

More information

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Introduction to Proofs in Analysis updated December 5, 2016 By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Purpose. These notes intend to introduce four main notions from

More information

STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXTRA PROPERTIES H. JEROME KEISLER. Department of Mathematics. University of Wisconsin.

STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXTRA PROPERTIES H. JEROME KEISLER. Department of Mathematics. University of Wisconsin. STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXTRA PROPERTIES H. JEROME KEISLER Department of Mathematics University of Wisconsin Madison WI 5376 keisler@math.wisc.edu 1. Introduction The Loeb measure construction

More information

KAKUTANI S FIXED POINT THEOREM AND THE MINIMAX THEOREM IN GAME THEORY

KAKUTANI S FIXED POINT THEOREM AND THE MINIMAX THEOREM IN GAME THEORY KAKUTANI S FIXED POINT THEOREM AND THE MINIMAX THEOREM IN GAME THEORY YOUNGGEUN YOO Abstract. The imax theorem is one of the most important results in game theory. It was first introduced by John von Neumann

More information