Semantic Similarity and Relatedness

Size: px
Start display at page:

Download "Semantic Similarity and Relatedness"

Transcription

1 Semantic Relatedness Semantic Similarity and Relatedness (Based on Budanitsky, Hirst 2006 and Chapter 20 of Jurafsky/Martin 2 nd. Ed. - Most figures taken from either source.) Many applications require measure of relation between words, even if they are not collocated: WSD, Information Retrieval, Query Translation Identifying Relatedness Synonyms: Thesaurus, Wordnet {favored, popula preferred} Same category terms: Thesaurus Categories, other Ontologies, Wordnet Hierarchy {Roget s Thesaurus Catgory like: admire delight, attract, unwelcome} Context based similarity WordNet Path Based Similarity Path Length: Limitations Simplest measure: pathlength: #edges in shortest path between sense nodes c1 and c2 sim (c1,c2) = log pathlen(c1,c2) wordsim(w1,w2) = max (c1 senses(w1), c2 senses(w2)) sim(c1,c2) Figure from Budanitsky, Hirst 2006 Edges at different heights carry different information Wu, Palmer 1994 lso: lowest super-ordinate

2 Path Length: Further Limitations Even at same height, all edges are not equal Compare <credit, credit card> with <money, cash> Need a weight on edges Measuring P(c): Information Content IC(c) = -log P(c) Note that c refers to a category All words subsumed by c are also counted More common a word, lower is its IC = log(1/p(c)) Key Idea (Jiang Conrath 1997): semantic distance of the link connecting a childconcept c to its parent-concept par(c) is proportional to the conditional probability p(c par(c)) From Lin 1998 IC based Edge Weighing (Jiang Conrath 1997) Key Idea: semantic distance of the link connecting a child-concept c to its parent-concept par(c) is proportional to the conditional probability p(c par(c)) Lin 97 Derived the same formulae slightly differently Word similarity is about commonality vs. differences. (Lin 1998) Simplifying Note that with this edge weight definition PathWeight(c, Root) = IC(c) Putting PathWeight in WuPalmer gives =.59 Jiang Conrath Distance = { IC(c1) IC(lso(c1,c2)) } + { IC(c2) IC(lso(c1,c2)) } WordNet Based Similarity: Key Ideas All edges are not equal, edges at different heights carry different information Even at same height, all edges are not equal, need weight on edges Edge weight as conditional probability p(c par(c)) Information Content: IC(c) = -log P(c) EdgeWeight(c, par(c)) = IC(c) IC(par(c)) PathWeight(c, Root) = IC(c) Integrating WuPalmer with PathWeight gives Same can be derived by considering that Similarity is about commonality vs. differences Putting EdgeWeight in sim (c1,c2) = log pathlen(c1,c2), gives Gives the best result on several applications, with English Wordnet Compared to WuPalmer ignoring depth already taken care of by IC.

3 Similarity vs. Relatedness Previous methods may not work for words belonging to different classes: car and petrol Gloss Overlap as a similarity measure Extended Gloss Overlap Concepts and Figures from Banerjee and Pedersen 2003 Instead of wordnet relations, some other method can be used for extending the definitions Distribution Hypothesis Similarity using Co-occurrence Vectors words that occur in the same contexts tend to have similar meanings (Harris, 1954) "a word is characterized by the company it keeps" Firth (1957) Commanality vs. Differences All these measures change value with scaling

4 Normalized Measure Cosine Measure: Applications From FSNLP From Patwardhan, Pederson 2006 Right measure depends on the application What happens when we scale the values What happens when we add dimensions/features Consider a vector with 4 entries. What happens if we add 20 more entries to it How similar is it to the original vector as per different measures De facto standard for term vector comparison Cosine Similarity has several other Applications In IR, Query vs. Document Similarity Comparing Documents Finding Obfuscated code for virus detection or assignment copy detection Tuning the Context Vectors Using Dependency Relations Remove the very high frequency and very low frequency terms Weigh the terms using tf*idf (o inverse definition/context frequency in this case) Term Weight: 1 + log (tf) IDF: log(n/df) Use PMI instead of counts PMI (w1, w2) = log { P(w1, w2)/p(w1)p(w2) } Only use context words that have a dependency relation Use PMI conditional on dependency relation Final Similarity Measure C( w, w') C(*, *) I ( w, w' ) = log C( w, *) C(*, w' ) Formulae and figure below from Lin 98. Show that it is equivalent to PMI Conditional on r T(w): set of pairs (w ) s.t. PMI(w,w ) is positive Full Parsing is expensive: Use Shallow Parsing only subject, object, modifier etc. Using Probabilistic Measures Second Order Measures When counts are replaced by probabilities then cosine distance may not be the best metric. Different vector entries are not co-operating but competing We need to compare probability distributions KL-Divergence: How well distribution Q approximated distribution P, or how much information is lost if we assume Q instead of P Asymmetric, Undefined when Q is 0 Jenson Shannon Divergence Compare two words using cosine similarity of their co-occurrence vectors Standard Approach Knowledge Based Approach: Overlaps based on definitions Marrying the two: Second Order Context Vectors Extend the definitions with the centroid of the context vectors of the words in the definition (Patwardhan, Pederson 2006)

5 Similarity of Short Contexts: Applications Reducing Dimensions: Singular Value Decomposition (SVD) From lion.cs.uiuc.edu From Pedersen 2009 From Note the similarity between d2 and d3: Discovers that cosmonaut And astronaut are related, as They both co-occur with moon FSNLP Chap. 15.4

MATHEMATICAL AND EXPERIMENTAL INVESTIGATION OF ONTOLOGICAL SIMILARITY MEASURES AND THEIR USE IN BIOMEDICAL DOMAINS

MATHEMATICAL AND EXPERIMENTAL INVESTIGATION OF ONTOLOGICAL SIMILARITY MEASURES AND THEIR USE IN BIOMEDICAL DOMAINS ABSTRACT MATHEMATICAL AND EXPERIMENTAL INVESTIGATION OF ONTOLOGICAL SIMILARITY MEASURES AND THEIR USE IN BIOMEDICAL DOMAINS by Xinran Yu Similarity measurement is an important notion. In the context of

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa VS model in practice Document and query are represented by term vectors Terms are not necessarily orthogonal to each other Synonymy: car v.s. automobile Polysemy:

More information

Latent semantic indexing

Latent semantic indexing Latent semantic indexing Relationship between concepts and words is many-to-many. Solve problems of synonymy and ambiguity by representing documents as vectors of ideas or concepts, not terms. For retrieval,

More information

Towards an Efficient Combination of Similarity Measures for Semantic Relation Extraction

Towards an Efficient Combination of Similarity Measures for Semantic Relation Extraction Towards an Efficient Combination of Similarity Measures for Semantic Relation Extraction Alexander Panchenko alexander.panchenko@student.uclouvain.be Université catholique de Louvain & Bauman Moscow State

More information

Manning & Schuetze, FSNLP (c) 1999,2000

Manning & Schuetze, FSNLP (c) 1999,2000 558 15 Topics in Information Retrieval (15.10) y 4 3 2 1 0 0 1 2 3 4 5 6 7 8 Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the best least-squares fit for the four points (1,1),

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

Manning & Schuetze, FSNLP, (c)

Manning & Schuetze, FSNLP, (c) page 554 554 15 Topics in Information Retrieval co-occurrence Latent Semantic Indexing Term 1 Term 2 Term 3 Term 4 Query user interface Document 1 user interface HCI interaction Document 2 HCI interaction

More information

Chapter 10: Information Retrieval. See corresponding chapter in Manning&Schütze

Chapter 10: Information Retrieval. See corresponding chapter in Manning&Schütze Chapter 10: Information Retrieval See corresponding chapter in Manning&Schütze Evaluation Metrics in IR 2 Goal In IR there is a much larger variety of possible metrics For different tasks, different metrics

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

The OntoNL Semantic Relatedness Measure for OWL Ontologies

The OntoNL Semantic Relatedness Measure for OWL Ontologies The OntoNL Semantic Relatedness Measure for OWL Ontologies Anastasia Karanastasi and Stavros hristodoulakis Laboratory of Distributed Multimedia Information Systems and Applications Technical University

More information

Variable Latent Semantic Indexing

Variable Latent Semantic Indexing Variable Latent Semantic Indexing Prabhakar Raghavan Yahoo! Research Sunnyvale, CA November 2005 Joint work with A. Dasgupta, R. Kumar, A. Tomkins. Yahoo! Research. Outline 1 Introduction 2 Background

More information

Conceptual Similarity: Why, Where, How

Conceptual Similarity: Why, Where, How Conceptual Similarity: Why, Where, How Michalis Sfakakis Laboratory on Digital Libraries & Electronic Publishing, Department of Archives and Library Sciences, Ionian University, Greece First Workshop on

More information

Semantic Similarity from Corpora - Latent Semantic Analysis

Semantic Similarity from Corpora - Latent Semantic Analysis Semantic Similarity from Corpora - Latent Semantic Analysis Carlo Strapparava FBK-Irst Istituto per la ricerca scientifica e tecnologica I-385 Povo, Trento, ITALY strappa@fbk.eu Overview Latent Semantic

More information

Investigation of Latent Semantic Analysis for Clustering of Czech News Articles

Investigation of Latent Semantic Analysis for Clustering of Czech News Articles Investigation of Latent Semantic Analysis for Clustering of Czech News Articles Michal Rott, Petr Červa Laboratory of Computer Speech Processing 4. 9. 2014 Introduction Idea of article clustering Presumptions:

More information

Semantic distances & LSA

Semantic distances & LSA Semantic istances & LSA Stefan rausan-matu Politehnica" University of Bucharest an Romanian Acaemy Research Institute for Artificial Intelligence Bucharest, Romania stefan.trausan@cs.pub.ro http://www.racai.ro/~trausan

More information

Word Meaning and Similarity. Word Similarity: Distributional Similarity (I)

Word Meaning and Similarity. Word Similarity: Distributional Similarity (I) Word Meaning and Similarity Word Similarity: Distributional Similarity (I) Problems with thesaurus-based meaning We don t have a thesaurus for every language Even if we do, they have problems with recall

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science 1 Analysis and visualization of protein-protein interactions Olga Vitek Assistant Professor Statistics and Computer Science 2 Outline 1. Protein-protein interactions 2. Using graph structures to study

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Toponym Disambiguation using Ontology-based Semantic Similarity

Toponym Disambiguation using Ontology-based Semantic Similarity Toponym Disambiguation using Ontology-based Semantic Similarity David S Batista 1, João D Ferreira 2, Francisco M Couto 2, and Mário J Silva 1 1 IST/INESC-ID Lisbon, Portugal {dsbatista,msilva}@inesc-id.pt

More information

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 9: Lexical semantics (Feb 19, 2019) David Bamman, UC Berkeley Lexical semantics You shall know a word by the company it keeps [Firth 1957] Harris 1954

More information

Francisco M. Couto Mário J. Silva Pedro Coutinho

Francisco M. Couto Mário J. Silva Pedro Coutinho Francisco M. Couto Mário J. Silva Pedro Coutinho DI FCUL TR 03 29 Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Campo Grande, 1749 016 Lisboa Portugal Technical reports are

More information

Mapping of Science. Bart Thijs ECOOM, K.U.Leuven, Belgium

Mapping of Science. Bart Thijs ECOOM, K.U.Leuven, Belgium Mapping of Science Bart Thijs ECOOM, K.U.Leuven, Belgium Introduction Definition: Mapping of Science is the application of powerful statistical tools and analytical techniques to uncover the structure

More information

Deep Learning. Ali Ghodsi. University of Waterloo

Deep Learning. Ali Ghodsi. University of Waterloo University of Waterloo Language Models A language model computes a probability for a sequence of words: P(w 1,..., w T ) Useful for machine translation Word ordering: p (the cat is small) > p (small the

More information

What is Text mining? To discover the useful patterns/contents from the large amount of data that can be structured or unstructured.

What is Text mining? To discover the useful patterns/contents from the large amount of data that can be structured or unstructured. What is Text mining? To discover the useful patterns/contents from the large amount of data that can be structured or unstructured. Text mining What can be used for text mining?? Classification/categorization

More information

Chap 2: Classical models for information retrieval

Chap 2: Classical models for information retrieval Chap 2: Classical models for information retrieval Jean-Pierre Chevallet & Philippe Mulhem LIG-MRIM Sept 2016 Jean-Pierre Chevallet & Philippe Mulhem Models of IR 1 / 81 Outline Basic IR Models 1 Basic

More information

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1 Retrieval by Content Part 2: Text Retrieval Term Frequency and Inverse Document Frequency Srihari: CSE 626 1 Text Retrieval Retrieval of text-based information is referred to as Information Retrieval (IR)

More information

DISTRIBUTIONAL SEMANTICS

DISTRIBUTIONAL SEMANTICS COMP90042 LECTURE 4 DISTRIBUTIONAL SEMANTICS LEXICAL DATABASES - PROBLEMS Manually constructed Expensive Human annotation can be biased and noisy Language is dynamic New words: slangs, terminology, etc.

More information

A Generalized Vector Space Model for Text Retrieval Based on Semantic Relatedness

A Generalized Vector Space Model for Text Retrieval Based on Semantic Relatedness A Generalized Vector Space Model for Text Retrieval Based on Semantic Relatedness George Tsatsaronis and Vicky Panagiotopoulou Department of Informatics Athens University of Economics and Business, 76,

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

John Pavlopoulos and Ion Androutsopoulos NLP Group, Department of Informatics Athens University of Economics and Business, Greece

John Pavlopoulos and Ion Androutsopoulos NLP Group, Department of Informatics Athens University of Economics and Business, Greece John Pavlopoulos and Ion Androutsopoulos NLP Group, Department of Informatics Athens University of Economics and Business, Greece http://nlp.cs.aueb.gr/ A laptop with great design, but the service was

More information

INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING. Crista Lopes

INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING. Crista Lopes INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING Crista Lopes Outline Precision and Recall The problem with indexing so far Intuition for solving it Overview of the solution The Math How to measure

More information

Problems. Looks for literal term matches. Problems:

Problems. Looks for literal term matches. Problems: Problems Looks for literal term matches erms in queries (esp short ones) don t always capture user s information need well Problems: Synonymy: other words with the same meaning Car and automobile 电脑 vs.

More information

Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science

Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen January 20, 2004 Page 1 UserTask Retrieval Classic Model Boolean

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

Information Retrieval Basic IR models. Luca Bondi

Information Retrieval Basic IR models. Luca Bondi Basic IR models Luca Bondi Previously on IR 2 d j q i IRM SC q i, d j IRM D, Q, R q i, d j d j = w 1,j, w 2,j,, w M,j T w i,j = 0 if term t i does not appear in document d j w i,j and w i:1,j assumed to

More information

vector space retrieval many slides courtesy James Amherst

vector space retrieval many slides courtesy James Amherst vector space retrieval many slides courtesy James Allan@umass Amherst 1 what is a retrieval model? Model is an idealization or abstraction of an actual process Mathematical models are used to study the

More information

Probabilistic Near-Duplicate. Detection Using Simhash

Probabilistic Near-Duplicate. Detection Using Simhash Probabilistic Near-Duplicate Detection Using Simhash Sadhan Sood, Dmitri Loguinov Presented by Matt Smith Internet Research Lab Department of Computer Science and Engineering Texas A&M University 27 October

More information

Matrix decompositions and latent semantic indexing

Matrix decompositions and latent semantic indexing 18 Matrix decompositions and latent semantic indexing On page 113, we introduced the notion of a term-document matrix: an M N matrix C, each of whose rows represents a term and each of whose columns represents

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 12: Latent Semantic Indexing and Relevance Feedback Paul Ginsparg Cornell

More information

Calculating Semantic Relatedness with GermaNet

Calculating Semantic Relatedness with GermaNet Organismus, Lebewesen organism, being Katze cat... Haustier pet Hund dog...... Baum tree Calculating Semantic Relatedness with GermaNet Verena Henrich, Düsseldorf, 19. Februar 2015 Semantic Relatedness

More information

Information Retrieval. Lecture 6

Information Retrieval. Lecture 6 Information Retrieval Lecture 6 Recap of the last lecture Parametric and field searches Zones in documents Scoring documents: zone weighting Index support for scoring tf idf and vector spaces This lecture

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 6 September 2017 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 Vector Space Model Disadvantages:

More information

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Fall 2016 CS646: Information Retrieval Lecture 6 Boolean Search and Vector Space Model Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Outline Today Boolean Retrieval Vector Space Model Latent

More information

Determining Word Sense Dominance Using a Thesaurus

Determining Word Sense Dominance Using a Thesaurus Determining Word Sense Dominance Using a Thesaurus Saif Mohammad and Graeme Hirst Department of Computer Science University of Toronto EACL, Trento, Italy (5th April, 2006) Copyright cfl2006, Saif Mohammad

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition

An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition Yu-Seop Kim 1, Jeong-Ho Chang 2, and Byoung-Tak Zhang 2 1 Division of Information and Telecommunication

More information

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval

LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval LSI vs. Wordnet Ontology in Dimension Reduction for Information Retrieval Pavel Moravec, Michal Kolovrat, and Václav Snášel Department of Computer Science, FEI, VŠB - Technical University of Ostrava, 17.

More information

Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25

Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25 Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25 Trevor Cohn (Slide credits: William Webber) COMP90042, 2015, Semester 1 What we ll learn in this lecture Probabilistic models for

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture;

More information

.. CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. CSC 566 Advanced Data Mining Alexander Dekhtyar.. Information Retrieval Latent Semantic Indexing Preliminaries Vector Space Representation of Documents: TF-IDF Documents. A single text document is a

More information

Exploiting WordNet as Background Knowledge

Exploiting WordNet as Background Knowledge Exploiting WordNet as Background Knowledge Chantal Reynaud, Brigitte Safar LRI, Université Paris-Sud, Bât. G, INRIA Futurs Parc Club Orsay-Université - 2-4 rue Jacques Monod, F-91893 Orsay, France {chantal.reynaud,

More information

III.6 Advanced Query Types

III.6 Advanced Query Types III.6 Advanced Query Types 1. Query Expansion 2. Relevance Feedback 3. Novelty & Diversity Based on MRS Chapter 9, BY Chapter 5, [Carbonell and Goldstein 98] [Agrawal et al 09] 123 1. Query Expansion Query

More information

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002 CS276A Text Information Retrieval, Mining, and Exploitation Lecture 4 15 Oct 2002 Recap of last time Index size Index construction techniques Dynamic indices Real world considerations 2 Back of the envelope

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search IR models: Vector Space Model IR Models Set Theoretic Classic Models Fuzzy Extended Boolean U s e r T a s k Retrieval: Adhoc Filtering Brosing boolean vector probabilistic

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Probabilistic Latent Semantic Analysis Denis Helic KTI, TU Graz Jan 16, 2014 Denis Helic (KTI, TU Graz) KDDM1 Jan 16, 2014 1 / 47 Big picture: KDDM

More information

Lecture 5: Web Searching using the SVD

Lecture 5: Web Searching using the SVD Lecture 5: Web Searching using the SVD Information Retrieval Over the last 2 years the number of internet users has grown exponentially with time; see Figure. Trying to extract information from this exponentially

More information

Similarity Measures for Query Expansion in TopX

Similarity Measures for Query Expansion in TopX Universität des Saarlandes Naturwissenschaftlich-Technische Fak. I Fachrichtung 6.2 - Informatik Max-Planck-Institut für Informatik AG 5 - Datenbanken und Informationssysteme Prof. Dr. Gerhard Weikum Diplom-Studiengang

More information

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model Vector Space Model Yufei Tao KAIST March 5, 2013 In this lecture, we will study a problem that is (very) fundamental in information retrieval, and must be tackled by all search engines. Let S be a set

More information

13 Searching the Web with the SVD

13 Searching the Web with the SVD 13 Searching the Web with the SVD 13.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

9 Searching the Internet with the SVD

9 Searching the Internet with the SVD 9 Searching the Internet with the SVD 9.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture; IIR Sections

More information

Ontology-Based News Recommendation

Ontology-Based News Recommendation Ontology-Based News Recommendation Wouter IJntema Frank Goossen Flavius Frasincar Frederik Hogenboom Erasmus University Rotterdam, the Netherlands frasincar@ese.eur.nl Outline Introduction Hermes: News

More information

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan Term Weighting and the Vector Space Model borrowing from: Pandu Nayak and Prabhakar Raghavan IIR Sections 6.2 6.4.3 Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes

More information

Term Weighting and Vector Space Model. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Term Weighting and Vector Space Model. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Term Weighting and Vector Space Model Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 Ranked retrieval Thus far, our queries have all been Boolean. Documents either

More information

Latent Semantic Analysis (Tutorial)

Latent Semantic Analysis (Tutorial) Latent Semantic Analysis (Tutorial) Alex Thomo Eigenvalues and Eigenvectors Let A be an n n matrix with elements being real numbers. If x is an n-dimensional vector, then the matrix-vector product Ax is

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Text Document Clustering Using Global Term Context Vectors

Text Document Clustering Using Global Term Context Vectors Knowledge and Information Systems, 31:3, pp. 455 474, 212 (This is recompilation of the published material.) Text Document Clustering Using Global Term Context Vectors Argyris Kalogeratos Aristidis Likas

More information

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2018. Instructor: Walid Magdy

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2018. Instructor: Walid Magdy Text Technologies for Data Science INFR11145 Ranked IR Instructor: Walid Magdy 10-Oct-2018 Lecture Objectives Learn about Ranked IR TFIDF VSM SMART notation Implement: TFIDF 2 1 Boolean Retrieval Thus

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Text Analytics (Text Mining) Concepts, Algorithms, LSI/SVD Duen Horng (Polo) Chau Assistant Professor Associate Director, MS

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 11: Probabilistic Information Retrieval 1 Outline Basic Probability Theory Probability Ranking Principle Extensions 2 Basic Probability Theory For events A

More information

Boolean and Vector Space Retrieval Models

Boolean and Vector Space Retrieval Models Boolean and Vector Space Retrieval Models Many slides in this section are adapted from Prof. Joydeep Ghosh (UT ECE) who in turn adapted them from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) 1

More information

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2017. Instructor: Walid Magdy

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2017. Instructor: Walid Magdy Text Technologies for Data Science INFR11145 Ranked IR Instructor: Walid Magdy 10-Oct-017 Lecture Objectives Learn about Ranked IR TFIDF VSM SMART notation Implement: TFIDF 1 Boolean Retrieval Thus far,

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 20 Sep 2011

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 8 Text Classification Introduction A Characterization of Text Classification Unsupervised Algorithms Supervised Algorithms Feature Selection or Dimensionality Reduction

More information

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting Outline for today Information Retrieval Efficient Scoring and Ranking Recap on ranked retrieval Jörg Tiedemann jorg.tiedemann@lingfil.uu.se Department of Linguistics and Philology Uppsala University Efficient

More information

Motivation. User. Retrieval Model Result: Query. Document Collection. Information Need. Information Retrieval / Chapter 3: Retrieval Models

Motivation. User. Retrieval Model Result: Query. Document Collection. Information Need. Information Retrieval / Chapter 3: Retrieval Models 3. Retrieval Models Motivation Information Need User Retrieval Model Result: Query 1. 2. 3. Document Collection 2 Agenda 3.1 Boolean Retrieval 3.2 Vector Space Model 3.3 Probabilistic IR 3.4 Statistical

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Text Analytics (Text Mining) Concepts, Algorithms, LSI/SVD Duen Horng (Polo) Chau Assistant Professor Associate Director, MS

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 12: Language Models for IR Outline Language models Language Models for IR Discussion What is a language model? We can view a finite state automaton as a deterministic

More information

A few applications of the SVD

A few applications of the SVD A few applications of the SVD Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem Regularization methods require the solution

More information

Recap of the last lecture. CS276A Information Retrieval. This lecture. Documents as vectors. Intuition. Why turn docs into vectors?

Recap of the last lecture. CS276A Information Retrieval. This lecture. Documents as vectors. Intuition. Why turn docs into vectors? CS276A Information Retrieval Recap of the last lecture Parametric and field searches Zones in documents Scoring documents: zone weighting Index support for scoring tf idf and vector spaces Lecture 7 This

More information

Scoring, Term Weighting and the Vector Space

Scoring, Term Weighting and the Vector Space Scoring, Term Weighting and the Vector Space Model Francesco Ricci Most of these slides comes from the course: Information Retrieval and Web Search, Christopher Manning and Prabhakar Raghavan Content [J

More information

TDDD43. Information Retrieval. Fang Wei-Kleiner. ADIT/IDA Linköping University. Fang Wei-Kleiner ADIT/IDA LiU TDDD43 Information Retrieval 1

TDDD43. Information Retrieval. Fang Wei-Kleiner. ADIT/IDA Linköping University. Fang Wei-Kleiner ADIT/IDA LiU TDDD43 Information Retrieval 1 TDDD43 Information Retrieval Fang Wei-Kleiner ADIT/IDA Linköping University Fang Wei-Kleiner ADIT/IDA LiU TDDD43 Information Retrieval 1 Outline 1. Introduction 2. Inverted index 3. Ranked Retrieval tf-idf

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Retrieval Models and Implementation Ulf Leser Content of this Lecture Information Retrieval Models Boolean Model Vector Space Model Inverted Files Ulf Leser: Maschinelle

More information

From Non-Negative Matrix Factorization to Deep Learning

From Non-Negative Matrix Factorization to Deep Learning The Math!! From Non-Negative Matrix Factorization to Deep Learning Intuitions and some Math too! luissarmento@gmailcom https://wwwlinkedincom/in/luissarmento/ October 18, 2017 The Math!! Introduction Disclaimer

More information

Notes on Latent Semantic Analysis

Notes on Latent Semantic Analysis Notes on Latent Semantic Analysis Costas Boulis 1 Introduction One of the most fundamental problems of information retrieval (IR) is to find all documents (and nothing but those) that are semantically

More information

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 10: Neural Language Models Princeton University COS 495 Instructor: Yingyu Liang Natural language Processing (NLP) The processing of the human languages by computers One of

More information

Information Retrival Ranking. tf-idf. Eddie Aronovich. October 30, 2012

Information Retrival Ranking. tf-idf. Eddie Aronovich. October 30, 2012 October 30, 2012 Table of contents 1 2 Term Frequency tf idf Inforamation Retrival the techniques of storing and recovering and often disseminating recorded data especially through the use of a computerized

More information

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya CS 375 Advanced Machine Learning Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya Outline SVD and LSI Kleinberg s Algorithm PageRank Algorithm Vector Space Model Vector space model represents

More information

Lecture 7: Word Embeddings

Lecture 7: Word Embeddings Lecture 7: Word Embeddings Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 6501 Natural Language Processing 1 This lecture v Learning word vectors

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

Informa(on theory in ML

Informa(on theory in ML Informa(on theory in ML Feature Selec+on For efficiency of the classifier and to suppress noise choose subset of all possible features. Selected features should be frequent to avoid overfitting the classifier

More information