SOBOLEV EMBEDDINGS FOR VARIABLE EXPONENT RIESZ POTENTIALS ON METRIC SPACES

Size: px
Start display at page:

Download "SOBOLEV EMBEDDINGS FOR VARIABLE EXPONENT RIESZ POTENTIALS ON METRIC SPACES"

Transcription

1 Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 3, 2006, SOBOLEV EMBEDDINS FOR VARIABLE EXPONENT RIESZ POTENTIALS ON METRIC SPACES Toshihide Futamura, Yoshihiro Mizuta and Tetsu Shimomura Daido Institute of Technology, Department of Mathematics Nagoya , Japan; Hiroshima University, The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences, Higashi-Hiroshima , Japan; Hiroshima University, raduate School of Education Department of Mathematics, Higashi-Hiroshima , Japan; Abstract In the metric space setting, our aim in this paper is to deal with the boundedness of Hardy Littlewood maximal functions in generalized Lebesgue spaces L p ) when p ) satisfies a log-hölder condition As an application of the boundedness of maximal functions, we study Sobolev s embedding theorem for variable exponent Riesz potentials on metric space Introduction Let X be a metric space with a metric d Write dx, y) = x y for simplicity We denote by Bx, r) the open ball centered at x X of radius r > 0 Let µ be a Borel measure on X Assume that 0 < µb) < and there exist constants C > 0 and s such that µb ) ) r s ) µb) C r for all balls B = Bx, r) and B = Bx, r ) with x B and 0 < r r Note that µ is a doubling measure on X, that is, there exists a constant C > 0 such that 2) µ Bx, 2r) ) µ Bx, r) ) for all x X and r > 0 We define the Riesz potential of order α for a locally integrable function f on X defined by x y α fy) U α fx) = µ Bx, x y ) ) dµy) 2000 Mathematics Subject Classification: Primary 3B5, 46E35 X

2 496 T Futamura, Y Mizuta and T Shimomura Here α > 0 Following Orlicz [26] and Kováčik and Rákosník [9], we consider a positive continuous function p ) on X and a function f satisfying X fy) py) dµy) < In this paper we treat p ) such that p > on X and p satisfies a log-hölder condition: px) py) a log log/ x y ) ) log/ x y ) + a 2 log/ x y ) whenever x y < 4, where a and a 2 are nonnegative constants If a > 0, then we can not expect the usual boundedness of maximal functions in L p ), according to the recent works by Diening [3], [4], Pick and R užička [27] and Cruz- Uribe, Fiorenza and Neugebauer [2] Our typical example is a variable exponent p ) on X such that px) = p 0 + a log log /ϱ K x) )) log /ϱ K x) ) + a 2 log /ϱ K x) ) when ϱ K x) is small, where p 0 >, a 0, a 2 0 and ϱ K x) denotes the distance of x from a compact subset K of X Our first task is then to establish the boundedness of Hardy Littlewood maximal functions from L p ) to some Orlicz classes, as an extension of Harjulehto Hästö Pere [3] with a = 0 in metric setting and the authors [, Theorem 24] in Euclidean setting As an application of the boundedness of maximal functions, we establish Sobolev s embedding theorem for variable exponent Riesz potentials on metric space; in the case a = 0, see also Diening [4] and Kokilashvili Samko [7], [8], In the borderline case of Sobolev s theorem, we are concerned with exponential integrabilities of Trudinger type, which extend the results by Edmunds urka Opic [5], [6], Edmunds Krbec [7] and the authors [9], [22] We also discuss the pointwise continuity of Riesz potentials defined in the n-dimensional Euclidean space, as an extension of the authors [9], [23], [24] For related results, see Adams Hedberg [], Heinonen [6], Musielak [25] and R užička [28] 2 Variable exponents Throughout this paper, let C denote various constants independent of the variables in question

3 Sobolev embeddings for variable exponent Riesz potentials 497 Let be a bounded open set in X In this section let us assume that p ) is a positive continuous function on satisfying: p) < p ) = inf px) sup px) = p + ) < ; p2) px) py) a log log/ x y ) ) a 2 + log/ x y ) log/ x y ), whenever x y < 4, x and y, for some constants a 0 and a 2 0 Example 2 Let F be a closed subset of For a 0 and b 0, consider px) = p 0 + ω a,b ϱf x) ), where < p 0 <, ϱ F x) denotes the distance of x from F and ω a,b t) = a log log/t) ) b + log/t) log/t) for 0 < t r 0 < 4 ); set ω a,bt) = ω a,b r 0 ) when t > r 0 and ω a,b 0) = 0 Then we can find r 0 > 0 sufficiently small that p satisfies p) and p2) For a proof, we prepare the following result Lemma 22 Let ω be a nonnegative continuous function on the interval [0, r 0 ] such that i) ω0) = 0; ii) ω t) 0 for 0 < t r 0 ; iii) ω t) 0 for 0 < t r 0 Then 2) ωs + t) ωs) + ωt) for s, t 0 and s + t r 0 It is easy to find r 0 0, 4) such that ωa,b satisfies i) iii) on [0, r 0 ] Let /p x) = /px) Then, noting that 22) p y) p x) = we have the following result = px) py) px) ) py) ) px) py) px) ) 2 + {px) py) 2 px) ) 2 py) ), Lemma 23 There exists a positive constant c such that p x) p y) ω a,c x y ) whenever x and y, where a = ax) = a px) ) 2

4 498 T Futamura, Y Mizuta and T Shimomura 3 Boundedness of maximal functions Define the L p ) ) norm by f p ) = f p ), = inf { λ > 0 : fy) λ py) dµy) and denote by L p ) ) the space of all measurable functions f on with f p ) < By the decay condition ), we have 3) µ Bx, r) ) Cr s for all x and 0 < r < d, where d denotes the diameter of For f L p ) ), define the maximal function Mfx) = sup r>0 µ Bx, r) ) fy) dµy) Bx,r) = sup 0<r<d µ Bx, r) ) fy) dµy) Bx,r) Our first aim is to discuss the boundedness of the maximal functions Theorem 3 Let a > a when a > 0 and a = 0 when a = 0 Set Ax) = as/px) 2 If f p ), then { )) Ax) px) Mfx) log e + Mfx) dµx) When a = 0, Theorem 3 was proved by Harjulehto Hästö Pere [3], which is an extension of Diening [3] For the boundedness of maximal functions in general domains, see Cruz-Uribe, Fiorenza and Neugebauer [2] Remark 32 Set Φr, x) = { r loge + r) ) Ax) px) for r > 0 and x Then Theorem 3 assures the existence of C > 0 such that Φ Mfx)/C, x ) dµx) whenever f p ) As in Edmunds and Rákosník [8], we define { f Φ = f Φ, = inf λ > 0 : then it follows that Mf Φ f p ) Φ fx) /λ, x ) dµx) ; for f L p ) ) Theorem 3 is proved along the same lines as in the authors [, Theorem 24], but we give a proof of Theorem 3 for the readers convenience To complete the proof, we prepare the following lemma

5 Sobolev embeddings for variable exponent Riesz potentials 499 Lemma 33 Let f be a nonnegative measurable function on with f p ) Then Mfx) { Mgx) /px) log e + Mgx) )) A x) +, where gy) = fy) py) and A x) = a s/px) 2 Proof Let f be a nonnegative measurable function on with f p ) First note that 32) fy) py) dµy) Then, if r r 0, then 33) µ Bx, r) ) fy) dµy) Bx,r) by our assumption For 0 < k and r > 0, we have by Lemma 23 µ Bx, r) ) fy) dµy) Bx,r) { k µ Bx, r) ) Bx,r) k{/k) p x)+ωr) + F, /k) p y) dµy) + µ Bx, r) ) {+fy) py) dµy) Bx,r) µ Bx, r) ) fy) py) dµy) Bx,r) where F = µ Bx, r) )) Bx,r) fy)py) dµy) and ωr) = ω a,c r) as in Example 2 Here, considering k = F /{p x)+ωr) = F /p x)+βx) with βx) = ωr)/ { p x) p x) + ωr) ) when F, we have µ Bx, r) ) fy) dµy) 2F /px) F ωr)/p x) 2 ; Bx,r) if F <, then we can take k = to obtain µ Bx, r) ) fy) dµy) 2 Bx,r)

6 500 T Futamura, Y Mizuta and T Shimomura Hence it follows that 34) µ Bx, r) ) Bx,r) If r F, then we see from 34) that fy) dµy) 2 { F /px) F ωr)/p x) 2 + µ Bx, r) ) fy) dµy) { F /px) loge + F ) ) A x) + Bx,r) If r 0 > r > F, then we have by the lower bound 3) F /px)+ωr)/p x) 2 µ Bx, r) ) /px) r sωr)/p x) 2 In view of 32), we find { Bx,r) fy) py) dµy) /px)+ωr)/p x)2 F /px)+ωr)/p x) 2 µ Bx, r) ) { /px) ) A x) log/r) µ Bx, r) ) { /px) ) A x) log/r) µ Bx, r) ) { /px) log F ) A x) = CF /px) log F ) A x) Bx,r) Bx,r) Bx,r) /px)+ωr)/p x) 2 fy) py) dµy) /px) fy) py) dµy) fy) py) dµy) /px) Now we have established 35) µ Bx, r) ) fy) dµy) { F /px) loge + F ) ) A x) + Bx,r) for all r > 0 and x, which completes the proof Proof of Theorem 3 Let p x) = px)/p for < p < p ) Then Lemma 33 yields {Mfx) p x) { Mgx) log e + Mgx) )) ã s/p x) +

7 Sobolev embeddings for variable exponent Riesz potentials 50 for x, where gy) = fy) p y) and ã = a /p Letting a > a when a > 0 and a = 0 when a = 0, we set Ax) = as/px) 2 Then we can choose p so that a p a and which yields {Mfx) px) { Mgx) log e + Mgx) )) Ax)px)/p + p, { Mfx) log e + Mfx) )) Ax) px) {Mgx) + p Now Theorem 3 follows from the boundedness of maximal functions in L p the case of constant exponent) Remark 34 Let p ) be a positive continuous function on such that px) p + ) < Then, as in Harjulehto Hästö Pere [3], we can prove the following weak type result for maximal functions: E f t) fy) t py) dµy) whenever t > 0 and f L p ) ), where E f t) = {x : Mfx) t; see also Cruz-Uribe, Fiorenza and Neugebauer [2, Theorem 8] To prove this, we may assume that t = We have for k > µ Bx, r) ) fy) dµy) Bx,r) { k µ Bx, r) ) /k) p y) dµy) + Bx,r) k { /k) p +) + F, in µ Bx, r) ) fy) py) dµy) Bx,r) where F = µ Bx, r) )) Bx,r) fy) py) dµy) Here, considering k = F /p +) when F <, we find 2F /p +, so that 2) p+ M f p ) ) x) for x E f ), which proves the required assertion Remark 35 For 0 < r < 2, let = {x = x, x 2 ) : 0 < x <, < x 2 <

8 502 T Futamura, Y Mizuta and T Shimomura Define px, x 2 ) = { p0 + a log log/x2 ) )) / log/x 2 ) when 0 < x 2 r 0, p 0 when x 2 0; and px, x 2 ) = px, r 0 ) when x 2 > r 0 Setting we consider r) = {x = x, x 2 ) : 0 < x < r, r < x 2 < 0, f r y) = χ r) y) and set g r = f r / f r p ),, where χ E denotes the characteristic function of a measurable set E Then we claim for 0 < r < 2 r 0 : i) f r p ), = r 2/p 0 ; ii) Mg r )x) C r 2/p 0 for 0 < x < r and r < x 2 < 2r ; { iii) Mgr )x) log e + Mg r )x) )) Ax) px) ) 2a a)/p 0 dx C2 log/r) for Ax) = 2a/px) 2, so that the conclusion of Theorem 3 does not hold for 0 < a < a by 4 Sobolev s inequality For 0 < α < s, we consider the Riesz potential U α f of f L p ) ) defined U α fx) = x y α fy) µ Bx, x y ) ) dµy); recall that s is the decay constant in ) In this section, suppose p ) satisfies p), p2) and p3) p + ) < s/α Let /p x) = /px) α/s In what follows we establish Sobolev s inequality for α-potentials on, as an extension of the case of constant exponent which was discussed by Haj lasz and Koskela [2] and Heinonen [6]; for the Euclidean case, see the books by Adams and Hedberg [] and the second author [2] In the next two sections, we are concerned with the exponential integrability, which extends the results by Edmunds, urka and Opic [5], [6], and the authors [22] Now we show our result, which gives an extension of Diening [4]; for further investigations we also refer the reader to the results by Kokilashvili Samko [7], [8], where the index α is a variable exponent

9 Sobolev embeddings for variable exponent Riesz potentials 503 Theorem 4 Letting a > a when a > 0 and a = 0 when a = 0, we set Ax) = as/px) 2 Suppose p + ) < s/α Let f be a nonnegative measurable function on with f p ) Then { Uα fx) log e + U α fx) )) Ax) p x) dµx) In spite of the fact that the proof of Theorem 4 is quite similar to that of Theorem 34 in [], we give a proof of Theorem 4 for the readers convenience For this purpose, we prepare the following two lemmas Lemma 42 Let f be a nonnegative measurable function on with f p ) Then \Bx,δ) x y α fy) µ ) dµy) Cδ s/p x) log/δ) A x) Bx, x y ) for x and 0 < δ < 4, where A x) = a s/px) 2 as before Proof Let f be a nonnegative measurable function on with f p ) Then, for k >, we have x y α fy) µ Bx, x y ) ) dµy) { x y α k \Bx,δ) kµ Bx, x y ) ) { x y α k kµ Bx, x y ) ) \Bx,δ) \Bx,δ) Consider the set ) p y) ) p y) dµy) + dµy) + \Bx,δ) E = { y : x y α / kµ Bx, x y ) )) > Note here that by 2), 3) and Lemma 23 fy) py) dµy)

10 504 T Futamura, Y Mizuta and T Shimomura E\Bx,δ) j x y α kµ Bx, x y ) ) E\Bx,δ) ) p y) x y α kµ Bx, x y ) ) Bx,2 j δ)\bx,2 j δ) dµy) ) p x)+ω x y ) 2 j δ) α kµ Bx, 2 j δ) ) dµy) ) p x)+ω2 j δ) dµy) k p x) ωδ) j k p x) ωδ) j 2 j δ) αp x)+ω2 j δ)) µbx, 2 j δ) ) p x)+ω2 j δ))+ 2 j δ) α s)p x)+ω2 j δ))+s k p x) ωδ) δ t α s)p x)+ωt))+s t dt k p x) ωδ) δ α s)p x)+ωδ))+s k p x) ωδ) δ p x)α s/px)) log/δ) ) s α)a /px) ) 2 = Ck p x) ωδ) δ p x)s/p x) log/δ) ) s α)a /px) ) 2, where ωr) = ω a,c r) Now, letting k = δ s/p x) log/δ) ) A x), we see that Further we find E\Bx,δ) \E Consequently it follows that \Bx,δ) x y α kµ Bx, x y ) ) x y α kµ Bx, x y ) ) for x and 0 < δ <, as required 4 ) p y) ) p y) dµy) dµy) x y α fy) µ ) dµy) x) Cδ s/p log/δ) ) A x) Bx, x y )

11 Sobolev embeddings for variable exponent Riesz potentials 505 Lemma 43 Let f be a nonnegative measurable function on with f p ) Then U α fx) { Mfx) px)/p x) log e + Mfx) )) a α/px) + Proof To give the required estimate, we borrow the idea of Hedberg [5] In fact, for x and 0 < δ < we have by Lemma 4 4 U α fx) = Bx,δ) x y α fy) µ Bx, x y ) ) dµy) + \Bx,δ) δ α Mfx) + Cδ s/p x) log/δ) ) A x) x y α fy) µ Bx, x y ) ) dµy) Considering δ = Mfx) px)/s log e + Mfx) )) a /px) enough, we obtain the required inequality when M fx) is large Proof of Theorem 4 Let a > a > 0 or a = a = 0, and set Ax) = as/px) 2 Then Lemma 43 yields {U α fx) log e+u α fx) )) Ax) p x) [ {Mfx) log e+mfx) )) Ax) px)+ ], which together with Theorem 3 completes the proof Remark 44 In Remark 35, we see that U α g r x) C 3 r 2/p x) log/r) ) A x) for 0 < x < r and r < x 2 < 2r, where A x) = 2a /px) 2 Hence we have { Uα g r x) log e + U α g r x) )) Ax) p x) ) 2a a)/p 0, dx C4 log/r) where Ax) = 2a/px) 2 This implies that the conclusion of Theorem 4 does not hold when a < a Remark 45 By Theorem 4 we see that U α f L p ) ) whenever f L p ) ) Then, as was pointed out by Lerner [20], the inequality U α fx) px) dµx) fy) py) dµy) holds whenever f L p ) ) if and only if p is constant, under the additional assumption that µe) = sup { µk) K E, K : compact

12 506 T Futamura, Y Mizuta and T Shimomura for every measurable set E X In fact, the if part is clear We here assume that p is not constant Then we can find numbers p and p 2 such that p < p 2 <, and both E = {x : px) p and E 2 = {x : px) p 2 have positive µ measure Further by our assumption, there exist compact sets K i, i =, 2, such that K i E i If f = kχ K with k >, then so that On the other hand, U α fx) CkµK ) for x K 2, U α fx) px) dµx) Ck p 2 µk 2 ) fx) px) dµx) k p µk ) If the inequality holds, then we should have k p 2 k p, which gives a contradiction by letting k In the same manner, we see that the inequality {Mfx) px) dµx) fy) py) dµy) holds whenever f L p ) ) if and only if p is constant Remark 46 Let ωr) be a continuous function on 0, ) such that ωr) = a log log/r) ) log/r) + a 2 log/r) for 0 < r r 0 < 4, with a > 0 and a 2 > 0; set ωr) = ωr 0 ) for r > r 0 Consider a variable exponent p ) on the unit ball B in R n defined by px) = p 0 + ω ϱx) ), where < p 0 < n/α and ϱx) = x Take r 0 so small that px) < n/α for all x B In view of Theorem 4, we see that if a > a and Ax) = an/px) 2, then B { U α fx) log e + U α fx) )) Ax) p x) dx whenever f is a nonnegative measurable function on B with f p )

13 Sobolev embeddings for variable exponent Riesz potentials Exponential integrability For fixed x 0, let us assume that an exponent px) is a continuous function on satisfying 5) px) > p 0 when x x 0 and 52) { px) p 0 + a log log/ x 0 x ) ) log/ x 0 x ) b log/ x 0 x ) for x Bx 0, r 0 ), where 0 < r 0 < 4, p 0 = s/α, 0 < a s α)/α 2 and b > 0 Our aim in this section is to give an exponential integrability of Trudinger type Before doing so, we prepare several lemmas In view of 22) and 52), we have the following result Lemma 5 There exist C > 0 and 0 < r 0 < 4 such that 53) p y) p 0 ω x 0 y ) for all y B 0 = Bx 0, r 0 ), where p 0 = p 0/p 0 ) = s/s α) and ω is a nonnegative nondecreasing function on 0, ) such that ωr) = ) aα2 log log/r) s α) 2 log/r) C log/r) when 0 < r r 0 ; set ωr) = ωr 0 ) when r > r 0 as before Lemma 52 If 0 < a < s α)/α 2, then B 0 \Bx,δ) x y α µ Bx, x y ) ) and if a = s α)/α 2, then B 0 \Bx,δ) ) p y) x y α µ Bx, x y ) ) dµy) log/δ) ) aα 2 /s α) ) p y) for x B 0 and 0 < δ < δ 0, where 0 < δ 0 < 4 dµy) log log/δ) )

14 508 T Futamura, Y Mizuta and T Shimomura Proof First consider the case 0 < a < s α)/α 2 Let E = { y B 0 : x y α /µ Bx, x y ) ) > for fixed x B 0 Let j 0 be the smallest integer such that 2 j 0 δ > 2r 0 Since x y 3 x 0 y for y B 0 \ Bx 0, x 0 x /2), we have by 2), 3) and 53) I = E\{Bx 0, x 0 x /2) Bx,δ) j 0 j= j 0 j= j 0 j= j 0 j= 3r0 δ Bx,2 j δ)\bx,2 j δ) x y α ) p y) µ Bx, x y ) ) dµy) 2 j δ) α ) p µ Bx, 2 j δ) ) 0 ω2j δ/3) dµy) 2 j δ) αp 0 ω2j δ/3)) µ Bx, 2 j δ) )) p 0 ω2j δ/3))+ 2 j δ) α s)p 0 ω2j δ/3))+s log /2 j δ) ) aα 2 /s α) log/t) ) aα 2 /s α) t dt log/δ) ) aα 2 /s α) for 0 < δ < δ 0, since aα 2 /s α) > 0 Next we give an estimate for I 2 = Bx 0, x x 0 /2)\Bx,δ) x y α µ Bx, x y ) ) ) p y) dµy) We may assume that 2 x x 0 > δ Then we see from Lemma 5 that if y Bx 0, x x 0 /2), then p y) p 0 + η, where η = C/ log/ x 0 x ) Hence we obtain by ) and 3) I 2 Bx 0, x x 0 /2) Bx 0, x x 0 /2) x x 0 α ) p y) µ Bx, x 0 x /2) ) dµy) { x x 0 α ) p µ Bx, x 0 x /2) ) 0 +η + dµy) µ Bx 0, x 0 x /2) ){ x x 0 α µ Bx, x 0 x /2) ) ) p 0 +η + { x x 0 αp 0 +η) µ Bx 0, x 0 x /2) ) p 0 +η)+ +

15 Sobolev embeddings for variable exponent Riesz potentials 509 Thus it follows that x y α µ Bx, x y ) ) B 0 \Bx,δ) ) p y) for 0 < δ <, which proves the first case 4 The second case a = s α)/α 2 is similarly proved dµy) log/δ) ) aα 2 /s α) Lemma 53 Let f be a nonnegative measurable function on B 0 with f p ) If β > β = aα 2 /s α) ) /p 0 = s α aα2 )/s > 0, then 54) B 0 \Bx,δ) x y α fy) µ Bx, x y ) ) dµy) log/δ) ) β for x B 0 and 0 < δ < δ 0, where 0 < δ 0 < 4 Proof Take p such that < p < p 0 and β > γ = aα 2 /s α) ) /p > β We may assume that p y) > p for y B 0 Let f be a nonnegative measurable function on B 0 with f p ) For k > and 0 < δ <, we have by Lemma 52 4 x y α fy) B 0 \Bx,δ) µ Bx, x y ) ) dµy) { x y α ) p y) k kµ Bx, x y ) ) dµy) + fy) py) dµy) B 0 \Bx,δ) k { Ck p log/δ) ) aα 2 /s α) + B 0 \Bx,δ) ) Now, considering k such that k p aα log/δ) 2 /s α) =, we have x y α fy) µ Bx, x y ) ) dµy) log/δ) ) γ ) β, log/δ) as required B 0 \Bx,δ) In what follows we show that 54) remains true with β replaced by β = s α aα 2 )/s Lemma 54 Let f be a nonnegative measurable function on B 0 with f p ) If β = s α aα 2 )/s > 0, then B 0 \Bx,δ) x y α fy) µ Bx, x y ) ) dµy) log/δ) ) β for x B 0 and 0 < δ < δ 0, where 0 < δ 0 < 4

16 50 T Futamura, Y Mizuta and T Shimomura Proof Let f be a nonnegative measurable function on B 0 with f p ) Let η = log/δ) ) log log/δ) for small δ, say 0 < δ < δ0 < Then note from 4 Lemma 53 that x y α fy) 55) µ Bx, x y ) ) dµy) log/η) ) β ) β log/δ) B 0 \Bx,η) Letting k = log/δ) ) β and Bx) = Bx0, x 0 x /2), we find k ωη/3), so that we obtain from Lemmas 5 and 52 that x y α ) p y) kµ Bx, x y ) ) dµy) Bx,η)\{Bx,δ) Bx) Bx,η)\{Bx,δ) Bx) k p 0 B 0 \Bx,δ) { x y α ) p kµ Bx, x y ) ) 0 ω x y /3) + dµy) x y α ) p µ Bx, x y ) ) 0 ω x y /3) dµy) + C k p 0 log/δ) ) aα 2 /s α) + C Hence it follows from the proof of Lemma 53 that x y α fy) 56) µ Bx, x y ) ) dµy) log/δ))β Bx,η)\{Bx,δ) Bx) Next we show that 57) Bx)\Bx,δ) x y α fy) µ Bx, x y ) ) dµy) log/δ) ) β Since a > 0, we have by the latter half of the proof of Lemma 52 x y α fy) Bx)\Bx,δ) µ Bx, x y ) ) dµy) x y α ) p y) µ Bx, x y ) ) dµy) + fy) py) dµy) Bx)\Bx,δ) Bx)\Bx,δ) Now we claim from 55), 56) and 57) that x y α fy) µ Bx, x y ) ) dµy) log/δ) ) β B 0 \Bx,δ) Thus the proof is completed

17 Sobolev embeddings for variable exponent Riesz potentials 5 Lemma 55 Let f be a nonnegative measurable function on B 0 with f p ) If β = s α aα 2 )/s > 0, then U α fx) log e + Mfx) )) β for x B 0 Proof We see from Lemma 54 that x y α fy) U α fx) = µ Bx, x y ) ) dµy) + Here, letting Bx,δ) δ α Mfx) + C log/δ) ) β when Mfx) is large enough, we have as required It follows from Lemma 55 that B 0 \Bx,δ) δ = Mfx) ) /α log e + Mfx) )) β/α U α fx) log e + Mfx) )) β, exp C U α fx) ) /β) e + Mfx) x y α fy) µ Bx, x y ) ) dµy) whenever f is a nonnegative measurable function on B 0 with f p ) By the classical fact that Mf L p B 0 ), we establish the following exponential inequality of Trudinger type Theorem 56 Let 0 < a < s α)/α 2 If β = s α aα 2 )/s, then there exist positive constants c and c 2 such that B 0 exp c Uα fx) ) /β) dµx) c2 for all nonnegative measurable functions f on B 0 with f p ) Remark 57 Let B 0 be a ball in the n-dimensional space R n If f is a nonnegative measurable function on B 0 such that fy) py) dy <, B 0 then we claim by applying an idea by Hästö [4] that 58) fy) n/α log e + fy) )) aα dy < B 0

18 52 T Futamura, Y Mizuta and T Shimomura In fact, if y E = { x B 0 : fx) x 0 x α log e + x 0 x ) ), then so that fy) py) Cfy) n/α log e + fy) )) aα E fy) n/α log e + fy) )) aα dy <, which proves 58), since 0 < a < n α)/α 2 With the aid of Edmunds Krbec [7] and the authors [22] we also obtain Theorem 56 in the Euclidean case Finally we are concerned with the case a = s α)/α 2 Lemma 58 Let f be a nonnegative measurable function on B 0 with f p ) If a = s α)/α 2, then U α fx) log e + log e + Mfx) ))) p 0 for x B 0 Proof Let f be a nonnegative measurable function on B 0 with f p ) For k > and 0 < δ < δ 0 < 4, we have by applications of the arguments in the proof of Lemma 54 x y α fy) µ Bx, x y ) ) dµy) log log/δ) )) /p 0 B 0 \Bx,δ) Consequently it follows that x y α fy) U α fx) = µ Bx, x y ) ) dµy) + Here let Bx,δ) δ α Mfx) + C log log/δ) )) /p 0 B 0 \Bx,δ) δ = Mfx) /α log e + log e + Mfx) ))) /{αp 0 when Mfx) is large enough Then we have as required U α fx) log e + log e + Mfx) ))) /p 0, x y α fy) µ Bx, x y ) ) dµy) By Lemma 58 and the fact that Mf L p 0 B 0 ), we establish the following double exponential inequality for f L p ) B 0 ) Theorem 59 If a = s α)/α 2, then there exist positive constants c and c 2 such that B 0 exp exp c Uα fx) ) s/s α))) dµx) c2 for all nonnegative measurable functions f on B 0 with f p ) Remark 50 In case f belongs to more general variable exponent Lebesgue spaces, we will be expected to discuss the corresponding exponential integrability as in Edmunds, urka and Opic [5], [6] But we do not go into details any more

19 Sobolev embeddings for variable exponent Riesz potentials 53 6 Exponential integrability, II In this section, let B = B0, ) be the unit ball in R n We consider a variable exponent p ) on B which is a continuous function on B satisfying 6) px) > p 0 on B and 62) { px) p 0 + a log log /ϱx) )) log /ϱx) ) b log /ϱx) ) when ϱx) < r 0, where 0 < r 0 < 4, a > 0, b > 0, p 0 = n/α and ϱx) = x denotes the distance of x from the boundary B For f L p ) B), the Riesz potential of order α, 0 < α < n, is defined by U α fx) = B x y α n fy) dy If a > n α)/α 2, then we see from Theorem 77 below that U α fx) U α fz) log/ x z ) ) n α aα 2 )/n whenever x, z B and x z < ; for this fact, see also [0, Theorem 43] 2 In what follows, when 0 < a n α)/α 2, we discuss exponential inequalities of U α f as in Section 5 As in Lemma 5, we have the following result Lemma 6 There exist positive constants t 0 < 4 p x) p 0 ω ϱx) ) and C such that for x B, where ωt) = aα 2 /n α) 2) log log/t) ) / log/t) C/ log/t) for 0 < t t 0 and ωt) = ωt 0 ) for t > t 0 Lemma 62 If 0 < a < n α)/α 2, then I B\Bx,r) x y α n)p y) dy log/r) ) γ for all x B and 0 < r < 2, where γ = aα2 /n α)

20 54 T Futamura, Y Mizuta and T Shimomura Proof First consider the case 2 ϱx) r < 2 Letting E = { y B\Bx, r) : ϱx) ϱy) > 2r, we find by polar coordinates, I x y α n)p y) dy E t ϱx) α n)p 0 ωt))+n dt {t: t ϱx) >2r {t:t>2r /2 2r t n α)ωt) dt log/t) ) aα 2 /n α) t dt + C log/r) ) γ Letting E 2 = { y B \ Bx, r) : ϱx) ϱy) 2r, we find by polar coordinates, I 2 x y α n)p y) dy E 2 4r r α n)p 0 +n dt r dt Hence it follows that {t: t ϱx) 2r B\Bx,r) x y α n)p y) dy log/r) ) γ when 2 ϱx) r < In particular, we obtain 2 63) x y α n)p y) dy log /ϱx) )) γ B\Bx,ϱx)/2) Next consider the case 0 < r < 2 ϱx) Let E 3 = B x, 2 ϱx)) \ Bx, r) In view of Lemma 6, we find p y) p 0 ω ϱx) ) + C/ log /ϱx) ) p 0 ω x y ) for y E 3, where ω t) = ωt) C/ log/t) for small t > 0 Hence, we see that I 3 x y α n)p y) dy E 3 x y α n){p 0 ω x y ) dy E 3 ϱx)/2 r log/t) ) aα 2 /n α) t dt log/r) ) γ In view of 63), we establish x y α n)p y) dy log/r) ) γ B\Bx,r) when 0 < r < ϱx) Thus the required result is proved 2 0

21 Sobolev embeddings for variable exponent Riesz potentials 55 As in the proof of Lemma 54, we can prove the following result Lemma 63 Let f be a nonnegative function on B such that f p ) If 0 < a < n α)/α 2 and β = γ/p 0 = n α aα2 )/n, then x y α n fy) dy log/r) ) β whenever 0 < r < 2 B\Bx,r) We see from Lemma 63 that U α fx) = x y α n fy) dy + Here, letting Bx,δ) δ α Mfx) + C log/δ) ) β when Mfx) is large enough, we have so that B\Bx,δ) δ = Mfx) ) /α log e + Mfx) )) β/α U α fx) log e + Mfx) )) β, exp C U α fx) ) /β) e + Mfx) x y α n fy) dy whenever f is a nonnegative measurable function on B 0 with f p ) By the classical fact that Mf L p 0 B), we establish the following exponential inequality of Trudinger type Theorem 64 Let 0 < a < n α)/α 2 If β = n α aα 2 )/n, then there exist positive constants c and c 2 such that exp c Uα fx) ) /β) dx c2 B for all nonnegative measurable functions f on B with f p ) Finally we are concerned with the case a = n α)/α 2 The following can be proved in the same way as Lemma 54 Lemma 65 Let f be a nonnegative function on B such that f p ) If a = n α)/α 2, then x y α n)p y) fy) dy log log/r) )) n α)/n B\Bx,r) for small r > 0

22 56 T Futamura, Y Mizuta and T Shimomura As in the proof of Theorem 64, we establish the following double exponential inequality for f L p ) B) Theorem 66 If a = n α)/α 2, then there exist positive constants c and c 2 such that exp exp c Uα fx) ) n/n α))) dx c2 B for all nonnegative measurable functions f on B with f p ) 7 Continuity Let be a bounded open set in the n-dimensional space R n, and fix x 0 In this section, we deduce the continuity at x 0 of Riesz potentials U α f when f L p ) ) with p ) satisfying { n px) α + a log log/ x 0 x ) ) b log/ x 0 x ) log/ x 0 x ), where a > n α)/α 2, b > 0 and x runs over the small ball B 0 = Bx 0, r 0 ) Consider a positive continuous nonincreasing function ϕ on the interval 0, ) such that ϕ) log/t) ) ε 0ϕt) is nondecreasing on 0, r0 ] for some ε 0 > 0 and r 0 > 0; set ϕr) = ϕr 0 ) for r > r 0 We see from condition ϕ) that ϕ satisfies the doubling condition Set r n α)/n Φr) = ϕt) α2 /n α) t dt) 0 Our final goal is to establish the following result, which deals with the continuity of α-potentials in R n Theorem 7 Let p ) satisfy px) = n α + log ϕ x 0 x ) log/ x 0 x ) for x B 0 = Bx 0, r 0 ) and f L p ) B 0 ) If Φ) <, then U α f is continuous at x 0 ; in this case, whenever x, z B x 0, 2 r 0) U α fx) U α fz) Φ x z ) Remark 72 Let ϕr) = loge + /r) ) a Then Φ) < if and only if a > n α)/α 2, so that Theorem 7 gives an extension of the authors [9] For a proof of Theorem 7, we may assume that x 0 = 0 without loss of generality Before the proof we prepare the following two results

23 Sobolev embeddings for variable exponent Riesz potentials 57 Lemma 73 For x B 0, 2 r 0) and small δ > 0, Bx,δ) x y p y)α n) dy δ 0 ϕr) α2 /n α) r dr Proof First note from 22) and ϕ) that p y) p 0 ω y ) for y B 0, where p 0 = n/n α) and ωr) = α 2 /n α) 2) log ϕr) ) / log/r) C/ log/r) for 0 < r r 0 ; set ωr) = ωr 0 ) for r > r 0 If 0 < δ 2 x, then we have x y p y)α n) dy x y p y)α n) dy Bx,δ) j Bx,2 j+ δ)\bx,2 j δ) j 2 j δ) α n)p 0 ω2 j δ)) σ n 2 j+ δ) n j ϕ2 j δ) α2 /n α) δ 0 ϕr) α2 /n α) r dr, where σ n denotes the volume of the unit ball Similarly, if 2 x < δ < 3 r 0, we have x y p y)α n) dy y p y)α n) dy Bx,δ)\Bx, x /2) B0,3δ) 3δ Therefore it follows from the doubling property that Bx,δ) x y p y)α n) dy δ when 0 < δ < 3 r 0 Now the proof is completed 0 0 ϕr) α2 /n α) r dr ϕr) α2 /n α) r dr Lemma 74 Let f be a nonnegative measurable function on B 0 with f p ) Then x y α n fy) dy δ ϕδ) α2 /n B 0 \{B0,δ) Bx,δ) for x B 0, 2 r 0) and small δ > 0

24 58 T Futamura, Y Mizuta and T Shimomura Proof Let f be a nonnegative measurable function on B 0 with f p ) For k > we have x y α n fy) dy B 0 \{B0,δ) Bx,δ) { k x y α n /k) p y) dy B 0 \{Bx,δ) B0,δ) + B 0 \{Bx,δ) B0,δ) fy) py) dy { k x y α n /k) p y) dy + B 0 \{Bx,δ) B0,δ) In view of the assumption of ϕ, we obtain B 0 \{Bx,δ) B0,δ) x y α n /k) p y) dy { x y α n /k) p 0 ωδ) dy + B 0 \{Bx,δ) B0,δ) {k p 0 +ωδ) t α n )p 0 ωδ))+n t dt + k p 0 +ωδ) δ α n )p 0 ωδ))+n δ Considering k such that k p 0 +ωδ) δ α n )p 0 ωδ))+n =, we see that as required B 0 \{B0,δ) Bx,δ) x y α n fy) dy δ ϕδ) α2 /n, Proof of Theorem 7 Let f be a nonnegative measurable function on B 0 with f p ) For 0 < k <, we have by Lemma 73 Bx,δ) x y α n fy)dy k Bx,δ) k {k n/n α) { x y α n /k) p y) + fy) py) dy Bx,δ) k { Ck n/n α) Φδ) n/n α) + x y α n)p y) dy +

25 Sobolev embeddings for variable exponent Riesz potentials 59 whenever x B 0, 2 r 0) and 0 < δ < 2 r 0 Now, considering k = Φδ), we find 7) x y α n fy) dy Φδ) B 0 Bx,δ) Hence, if x, z B 0, 2 r 0) and x z < 4 r 0, then we have 72) x y α n fy) dy Φ x z ) Bx,2 x z ) On the other hand we have x y α n z y α n fy) dy B 0 \Bx,2 x z ) x z { = C x z + B 0 \Bx,2 x z ) x y α n fy) dy B 0 \{Bx,2 x z ) B0,2 x z ) {B 0 B0,2 x z )\Bx,2 x z ) x y α n fy) dy x y α n fy) dy It follows from Lemma 74 that x y α n fy) dy x z ϕ x z ) α2 /n B 0 \{Bx,2 x z ) B0,2 x z ) Moreover we see from 7) that {B 0 B0,2 x z )\Bx,2 x z ) x z B 0 B0,2 x z ) x y α n fy) dy y α n fy) dy x z Φ x z ) Since ϕr) α2 /n Φr) by the doubling property of ϕ, we obtain x y α n z y α n fy) dy Φ x z ) B 0 \Bx,2 x z ) Further we obtain by 72) Now, we establish as required Bx,2 x z ) z y α n fy) dy Φ x z ) U α fx) U α fz) Φ x z ),

26 520 T Futamura, Y Mizuta and T Shimomura Remark 75 If Φ) =, then we can find f L p ) B 0 ) such that U α f0) =, which means that U α f is not continuous at 0 For this purpose set and ψr) = r ϕt) α2 /n α) t dt fy) = y n α)/py) ) ψ y ) Take r 0 so small that ψr) > e when 0 < r < r 0 Note that r n α)p/p )+n = r n αp)/p ) = ϕr) α/p ) for r = y and p = py) By ϕ) we have so that ϕr) α/p ) Cϕr) α2 /n α), U α f0) = y α n n α)/py) ) ψ y ) dy B 0 C r0 0 ϕt) α2 /n α) ψt) dt/t = since ψ0) = by our assumption On the other hand, taking a number δ such that < δ < n/α and noting by ϕ) that ϕr) α/p ) ϕr) α2 /n α), we have fy) py) dy = y n α)py)/py) ) ψ y ) py) dy B 0 B 0 r0 0 ϕt) α2 /n α) ψt) δ dt/t < since < δ < n/α py) and ψ0) =, as required Finally, we consider a variable exponent p ) on the unit ball B such that 73) px) = p 0 + log ϕ ϱx) ) log e/ϱx) ) for x B, where p 0 = n/α; assume as above that px) > p 0 on B Theorem 76 If Φ) < and f L p ) B), then whenever x, z B U α fx) U α fz) Φ x z )

27 Sobolev embeddings for variable exponent Riesz potentials 52 For a proof of Theorem 76, it suffices to show that Bx,δ) x y p y)α n) dy δ 0 ϕr) α2 /n α) r dr for x B and small δ > 0, as in Lemma 73 We obtain, in fact, this inequality in the same way as in Lemmas 62 and 73 Remark 77 We do not know the best condition which assures the continuity of Riesz potentials in the metric space setting References [] Adams, D R, and L I Hedberg: Function Spaces and Potential Theory - Springer- Verlag, Berlin, 996 [2] Cruz-Uribe, D, A Fiorenza, and C J Neugebauer: The maximal function on variable L p spaces - Ann Acad Sci Fenn Ser Math 28, 2003, ; 29, 2004, [3] Diening, L: Maximal functions on generalized L p ) spaces - Math Inequal Appl 72), 2004, [4] Diening, L: Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p ) and W k,p ) - Math Nachr 263), 2004, 3 43 [5] Edmunds, D E, P urka, and B Opic: Double exponential integrability, Bessel potentials and embedding theorems - Studia Math 5, 995, 5 8 [6] Edmunds, D E, P urka, and B Opic: Sharpness of embeddings in logarithmic Bessel-potential spaces - Proc Roy Soc Edinburgh 26, 996, [7] Edmunds, D E, and M Krbec: Two limiting cases of Sobolev imbeddings - Houston J Math 2, 995, 9 28 [8] Edmunds, D E, and J Rákosník: Sobolev embedding with variable exponent, II - Math Nachr , 2002, [9] Futamura, T, and Y Mizuta: Continuity properties of Riesz potentials for functions in L p ) of variable exponent - Math Inequal Appl 8, 2005, [0] Futamura, T, and Y Mizuta: Continuity of weakly monotone Sobolev functions of variable exponent - Proceedings of the IWPT to appear) [] Futamura, T, Y Mizuta, and T Shimomura: Sobolev embeddings for Riesz potential space of variable exponent - Math Nachr to appear) [2] Haj lasz, P, and P Koskela: Sobolev met Poincaré - Mem Amer Math Soc 45, 2000, no 688 [3] Harjulehto, P, P Hästö, and M Pere: Variable exponent Lebesgue spaces on metric spaces: the Hardy Littlezood maximal operator - Real Anal Exchange 30, 2004/2005, [4] Hästö, P: The maximal operator in Lebesgue spaces with variable exponent near - Math Nachr to appear) [5] Hedberg, L I: On certain convolution inequalities - Proc Amer Math Soc 36, 972, [6] Heinonen, J: Lectures on Analysis on Metric Spaces - Springer-Verlag, New York, 200

28 522 T Futamura, Y Mizuta and T Shimomura [7] Kokilashvili, V, and S Samko: On Sobolev theorem for Riesz type potentials in the Lebesgue spaces with variable exponent - Z Anal Anwendungen 22, 2003, [8] Kokilashvili, V, and S Samko: Maximal and fractional operators in weighted L px) spaces - Rev Mat Iberoamericana 20, 2004, [9] Kováčik, O, and J Rákosník: On spaces L px) and W k,px) - Czechoslovak Math J 4, 99, [20] Lerner, A K: On modular inequalities in variable L p spaces - Arch Math 85, 2005, [2] Mizuta, Y: Potential Theory in Euclidean Spaces - akkōtosho, Tokyo, 996 [22] Mizuta, Y, and T Shimomura: Exponential integrability for Riesz potentials of functions in Orlicz classes - Hiroshima Math J 28, 998, [23] Mizuta, Y, and T Shimomura: Continuity and differentiability for weighted Sobolev spaces - Proc Amer Math Soc 30, 2002, [24] Mizuta, Y, and T Shimomura: Continuity of Sobolev functions of variable exponent on metric spaces - Proc Japan Acad Ser A Math Sci 80, 2004, [25] Musielak, J: Orlicz Spaces and Modular Spaces - Lecture Notes in Math 034, Springer- Verlag, Berlin, 983 [26] Orlicz, W: Über konjugierte Exponentenfolgen - Studia Math 3, 93, [27] Pick, L, and M R užička: An example of a space L px) on which the Hardy Littlewood maximal operator is not bounded - Expo Math 9, 200, [28] R užička, M: Electrorheological Fluids: Modeling and Mathematical Theory - Lecture Notes in Math 748, Springer, 2000 Received 20 June 2005

Sobolev embeddings for variable exponent Riesz potentials on metric spaces

Sobolev embeddings for variable exponent Riesz potentials on metric spaces Sobolev embeddings for variable exponent Riesz potentials on metric spaces Toshihide Futamura, Yoshihiro Mizuta and Tetsu Shimomura Abstract In the metric space setting, our aim in this paper is to deal

More information

APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( )

APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( ) Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 35, 200, 405 420 APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( ) Fumi-Yuki Maeda, Yoshihiro

More information

Continuity of weakly monotone Sobolev functions of variable exponent

Continuity of weakly monotone Sobolev functions of variable exponent Continuity of weakly monotone Sobolev functions of variable exponent Toshihide Futamura and Yoshihiro Mizuta Abstract Our aim in this paper is to deal with continuity properties for weakly monotone Sobolev

More information

SOBOLEV S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES

SOBOLEV S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES Mizuta, Y., Shimomura, T. and Sobukawa, T. Osaka J. Math. 46 (2009), 255 27 SOOLEV S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOULING MORREY SPACES YOSHIHIRO MIZUTA, TETSU SHIMOMURA and TAKUYA

More information

1. Introduction. SOBOLEV INEQUALITIES WITH VARIABLE EXPONENT ATTAINING THE VALUES 1 AND n. Petteri Harjulehto and Peter Hästö.

1. Introduction. SOBOLEV INEQUALITIES WITH VARIABLE EXPONENT ATTAINING THE VALUES 1 AND n. Petteri Harjulehto and Peter Hästö. Publ. Mat. 52 (2008), 347 363 SOBOLEV INEQUALITIES WITH VARIABLE EXPONENT ATTAINING THE VALUES AND n Petteri Harjulehto and Peter Hästö Dedicated to Professor Yoshihiro Mizuta on the occasion of his sixtieth

More information

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces Petteri HARJULEHTO and Peter HÄSTÖ epartment of Mathematics P.O. Box 4 (Yliopistonkatu 5) FIN-00014

More information

Maximal functions for Lebesgue spaces with variable exponent approaching 1

Maximal functions for Lebesgue spaces with variable exponent approaching 1 Hiroshima Math. J. 36 (2006), 23 28 Maximal functions for Leesgue spaces with variale exponent approaching 1 Dedicated to Professor Fumi-Yuki Maeda on the occasion of his seventieth irthday Toshihide Futamura

More information

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT Bull. Korean Math. Soc. 5 204, No. 2, pp. 423 435 http://dx.doi.org/0.434/bkms.204.5.2.423 BOUNDEDNESS FOR FRACTIONA HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABE EXPONENT Jianglong Wu Abstract.

More information

Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 35, 2010, 115 130 COMPACT EMBEDDINGS FOR SOBOLEV SPACES OF VARIABLE EXPONENTS AND EXISTENCE OF SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING

More information

Wavelets and modular inequalities in variable L p spaces

Wavelets and modular inequalities in variable L p spaces Wavelets and modular inequalities in variable L p spaces Mitsuo Izuki July 14, 2007 Abstract The aim of this paper is to characterize variable L p spaces L p( ) (R n ) using wavelets with proper smoothness

More information

Function spaces with variable exponents

Function spaces with variable exponents Function spaces with variable exponents Henning Kempka September 22nd 2014 September 22nd 2014 Henning Kempka 1 / 50 http://www.tu-chemnitz.de/ Outline 1. Introduction & Motivation First motivation Second

More information

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION PIOTR HAJ LASZ, JAN MALÝ Dedicated to Professor Bogdan Bojarski Abstract. We prove that if f L 1 R n ) is approximately differentiable a.e., then

More information

VARIABLE EXPONENT TRACE SPACES

VARIABLE EXPONENT TRACE SPACES VARIABLE EXPONENT TRACE SPACES LARS DIENING AND PETER HÄSTÖ Abstract. The trace space of W 1,p( ) ( [, )) consists of those functions on that can be extended to functions of W 1,p( ) ( [, )) (as in the

More information

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 37, 2012, 571 577 HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH Olli Toivanen University of Eastern Finland, Department of

More information

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition Int. J. Nonlinear Anal. Appl. 7 26) No. 2, 29-38 ISSN: 28-6822 electronic) http://dx.doi.org/.2275/ijnaa.26.439 Some functional inequalities in variable exponent spaces with a more generalization of uniform

More information

The maximal operator in generalized Orlicz spaces

The maximal operator in generalized Orlicz spaces The maximal operator in generalized Orlicz spaces Peter Hästö June 9, 2015 Department of Mathematical Sciences Generalized Orlicz spaces Lebesgue -> Orlicz -> generalized Orlicz f p dx to ϕ( f ) dx to

More information

Variable Lebesgue Spaces

Variable Lebesgue Spaces Variable Lebesgue Trinity College Summer School and Workshop Harmonic Analysis and Related Topics Lisbon, June 21-25, 2010 Joint work with: Alberto Fiorenza José María Martell Carlos Pérez Special thanks

More information

CHARACTERIZATION OF ORLICZ-SOBOLEV SPACE

CHARACTERIZATION OF ORLICZ-SOBOLEV SPACE CHRCTERIZTION OF ORLICZ-SOBOLEV SPCE HELI TUOMINEN bstract. We give a new characterization of the Orlicz-Sobolev space W 1,Ψ (R n ) in terms of a pointwise inequality connected to the Young function Ψ.

More information

COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES

COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES Adv Oper Theory https://doiorg/05352/aot803-335 ISSN: 2538-225X electronic https://projecteuclidorg/aot COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES CIHAN UNAL and ISMAIL

More information

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS LE MATEMATICHE Vol. LI (1996) Fasc. II, pp. 335347 GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS CARLO SBORDONE Dedicated to Professor Francesco Guglielmino on his 7th birthday W

More information

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 29, 2004, 167 176 ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES Piotr Haj lasz and Jani Onninen Warsaw University, Institute of Mathematics

More information

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r) Appeared in Israel J. Math. 00 (997), 7 24 THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION Juha Kinnunen Abstract. We prove that the Hardy Littlewood maximal operator is bounded in the Sobolev

More information

Math. Res. Lett. 16 (2009), no. 2, c International Press 2009 LOCAL-TO-GLOBAL RESULTS IN VARIABLE EXPONENT SPACES

Math. Res. Lett. 16 (2009), no. 2, c International Press 2009 LOCAL-TO-GLOBAL RESULTS IN VARIABLE EXPONENT SPACES Math. Res. Lett. 6 (2009), no. 2, 263 278 c International Press 2009 LOCAL-TO-GLOBAL RESULTS IN VARIABLE EXPONENT SPACES Peter A. Hästö Abstract. In this article a new method for moving from local to global

More information

Decompositions of variable Lebesgue norms by ODE techniques

Decompositions of variable Lebesgue norms by ODE techniques Decompositions of variable Lebesgue norms by ODE techniques Septièmes journées Besançon-Neuchâtel d Analyse Fonctionnelle Jarno Talponen University of Eastern Finland talponen@iki.fi Besançon, June 217

More information

Mathematical Research Letters 4, (1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS. Juha Kinnunen and Olli Martio

Mathematical Research Letters 4, (1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS. Juha Kinnunen and Olli Martio Mathematical Research Letters 4, 489 500 1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS Juha Kinnunen and Olli Martio Abstract. The fractional maximal function of the gradient gives a pointwise interpretation

More information

On a compactness criteria for multidimensional Hardy type operator in p-convex Banach function spaces

On a compactness criteria for multidimensional Hardy type operator in p-convex Banach function spaces Caspian Journal of Applied Mathematics, Economics and Ecology V. 1, No 1, 2013, July ISSN 1560-4055 On a compactness criteria for multidimensional Hardy type operator in p-convex Banach function spaces

More information

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES Vasile Alecsandri University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 27207), No., 49-60 ON A MAXIMAL OPRATOR IN RARRANGMNT INVARIANT BANACH

More information

ON ORLICZ-SOBOLEV CAPACITIES

ON ORLICZ-SOBOLEV CAPACITIES ON ORLICZ-SOBOLEV CAPACITIES JANI JOENSUU Academic dissertation To be presented for public examination with the permission of the Faculty of Science of the University of Helsinki in S12 of the University

More information

HARDY INEQUALITY IN VARIABLE EXPONENT LEBESGUE SPACES. Abstract. f(y) dy p( ) (R 1 + )

HARDY INEQUALITY IN VARIABLE EXPONENT LEBESGUE SPACES. Abstract. f(y) dy p( ) (R 1 + ) HARDY INEQUALITY IN VARIABLE EXPONENT LEBESGUE SPACES Lars Diening, Stefan Samko 2 Abstract We prove the Hardy inequality x f(y) dy y α(y) C f L p( ) (R + ) L q( ) (R + ) xα(x)+µ(x) and a similar inequality

More information

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s A Caffarelli-Kohn-Nirenberg type ineuality with variable exponent and applications to PDE s Mihai Mihăilescu a,b Vicenţiu Rădulescu a,c Denisa Stancu-Dumitru a a Department of Mathematics, University of

More information

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 207 222 PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS Fumi-Yuki Maeda and Takayori Ono Hiroshima Institute of Technology, Miyake,

More information

Fractional integral operators on generalized Morrey spaces of non-homogeneous type 1. I. Sihwaningrum and H. Gunawan

Fractional integral operators on generalized Morrey spaces of non-homogeneous type 1. I. Sihwaningrum and H. Gunawan Fractional integral operators on generalized Morrey spaces of non-homogeneous type I. Sihwaningrum and H. Gunawan Abstract We prove here the boundedness of the fractional integral operator I α on generalized

More information

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem:

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem: STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LV, Number 4, December 2010 CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT MARIA-MAGDALENA BOUREANU Abstract. We work on

More information

SHARP L p WEIGHTED SOBOLEV INEQUALITIES

SHARP L p WEIGHTED SOBOLEV INEQUALITIES Annales de l Institut de Fourier (3) 45 (995), 6. SHARP L p WEIGHTED SOBOLEV INEUALITIES Carlos Pérez Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain e mail: cperezmo@ccuam3.sdi.uam.es

More information

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT Jordan Journal of Mathematics and Statistics (JJMS 9(1, 2016, pp 17-30 BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT WANG HONGBIN Abstract. In this paper, we obtain the boundedness

More information

Besov-type spaces with variable smoothness and integrability

Besov-type spaces with variable smoothness and integrability Besov-type spaces with variable smoothness and integrability Douadi Drihem M sila University, Department of Mathematics, Laboratory of Functional Analysis and Geometry of Spaces December 2015 M sila, Algeria

More information

Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations

Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations . ARTICLES. SCIENCE CHINA Mathematics October 2018 Vol. 61 No. 10: 1807 1824 https://doi.org/10.1007/s11425-017-9274-0 Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications

More information

Variable Exponents Spaces and Their Applications to Fluid Dynamics

Variable Exponents Spaces and Their Applications to Fluid Dynamics Variable Exponents Spaces and Their Applications to Fluid Dynamics Martin Rapp TU Darmstadt November 7, 213 Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 1 / 14 Overview 1 Variable

More information

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION. 1. Introduction Juha Kinnunen [10] proved that the Hardy-Littlewood maximal function.

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION. 1. Introduction Juha Kinnunen [10] proved that the Hardy-Littlewood maximal function. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 1, January 2010, Pages 165 174 S 0002-993909)09971-7 Article electronically published on September 3, 2009 ON APPROXIMATE DIFFERENTIABILITY

More information

One-sided operators in grand variable exponent Lebesgue spaces

One-sided operators in grand variable exponent Lebesgue spaces One-sided operators in grand variable exponent Lebesgue spaces ALEXANDER MESKHI A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Georgia Porto, June 10, 2015 One-sided operators

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp223-239 BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HERZ SPACES WITH VARIABLE EXPONENT ZONGGUANG LIU (1) AND HONGBIN WANG (2) Abstract In

More information

J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv: v2 [math.ap] by authors

J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv: v2 [math.ap] by authors J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv:79.197v2 [math.ap]. 28 by authors CHARACTERIZATIONS OF SOBOLEV INEQUALITIES ON METRIC SPACES JUHA KINNUNEN AND

More information

A WEAK-(p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR ON MORREY SPACES OVER METRIC MEASURE SPACES

A WEAK-(p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR ON MORREY SPACES OVER METRIC MEASURE SPACES JMP : Volume 8 Nomor, Juni 206, hal -7 A WEAK-p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR ON MORREY SPACES OVER METRIC MEASURE SPACES Idha Sihwaningrum Department of Mathematics, Faculty of Mathematics

More information

THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1

THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1 THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1 HEIKKI HAKKARAINEN AND MATTI NUORTIO Abstract. In this article we extend the known results concerning

More information

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)-hardy inequality u(x) Cd Ω(x)

More information

MODULUS AND CONTINUOUS CAPACITY

MODULUS AND CONTINUOUS CAPACITY Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 455 464 MODULUS AND CONTINUOUS CAPACITY Sari Kallunki and Nageswari Shanmugalingam University of Jyväskylä, Department of Mathematics

More information

Poincaré inequalities that fail

Poincaré inequalities that fail ي ۆ Poincaré inequalities that fail to constitute an open-ended condition Lukáš Malý Workshop on Geometric Measure Theory July 14, 2017 Poincaré inequalities Setting Let (X, d, µ) be a complete metric

More information

The p(x)-laplacian and applications

The p(x)-laplacian and applications The p(x)-laplacian and applications Peter A. Hästö Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki, Finland October 3, 2005 Abstract The present article is based

More information

Research Article Function Spaces with a Random Variable Exponent

Research Article Function Spaces with a Random Variable Exponent Abstract and Applied Analysis Volume 211, Article I 17968, 12 pages doi:1.1155/211/17968 Research Article Function Spaces with a Random Variable Exponent Boping Tian, Yongqiang Fu, and Bochi Xu epartment

More information

PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES

PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES PETTERI HARJULEHTO, PETER HÄSTÖ, AND MIKA KOSKENOJA Abstract. In this paper we introduce two new capacities in the variable exponent setting:

More information

Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces

Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces Çankaya University Journal of Science and Engineering Volume 7 (200), No. 2, 05 3 Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces Rabil A. Mashiyev Dicle University, Department

More information

Nonlinear aspects of Calderón-Zygmund theory

Nonlinear aspects of Calderón-Zygmund theory Ancona, June 7 2011 Overture: The standard CZ theory Consider the model case u = f in R n Overture: The standard CZ theory Consider the model case u = f in R n Then f L q implies D 2 u L q 1 < q < with

More information

WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR GENERAL MAXIMAL FUNCTIONS

WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR GENERAL MAXIMAL FUNCTIONS GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 3, 995, 277-290 WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR GENERAL MAXIMAL FUNCTIONS J. GENEBASHVILI Abstract. Necessary and sufficient conditions are found to

More information

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa)

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa) On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa) Abstract. We prove two pointwise estimates relating some classical maximal and singular integral operators. In

More information

SINGULAR INTEGRALS IN WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENT

SINGULAR INTEGRALS IN WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENT Georgian Mathematical Journal Volume 10 (2003), Number 1, 145 156 SINGULAR INTEGRALS IN WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENT V. KOKILASHVILI AND S. SAMKO Abstract. In the weighted Lebesgue space

More information

Lebesgue s Differentiation Theorem via Maximal Functions

Lebesgue s Differentiation Theorem via Maximal Functions Lebesgue s Differentiation Theorem via Maximal Functions Parth Soneji LMU München Hütteseminar, December 2013 Parth Soneji Lebesgue s Differentiation Theorem via Maximal Functions 1/12 Philosophy behind

More information

FUNCTION SPACES WITH VARIABLE EXPONENTS AN INTRODUCTION. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano. Received September 18, 2013

FUNCTION SPACES WITH VARIABLE EXPONENTS AN INTRODUCTION. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano. Received September 18, 2013 Scientiae Mathematicae Japonicae Online, e-204, 53 28 53 FUNCTION SPACES WITH VARIABLE EXPONENTS AN INTRODUCTION Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano Received September 8, 203 Abstract. This

More information

SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES

SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES L. Grafakos Department of Mathematics, University of Missouri, Columbia, MO 65203, U.S.A. (e-mail: loukas@math.missouri.edu) and

More information

Weighted norm inequalities for singular integral operators

Weighted norm inequalities for singular integral operators Weighted norm inequalities for singular integral operators C. Pérez Journal of the London mathematical society 49 (994), 296 308. Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid,

More information

arxiv: v3 [math.ca] 9 Apr 2015

arxiv: v3 [math.ca] 9 Apr 2015 ON THE PRODUCT OF FUNCTIONS IN BMO AND H 1 OVER SPACES OF HOMOGENEOUS TYPE ariv:1407.0280v3 [math.ca] 9 Apr 2015 LUONG DANG KY Abstract. Let be an RD-space, which means that is a space of homogeneous type

More information

Measure density and extendability of Sobolev functions

Measure density and extendability of Sobolev functions Measure density and extendability of Sobolev functions Piotr Haj lasz, Pekka Koskela and Heli Tuominen Abstract We study necessary and sufficient conditions for a domain to be a Sobolev extension domain

More information

HOMEOMORPHISMS OF BOUNDED VARIATION

HOMEOMORPHISMS OF BOUNDED VARIATION HOMEOMORPHISMS OF BOUNDED VARIATION STANISLAV HENCL, PEKKA KOSKELA AND JANI ONNINEN Abstract. We show that the inverse of a planar homeomorphism of bounded variation is also of bounded variation. In higher

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

of variable exponents

of variable exponents 1669 2009 91-102 91 Sobolev s inequality for Orlicz-Sobolev spaces of variable exponents Yoshihiro Mizuta Department of Mathematics, Graduate School of Science, Hiroshima University Takao Ohno General

More information

On the role of Riesz potentials in Poisson s equation and Sobolev embeddings

On the role of Riesz potentials in Poisson s equation and Sobolev embeddings On the role of Riesz potentials in Poisson s equation and Sobolev embeddings Rahul Garg rgarg@tx.technion.ac.il Daniel Spector dspector@tx.technion.ac.il Department of Mathematics Technion - Israel Institute

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

REGULARITY OF THE LOCAL FRACTIONAL MAXIMAL FUNCTION

REGULARITY OF THE LOCAL FRACTIONAL MAXIMAL FUNCTION REGULARITY OF THE LOCAL FRACTIONAL MAXIMAL FUNCTION TONI HEIKKINEN, JUHA KINNUNEN, JANNE KORVENPÄÄ AND HELI TUOMINEN Abstract. This paper studies smoothing properties of the local fractional maximal operator,

More information

LUSIN PROPERTIES AND INTERPOLATION OF SOBOLEV SPACES. Fon-Che Liu Wei-Shyan Tai. 1. Introduction and preliminaries

LUSIN PROPERTIES AND INTERPOLATION OF SOBOLEV SPACES. Fon-Che Liu Wei-Shyan Tai. 1. Introduction and preliminaries Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 9, 997, 63 77 LUSIN PROPERTIES AND INTERPOLATION OF SOBOLEV SPACES Fon-Che Liu Wei-Shyan Tai. Introduction and preliminaries

More information

GENERALIZED STUMMEL CLASS AND MORREY SPACES. Hendra Gunawan, Eiichi Nakai, Yoshihiro Sawano, and Hitoshi Tanaka

GENERALIZED STUMMEL CLASS AND MORREY SPACES. Hendra Gunawan, Eiichi Nakai, Yoshihiro Sawano, and Hitoshi Tanaka PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 92(6) (22), 27 38 DOI:.2298/PIM2627G GENERALIZED STUMMEL CLASS AND MORREY SPACES Hendra Gunawan, Eiichi Nakai, Yoshihiro Sawano, and Hitoshi

More information

arxiv: v1 [math.ap] 28 Mar 2014

arxiv: v1 [math.ap] 28 Mar 2014 GROUNDSTATES OF NONLINEAR CHOQUARD EQUATIONS: HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENT VITALY MOROZ AND JEAN VAN SCHAFTINGEN arxiv:1403.7414v1 [math.ap] 28 Mar 2014 Abstract. We consider nonlinear Choquard

More information

LARGE DEVIATIONS OF TYPICAL LINEAR FUNCTIONALS ON A CONVEX BODY WITH UNCONDITIONAL BASIS. S. G. Bobkov and F. L. Nazarov. September 25, 2011

LARGE DEVIATIONS OF TYPICAL LINEAR FUNCTIONALS ON A CONVEX BODY WITH UNCONDITIONAL BASIS. S. G. Bobkov and F. L. Nazarov. September 25, 2011 LARGE DEVIATIONS OF TYPICAL LINEAR FUNCTIONALS ON A CONVEX BODY WITH UNCONDITIONAL BASIS S. G. Bobkov and F. L. Nazarov September 25, 20 Abstract We study large deviations of linear functionals on an isotropic

More information

Sobolev Spaces. Chapter Hölder spaces

Sobolev Spaces. Chapter Hölder spaces Chapter 2 Sobolev Spaces Sobolev spaces turn out often to be the proper setting in which to apply ideas of functional analysis to get information concerning partial differential equations. Here, we collect

More information

Hardy inequalities and thickness conditions

Hardy inequalities and thickness conditions Hardy inequalities and thickness conditions Juha Lehrbäck University of Jyväskylä November 23th 2010 Symposium on function theory Nagoya, Japan Juha Lehrbäck (University of Jyväskylä) Hardy inequalities

More information

FAT AND THIN SETS FOR DOUBLING MEASURES IN EUCLIDEAN SPACE

FAT AND THIN SETS FOR DOUBLING MEASURES IN EUCLIDEAN SPACE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 38, 2013, 535 546 FAT AND THIN SETS FOR DOUBLING MEASURES IN EUCLIDEAN SPACE Wen Wang, Shengyou Wen and Zhi-Ying Wen Yunnan University, Department

More information

A continuous spectrum for nonhomogeneous differential operators in Orlicz-Sobolev spaces

A continuous spectrum for nonhomogeneous differential operators in Orlicz-Sobolev spaces A continuous spectrum for nonhomogeneous differential operators in Orlicz-Sobolev spaces Mihai Mihailescu, Vicentiu Radulescu To cite this version: Mihai Mihailescu, Vicentiu Radulescu. A continuous spectrum

More information

HIGHER INTEGRABILITY WITH WEIGHTS

HIGHER INTEGRABILITY WITH WEIGHTS Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 19, 1994, 355 366 HIGHER INTEGRABILITY WITH WEIGHTS Juha Kinnunen University of Jyväskylä, Department of Mathematics P.O. Box 35, SF-4351

More information

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2. ANALYSIS QUALIFYING EXAM FALL 27: SOLUTIONS Problem. Determine, with justification, the it cos(nx) n 2 x 2 dx. Solution. For an integer n >, define g n : (, ) R by Also define g : (, ) R by g(x) = g n

More information

INTEGRABILITY OF SUPERHARMONIC FUNCTIONS IN A JOHN DOMAIN. Hiroaki Aikawa

INTEGRABILITY OF SUPERHARMONIC FUNCTIONS IN A JOHN DOMAIN. Hiroaki Aikawa INTEGRABILITY OF SUPERHARMONIC FUNCTIONS IN A OHN OMAIN Hiroaki Aikawa Abstract. The integrability of positive erharmonic functions on a bounded fat ohn domain is established. No exterior conditions are

More information

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV Abstract. A new proof is given of the atomic decomposition of Hardy spaces H p, 0 < p 1,

More information

THEOREMS, ETC., FOR MATH 516

THEOREMS, ETC., FOR MATH 516 THEOREMS, ETC., FOR MATH 516 Results labeled Theorem Ea.b.c (or Proposition Ea.b.c, etc.) refer to Theorem c from section a.b of Evans book (Partial Differential Equations). Proposition 1 (=Proposition

More information

BESOV SPACES WITH VARIABLE SMOOTHNESS AND INTEGRABILITY

BESOV SPACES WITH VARIABLE SMOOTHNESS AND INTEGRABILITY BESOV SPACES WITH VARIABLE SMOOTHNESS AND INTEGRABILITY ALEXANDRE ALMEIDA AND PETER HÄSTÖ,2 Abstract. In this article we introduce Besov spaces with variable smoothness and integrability indices. We prove

More information

BLOCH SPACE AND THE NORM OF THE BERGMAN PROJECTION

BLOCH SPACE AND THE NORM OF THE BERGMAN PROJECTION Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 38, 2013, 849 853 BLOCH SPACE AN THE NORM OF THE BERGMAN PROJECTION Antti Perälä University of Helsinki, epartment of Mathematics and Statistics

More information

arxiv: v1 [math.cv] 3 Sep 2017

arxiv: v1 [math.cv] 3 Sep 2017 arxiv:1709.00724v1 [math.v] 3 Sep 2017 Variable Exponent Fock Spaces Gerardo A. hacón and Gerardo R. hacón Abstract. In this article we introduce Variable exponent Fock spaces and study some of their basic

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES

APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES MARCELINA MOCANU We prove that the density of locally Lipschitz functions in a global Sobolev space based on a Banach function

More information

Hardy spaces with variable exponents and generalized Campanato spaces

Hardy spaces with variable exponents and generalized Campanato spaces Hardy spaces with variable exponents and generalized Campanato spaces Yoshihiro Sawano 1 1 Tokyo Metropolitan University Faculdade de Ciencias da Universidade do Porto Special Session 49 Recent Advances

More information

WEIGHTED VARIABLE EXPONENT AMALGAM SPACES. İsmail Aydin and A. Turan Gürkanli Sinop University and Ondokuz Mayıs University, Turkey

WEIGHTED VARIABLE EXPONENT AMALGAM SPACES. İsmail Aydin and A. Turan Gürkanli Sinop University and Ondokuz Mayıs University, Turkey GLASNIK MATEMATIČKI Vol 47(67(202, 65 74 WEIGHTED VARIABLE EXPONENT AMALGAM SPACES W(L p(x,l q İsmail Aydin and A Turan Gürkanli Sinop University and Ondokuz Mayıs University, Turkey Abstract In the present

More information

A NOTE ON ZERO SETS OF FRACTIONAL SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY. 1. Introduction

A NOTE ON ZERO SETS OF FRACTIONAL SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY. 1. Introduction A NOTE ON ZERO SETS OF FRACTIONAL SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY ARMIN SCHIKORRA Abstract. We extend a Poincaré-type inequality for functions with large zero-sets by Jiang and Lin

More information

VECTOR-VALUED INEQUALITIES ON HERZ SPACES AND CHARACTERIZATIONS OF HERZ SOBOLEV SPACES WITH VARIABLE EXPONENT. Mitsuo Izuki Hokkaido University, Japan

VECTOR-VALUED INEQUALITIES ON HERZ SPACES AND CHARACTERIZATIONS OF HERZ SOBOLEV SPACES WITH VARIABLE EXPONENT. Mitsuo Izuki Hokkaido University, Japan GLASNIK MATEMATIČKI Vol 45(65)(2010), 475 503 VECTOR-VALUED INEQUALITIES ON HERZ SPACES AND CHARACTERIZATIONS OF HERZ SOBOLEV SPACES WITH VARIABLE EXPONENT Mitsuo Izuki Hokkaido University, Japan Abstract

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen W,p ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS Zhongwei Shen Abstract. Let L = div`a` x, > be a family of second order elliptic operators with real, symmetric coefficients on a

More information

JUHA KINNUNEN. Real Analysis

JUHA KINNUNEN. Real Analysis JUH KINNUNEN Real nalysis Department of Mathematics and Systems nalysis, alto University Updated 3 pril 206 Contents L p spaces. L p functions..................................2 L p norm....................................

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

The variable exponent BV-Sobolev capacity

The variable exponent BV-Sobolev capacity The variable exponent BV-Sobolev capacity Heikki Hakkarainen Matti Nuortio 4th April 2011 Abstract In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We

More information

FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS AND FRACTIONAL P (X)-LAPLACIANS. 1. Introduction

FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS AND FRACTIONAL P (X)-LAPLACIANS. 1. Introduction FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS AND FRACTIONAL P (X-LAPLACIANS URIEL KAUFMANN, JULIO D. ROSSI AND RAUL VIDAL Abstract. In this article we extend the Sobolev spaces with variable exponents

More information

PERIODIC SOLUTIONS FOR A KIND OF LIÉNARD-TYPE p(t)-laplacian EQUATION. R. Ayazoglu (Mashiyev), I. Ekincioglu, G. Alisoy

PERIODIC SOLUTIONS FOR A KIND OF LIÉNARD-TYPE p(t)-laplacian EQUATION. R. Ayazoglu (Mashiyev), I. Ekincioglu, G. Alisoy Acta Universitatis Apulensis ISSN: 1582-5329 http://www.uab.ro/auajournal/ No. 47/216 pp. 61-72 doi: 1.17114/j.aua.216.47.5 PERIODIC SOLUTIONS FOR A KIND OF LIÉNARD-TYPE pt)-laplacian EQUATION R. Ayazoglu

More information

arxiv: v1 [math.ca] 13 Apr 2012

arxiv: v1 [math.ca] 13 Apr 2012 IINEAR DECOMPOSITIONS FOR THE PRODUCT SPACE H MO UONG DANG KY arxiv:204.304v [math.ca] 3 Apr 202 Abstract. In this paper, we improve a recent result by i and Peng on products of functions in H (Rd and

More information

A NOTE ON CORRELATION AND LOCAL DIMENSIONS

A NOTE ON CORRELATION AND LOCAL DIMENSIONS A NOTE ON CORRELATION AND LOCAL DIMENSIONS JIAOJIAO YANG, ANTTI KÄENMÄKI, AND MIN WU Abstract Under very mild assumptions, we give formulas for the correlation and local dimensions of measures on the limit

More information

AN EXAMPLE OF FUNCTIONAL WHICH IS WEAKLY LOWER SEMICONTINUOUS ON W 1,p FOR EVERY p > 2 BUT NOT ON H0

AN EXAMPLE OF FUNCTIONAL WHICH IS WEAKLY LOWER SEMICONTINUOUS ON W 1,p FOR EVERY p > 2 BUT NOT ON H0 AN EXAMPLE OF FUNCTIONAL WHICH IS WEAKLY LOWER SEMICONTINUOUS ON W,p FOR EVERY p > BUT NOT ON H FERNANDO FARRONI, RAFFAELLA GIOVA AND FRANÇOIS MURAT Abstract. In this note we give an example of functional

More information

ON HÖRMANDER S CONDITION FOR SINGULAR INTEGRALS

ON HÖRMANDER S CONDITION FOR SINGULAR INTEGRALS EVISTA DE LA UNIÓN MATEMÁTICA AGENTINA Volumen 45, Número 1, 2004, Páginas 7 14 ON HÖMANDE S CONDITION FO SINGULA INTEGALS M. LOENTE, M.S. IVEOS AND A. DE LA TOE 1. Introduction In this note we present

More information