Convex functions. Definition. f : R n! R is convex if dom f is a convex set and. f ( x +(1 )y) < f (x)+(1 )f (y) f ( x +(1 )y) apple f (x)+(1 )f (y)

Size: px
Start display at page:

Download "Convex functions. Definition. f : R n! R is convex if dom f is a convex set and. f ( x +(1 )y) < f (x)+(1 )f (y) f ( x +(1 )y) apple f (x)+(1 )f (y)"

Transcription

1 Convex functions I basic properties and I operations that preserve convexity I quasiconvex functions I log-concave and log-convex functions IOE 611: Nonlinear Programming, Fall Convex functions Page 3 1 Definition f : R n! R is convex if dom f is a convex set and f ( x +(1 )y) apple f (x)+(1 )f (y) for all x, y 2 dom f,0apple apple1 ments (x, f(x)) (y, f(y)) I f is concave if f is convex I f is strictly convex if dom f is convex and f ( x +(1 )y) < f (x)+(1 )f (y) for x, y 2 dom f, x 6= y, 0< < 1 IOE 611: Nonlinear Programming, Fall Convex functions Page 3 2

2 Examples on R convex: I a ne: ax + b on R, foranya, b 2 R I exponential: e ax,foranya 2 R I powers: x on R ++,for 1or apple 0 I powers of absolute value: x p on R, forp 1 I negative entropy: x log x on R ++ concave: I a ne: ax + b on R, foranya, b 2 R I powers: x on R ++,for0apple apple 1 I logarithm: log x on R ++ IOE 611: Nonlinear Programming, Fall Convex functions Page 3 3 Examples on R n and R m n a ne functions are convex and concave; all norms are convex on R n I a ne function f (x) =a T x + b I norms: kxk p =( P n i=1 x i p ) 1/p for p 1; kxk 1 =max k x k on R m n (m n matrices) I a ne function f (X )=tr(a T X )+b = mx nx A ij X ij + b i=1 j=1 I spectral (maximum singular value) norm f (X )=kx k 2 = max (X )=( max (X T X )) 1/2 IOE 611: Nonlinear Programming, Fall Convex functions Page 3 4

3 Restriction of a convex function to a line f : R n! R is convex if and only if the function g : R! R, g(t) =f (x + tv), dom g = {t x + tv 2 dom f } is convex (in t) foranyx 2 dom f, v 2 R n So, can check convexity of f by checking convexity of functions of one variable example. f : S n! R with f (X ) = log det X, dom f = S n ++ g(t) = log det(x + tv ) = log det X + log det(i + tx 1/2 VX 1/2 ) nx = log det X + log(1 + t i ) i=1 where i are the eigenvalues of X 1/2 VX 1/2 g is concave in t (for any choice of X 0, V ); hence f is concave IOE 611: Nonlinear Programming, Fall Convex functions Page 3 5 First-order condition f is di erentiable if dom f is open and the (x) rf (x) n exists at each x 2 dom f 1st-order condition: di erentiable f with convex domain is convex i f (y) f (x)+rf (x) T (y x) for all x, y 2 dom f (gradient inequality) s f(y) f(x) + f(x) T (y x) (x, f(x)) first-order approximation of f is global underestimator IOE 611: Nonlinear Programming, Fall Convex functions Page 3 6

4 Second-order conditions f is twice di erentiable if dom f is open and the Hessian r 2 f (x) 2 S n, r 2 f (x) ij f j, i, j =1,...,n, exists at each x 2 dom f 2nd-order conditions: for twice di erentiable f with convex domain I f is convex if and only if r 2 f (x) 0 for all x 2 dom f I if r 2 f (x) 0forallx 2 dom f,thenf is strictly convex IOE 611: Nonlinear Programming, Fall Convex functions Page 3 7 Examples quadratic function: f (x) =(1/2)x T Px + q T x + r (with P 2 S n ) rf (x) =Px + q, r 2 f (x) =P convex i P 0 least-squares objective: f (x) =kax bk 2 2 rf (x) =2A T (Ax b), r 2 f (x) =2A T A convex (for any A) PSfrag replacements quadratic-over-linear: f (x, y) =x 2 /y r 2 f (x, y) = 2 apple y 3 convex for y > 0 y x apple y x T 0 f(x, y) y 0 2 x 0 2 IOE Convex 611: Nonlinear functions Programming, Fall Convex functions Page

5 Examples log-sum-exp: f (x) = log P n k=1 exp x k is convex r 2 f (x) = 1 1 T z diag(z) 1 (1 T z) 2 zzt (z k =expx k ) to show r 2 f (x) 0, we must verify that v T r 2 f (x)v 0forallv: v T r 2 f (x)v = (P k z kv 2 k )(P k z k) ( P k v kz k ) 2 ( P k z k) 2 0 since ( P k v kz k ) 2 apple ( P k z kv 2 k )(P k z k) (from Cauchy-Schwarz inequality) geometric mean: f (x) =( Q n k=1 x k) 1/n on R n ++ is concave (similar proof as for log-sum-exp) IOE 611: Nonlinear Programming, Fall Convex functions Page 3 9 Sublevel set and Epigraph -sublevel set of f : R n! R: C = {x 2 dom f f (x) apple } sublevel sets of convex functions are convex (converse is false) epigraph of f : R n! R: epi f = {(x, t) 2 R n+1 x 2 dom f, f (x) apple t} epi f s f f is convex if and only if epi f is a convex set IOE 611: Nonlinear Programming, Fall Convex functions Page 3 10

6 Jensen s inequality basic inequality: if f is convex, then for 0 apple apple 1, f ( x +(1 )y) apple f (x)+(1 )f (y) extension: if f is convex, then f (E z) apple E f (z) for any random variable z s.t. P(z 2 dom f )=1 basic inequality is special case with discrete distribution prob(z = x) =, prob(z = y) =1 IOE 611: Nonlinear Programming, Fall Convex functions Page 3 11 Operations that preserve convexity practical methods for establishing convexity of a function: first, show it has convex domain; then, 1. verify definition (often simplified by restricting to a line) 2. for twice di erentiable functions, show r 2 f (x) 0 8x 2 dom f 3. show that f is obtained from simple convex functions by operations that preserve convexity I nonnegative weighted sum I composition with a ne function I pointwise maximum and supremum I composition I minimization I perspective Proofs that these operations are convexity preserving are often based on analysis of epigraphs and their convexity-preserving transformations IOE 611: Nonlinear Programming, Fall Convex functions Page 3 12

7 Positive weighted sum & composition with a ne function nonnegative multiple: f is convex if f is convex, 0 sum: f 1 + f 2 convex if f 1, f 2 convex (extends to infinite sums, integrals) composition with a ne function: f (Ax + b) is convex if f is convex I log barrier for linear inequalities f (x) = mx log(b i i=1 a T i x), dom f = {x a T i x < b i, i =1,...,m} I (any) norm of a ne function: f (x) =kax + bk IOE 611: Nonlinear Programming, Fall Convex functions Page 3 13 Pointwise maximum if f 1,...,f m are convex, then f (x) =max{f 1 (x),...,f m (x)} is convex proof: epi max{f 1 (x),...,f m (x)} = \ m i=1 epi f i I piecewise-linear function: f (x) =max i=1,...,m (a T i x + b i )is convex I sum of r largest components of x 2 R n : f (x) =x [1] + x [2] + + x [r] is convex (x [i] is ith largest component of x) proof: f (x) =max{x i1 + x i2 + + x ir 1 apple i 1 < i 2 < < i r apple n} IOE 611: Nonlinear Programming, Fall Convex functions Page 3 14

8 Pointwise supremum if f (x, y) is convex in x for each y 2 A, then is convex g(x) =supf (x, y) y2a I support function of a set C: S C (x) =sup y2c y T x is convex I distance to farthest point in a set C: f (x) =supkx y2c yk I maximum eigenvalue of symmetric matrix: for X 2 S n, max(x )= sup y T Xy kyk 2 =1 IOE 611: Nonlinear Programming, Fall Convex functions Page 3 15 Extended-value extension extended-value extension of f is f : R n! R [ {1} f (x) =f (x), x 2 dom f, f (x) =1, x 62 dom f often simplifies notation; for example, the condition 0 apple apple 1 =) f ( x +(1 )y) apple f (x)+(1 ) f (y) (as an inequality in R [ {1}), means the same as the two conditions I dom f is convex I for x, y 2 dom f, 0 apple apple 1 =) f ( x +(1 )y) apple f (x)+(1 )f (y) IOE 611: Nonlinear Programming, Fall Convex functions Page 3 16

9 Composition with scalar functions composition of g : R n! R and h : R! R: f is convex if f (x) =h(g(x)) g convex, h convex, h nondecreasing g concave, h convex, h nonincreasing I note: monotonicity must hold for extended-value extension h I proof (for n = 1, twice di erentiable g, h defined everywhere) f 00 (x) =h 00 (g(x))g 0 (x) 2 + h 0 (g(x))g 00 (x) I exp g(x) is convex if g is convex I 1/g(x) is convex if g is concave and positive IOE 611: Nonlinear Programming, Fall Convex functions Page 3 17 Vector composition composition of g : R n! R k and h : R k! R: f (x) =h(g(x)) = h(g 1 (x), g 2 (x),...,g k (x)) f is convex if g i s convex, h convex, h nondecreasing in each argument g i s concave, h convex, h nonincreasing in each argument proof (for n = 1, twice di erentiable g, h defined everywhere) f 00 (x) =g 0 (x) T r 2 h(g(x))g 0 (x)+rh(g(x)) T g 00 (x) I P m i=1 log g i(x) is concave if g i are concave and positive I log P m i=1 exp g i(x) is convex if g i are convex IOE 611: Nonlinear Programming, Fall Convex functions Page 3 18

10 Minimization if f (x, y) is convex in (x, y) andc is a convex set, then is convex g(x) = inf f (x, y) y2c I f (x, y) =x T Ax +2x T By + y T Cy with apple A B B T C 0, C 0 minimizing over y gives g(x) =inf y f (x, y) =x T (A BC 1 B T )x g is convex, hence Schur complement A BC 1 B T 0 I distance to a set: dist(x, S) =inf y2s kx convex yk is convex if S is IOE 611: Nonlinear Programming, Fall Convex functions Page 3 19 Perspective the perspective of a function f : R n! R is the function g : R n R! R: g(x, t) =tf (x/t), dom g = {(x, t) x/t 2 dom f, t > 0} g is convex if f is convex I f (x) =x T x is convex on R n ;henceg(x, t) =x T x/t is convex for t > 0 I f (x) = log x is convex of R ++ ; hence relative entropy g(x, t) =t log t t log x is convex on R 2 ++ I if f is convex, then g(x) =(c T x + d)f (Ax + b)/(c T x + d) is convex on {x c T x + d > 0, (Ax + b)/(c T x + d) 2 dom f } IOE 611: Nonlinear Programming, Fall Convex functions Page 3 20

11 Quasiconvex functions f : R n! R is quasiconvex if dom f is convex and the sublevel sets S = {x 2 dom f f (x) apple } are convex for all nts β α a b c I f is quasiconcave if f is quasiconvex I f is quasilinear if it is quasiconvex and quasiconcave IOE 611: Nonlinear Programming, Fall Convex functions Page 3 21 Examples I p x is quasiconvex on R I ceil(x) =inf{z 2 Z z I log x is quasilinear on R ++ x} is quasilinear I f (x 1, x 2 )=x 1 x 2 is quasiconcave on R 2 ++ I linear-fractional function f (x) = at x + b c T x + d, dom f = {x ct x + d > 0} is quasilinear I distance ratio f (x) = kx ak 2 kx bk 2, dom f = {x kx ak 2 applekx bk 2 } is quasiconvex IOE 611: Nonlinear Programming, Fall Convex functions Page 3 22

12 Internal rate of return I cash flow x =(x 0,...,x n ); x i is payment in period i (to us if x i > 0) I we assume x 0 < 0andx 0 + x x n > 0 I present value of cash flow x, forinterestrater: PV(x, r) = nx (1 + r) i x i i=0 I internal rate of return is smallest interest rate for which PV(x, r) = 0: IRR(x) =inf{r 0 PV(x, r) =0} IRR is quasiconcave: superlevel set is intersection of halfspaces IRR(x) R () nx (1 + r) i x i 0for0apple r apple R i=0 IOE 611: Nonlinear Programming, Fall Convex functions Page 3 23 Properties modified Jensen inequality: for quasiconvex f 0 apple apple 1 =) f ( x +(1 )y) apple max{f (x), f (y)} first-order condition: di erentiable f with convex domain is quasiconvex i f (y) apple f (x) =) rf (x) T (y x) apple 0 x f(x) s sums of quasiconvex functions are not necessarily quasiconvex IOE 611: Nonlinear Programming, Fall Convex functions Page 3 24

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

Conve functions 2{2 Conve functions f : R n! R is conve if dom f is conve and y 2 dom f 2 [0 1] + f ( + (1 ; )y) f () + (1 ; )f (y) (1) f is concave i

Conve functions 2{2 Conve functions f : R n! R is conve if dom f is conve and y 2 dom f 2 [0 1] + f ( + (1 ; )y) f () + (1 ; )f (y) (1) f is concave i ELEC-E5420 Conve functions 2{1 Lecture 2 Conve functions conve functions, epigraph simple eamples, elementary properties more eamples, more properties Jensen's inequality quasiconve, quasiconcave functions

More information

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK)

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Convex Functions Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma

More information

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3 Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is well-defined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

Unconstrained minimization: assumptions

Unconstrained minimization: assumptions Unconstrained minimization I terminology and assumptions I gradient descent method I steepest descent method I Newton s method I self-concordant functions I implementation IOE 611: Nonlinear Programming,

More information

Optimisation convexe: performance, complexité et applications.

Optimisation convexe: performance, complexité et applications. Optimisation convexe: performance, complexité et applications. Introduction, convexité, dualité. A. d Aspremont. M2 OJME: Optimisation convexe. 1/128 Today Convex optimization: introduction Course organization

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Convex Optimization. Convex Analysis - Functions

Convex Optimization. Convex Analysis - Functions Convex Optimization Convex Analsis - Functions p. 1 A function f : K R n R is convex, if K is a convex set and x, K,x, λ (,1) we have f(λx+(1 λ)) λf(x)+(1 λ)f(). (x, f(x)) (,f()) x - strictl convex,

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Lecture 1: January 12

Lecture 1: January 12 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 1: January 12 Scribes: Seo-Jin Bang, Prabhat KC, Josue Orellana 1.1 Review We begin by going through some examples and key

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

8. Conjugate functions

8. Conjugate functions L. Vandenberghe EE236C (Spring 2013-14) 8. Conjugate functions closed functions conjugate function 8-1 Closed set a set C is closed if it contains its boundary: x k C, x k x = x C operations that preserve

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

The proximal mapping

The proximal mapping The proximal mapping http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/37 1 closed function 2 Conjugate function

More information

Lecture 1: Background on Convex Analysis

Lecture 1: Background on Convex Analysis Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes

More information

Convex Optimization in Communications and Signal Processing

Convex Optimization in Communications and Signal Processing Convex Optimization in Communications and Signal Processing Prof. Dr.-Ing. Wolfgang Gerstacker 1 University of Erlangen-Nürnberg Institute for Digital Communications National Technical University of Ukraine,

More information

EE Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term

EE Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko JPL Third Term 2011-2012 Due on Thursday May 3 in class. Homework Set #4 1. (10 points) (Adapted

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 5: Convex II 6th February 2019 Convex Local Lipschitz Outline Local Lipschitz 1 / 23 Convex Local Lipschitz Convex Function: f : R n R is convex if dom(f ) is convex and for any λ [0, 1], x, y

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

Solutions Chapter 5. The problem of finding the minimum distance from the origin to a line is written as. min 1 2 kxk2. subject to Ax = b.

Solutions Chapter 5. The problem of finding the minimum distance from the origin to a line is written as. min 1 2 kxk2. subject to Ax = b. Solutions Chapter 5 SECTION 5.1 5.1.4 www Throughout this exercise we will use the fact that strong duality holds for convex quadratic problems with linear constraints (cf. Section 3.4). The problem of

More information

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form: 0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything

More information

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1

EE 546, Univ of Washington, Spring Proximal mapping. introduction. review of conjugate functions. proximal mapping. Proximal mapping 6 1 EE 546, Univ of Washington, Spring 2012 6. Proximal mapping introduction review of conjugate functions proximal mapping Proximal mapping 6 1 Proximal mapping the proximal mapping (prox-operator) of a convex

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem Exercises Basic terminology and optimality conditions 4.1 Consider the optimization problem f 0(x 1, x 2) 2x 1 + x 2 1 x 1 + 3x 2 1 x 1 0, x 2 0. Make a sketch of the feasible set. For each of the following

More information

Examples of Dual Spaces from Measure Theory

Examples of Dual Spaces from Measure Theory Chapter 9 Examples of Dual Spaces from Measure Theory We have seen that L (, A, µ) is a Banach space for any measure space (, A, µ). We will extend that concept in the following section to identify an

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008. 1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function

More information

Unconstrained minimization

Unconstrained minimization CSCI5254: Convex Optimization & Its Applications Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions 1 Unconstrained

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Static Problem Set 2 Solutions

Static Problem Set 2 Solutions Static Problem Set Solutions Jonathan Kreamer July, 0 Question (i) Let g, h be two concave functions. Is f = g + h a concave function? Prove it. Yes. Proof: Consider any two points x, x and α [0, ]. Let

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history of convex optimization 1 1 Mathematical

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics

1. Introduction. mathematical optimization. least-squares and linear programming. convex optimization. example. course goals and topics 1. Introduction Convex Optimization Boyd & Vandenberghe mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history

More information

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:

A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: 1-5: Least-squares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 Chih-Jen Lin (National

More information

WHY DUALITY? Gradient descent Newton s method Quasi-newton Conjugate gradients. No constraints. Non-differentiable ???? Constrained problems? ????

WHY DUALITY? Gradient descent Newton s method Quasi-newton Conjugate gradients. No constraints. Non-differentiable ???? Constrained problems? ???? DUALITY WHY DUALITY? No constraints f(x) Non-differentiable f(x) Gradient descent Newton s method Quasi-newton Conjugate gradients etc???? Constrained problems? f(x) subject to g(x) apple 0???? h(x) =0

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

Using Schur Complement Theorem to prove convexity of some SOC-functions

Using Schur Complement Theorem to prove convexity of some SOC-functions Journal of Nonlinear and Convex Analysis, vol. 13, no. 3, pp. 41-431, 01 Using Schur Complement Theorem to prove convexity of some SOC-functions Jein-Shan Chen 1 Department of Mathematics National Taiwan

More information

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University Determinant maximization with linear matrix inequality constraints S. Boyd, L. Vandenberghe, S.-P. Wu Information Systems Laboratory Stanford University SCCM Seminar 5 February 1996 1 MAXDET problem denition

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Chapter 13. Convex and Concave. Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44

Chapter 13. Convex and Concave. Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44 Chapter 13 Convex and Concave Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44 Monotone Function Function f is called monotonically increasing, if x 1 x 2 f (x 1 ) f (x 2 ) It

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

EE5138R: Problem Set 5 Assigned: 16/02/15 Due: 06/03/15

EE5138R: Problem Set 5 Assigned: 16/02/15 Due: 06/03/15 EE538R: Problem Set 5 Assigned: 6/0/5 Due: 06/03/5. BV Problem 4. The feasible set is the convex hull of (0, ), (0, ), (/5, /5), (, 0) and (, 0). (a) x = (/5, /5) (b) Unbounded below (c) X opt = {(0, x

More information

ECON 4117/5111 Mathematical Economics

ECON 4117/5111 Mathematical Economics Test 1 September 23, 2016 1. Suppose that p and q are logical statements. The exclusive or, denoted by p Y q, is true when only one of p and q is true. (a) Construct the truth table of p Y q. (b) Prove

More information

Monotone Function. Function f is called monotonically increasing, if. x 1 x 2 f (x 1 ) f (x 2 ) x 1 < x 2 f (x 1 ) < f (x 2 ) x 1 x 2

Monotone Function. Function f is called monotonically increasing, if. x 1 x 2 f (x 1 ) f (x 2 ) x 1 < x 2 f (x 1 ) < f (x 2 ) x 1 x 2 Monotone Function Function f is called monotonically increasing, if Chapter 3 x x 2 f (x ) f (x 2 ) It is called strictly monotonically increasing, if f (x 2) f (x ) Convex and Concave x < x 2 f (x )

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Convex Functions. Pontus Giselsson

Convex Functions. Pontus Giselsson Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum

More information

4. Convex Sets and (Quasi-)Concave Functions

4. Convex Sets and (Quasi-)Concave Functions 4. Convex Sets and (Quasi-)Concave Functions Daisuke Oyama Mathematics II April 17, 2017 Convex Sets Definition 4.1 A R N is convex if (1 α)x + αx A whenever x, x A and α [0, 1]. A R N is strictly convex

More information

EE364 Review Session 4

EE364 Review Session 4 EE364 Review Session 4 EE364 Review Outline: convex optimization examples solving quasiconvex problems by bisection exercise 4.47 1 Convex optimization problems we have seen linear programming (LP) quadratic

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu February

More information

Convex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University

Convex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University Convex Optimization 9. Unconstrained minimization Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 40 Outline Unconstrained minimization

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

Nonlinear Programming Algorithms Handout

Nonlinear Programming Algorithms Handout Nonlinear Programming Algorithms Handout Michael C. Ferris Computer Sciences Department University of Wisconsin Madison, Wisconsin 5376 September 9 1 Eigenvalues The eigenvalues of a matrix A C n n are

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Alberto Del Pia Department of Industrial and Systems Engineering & Wisconsin Institutes for Discovery, University of Wisconsin-Madison

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

Inequality Constraints

Inequality Constraints Chapter 2 Inequality Constraints 2.1 Optimality Conditions Early in multivariate calculus we learn the significance of differentiability in finding minimizers. In this section we begin our study of the

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES. Contents 1. Introduction 1 2. Convex Sets

CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES. Contents 1. Introduction 1 2. Convex Sets CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES DANIEL HENDRYCKS Abstract. This paper develops the fundamentals of convex optimization and applies them to Support Vector

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

13. Convex programming

13. Convex programming CS/ISyE/ECE 524 Introduction to Optimization Spring 2015 16 13. Convex programming Convex sets and functions Convex programs Hierarchy of complexity Example: geometric programming Laurent Lessard (www.laurentlessard.com)

More information

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Main problem of linear algebra 2: Given

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

Handout 2: Elements of Convex Analysis

Handout 2: Elements of Convex Analysis ENGG 5501: Foundations of Optimization 2018 19 First Term Handout 2: Elements of Convex Analysis Instructor: Anthony Man Cho So September 10, 2018 As briefly mentioned in Handout 1, the notion of convexity

More information

COM S 578X: Optimization for Machine Learning

COM S 578X: Optimization for Machine Learning COM S 578X: Optimization for Machine Learning Lecture Note 4: Duality Jia (Kevin) Liu Assistant Professor Department of Computer Science Iowa State University, Ames, Iowa, USA Fall 2018 JKL (CS@ISU) COM

More information

Equality constrained minimization

Equality constrained minimization Chapter 10 Equality constrained minimization 10.1 Equality constrained minimization problems In this chapter we describe methods for solving a convex optimization problem with equality constraints, minimize

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity 30C00300 Mathematical Methods for Economists (6 cr) 7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity Abolfazl Keshvari Ph.D. Aalto University School of Business

More information