Last Time: Chapter 6 Today: Chapter 7

Size: px
Start display at page:

Download "Last Time: Chapter 6 Today: Chapter 7"

Transcription

1 Last Time: Chapter 6 Today: Chapter 7 Last Time Work done by non- constant forces Work and springs Power Examples Today Poten&al Energy of gravity and springs Forces and poten&al energy func&ons Energy diagrams Examples with PE and conserva&on of energy

2 Poten/al Energy Remember Kine&c energy is the energy associated with the mo&on of an object The faster the object is moving the higher its kine&c energy. Energy can be transformed from one type to another; cannot be created nor destroyed. Poten/al Energy An energy associated with an object s posi&on. It is a stored energy that depends on an object s posi&on rela&ve to a reference point. Two main types of poten&al energy: Gravita&onal Elas&c It can be defined for any conserva&ve (path independent) force.

3 Gravita/onal poten/al energy Gravity exerts a downward force on an object Poten&al energy associated with a body s weight and height above the ground gravita&onal poten&al energy If an object moves from a height y i to a lower height y f, then the work done by gravity W grav =! F!! s = "mg(y f " y i ) = mg(y i " y f ) We define the gravita&onal poten&al energy as U grav! mgy The work done by gravity then is W grav =!"U grav If y f > y i (goes up), ΔU grav > 0 (poten&al increases), and W grav < 0 Then (takes work to push it up, gravity does nega&ve work on the object) If y f < y i (goes down), ΔU grav < 0 (poten&al decreases), and W grav < 0 Then (gravity does posi&ve work to bring object down)

4 Prelecture ques/on 1 Two balls, one having twice the mass of the other, are released from the same height. Just before hi[ng the ground, the kine&c energies of the balls are K1 and K2 respec&vely. How do K1 and K2 compare? a) K 2 = K 1 b) K 2 = 2K 1 c) K 2 = 4K 1 T. S&egler 10/08/2013 Texas A&M University

5 Gravita/onal work and poten/al For example, a ball drops a height h: The work done on the ball by gravity is posi&ve! F = mg(! ĵ) " $ d s! = (! ĵ)ds # %$ W grav = ' h 0! F & d! s = mgh The change in the poten&al energy is nega&ve because now there is less energy stored in the ball ΔU grav = - mgh In order to li` the ball back to its original height takes work: you have to supply some energy in order to replenish the poten&al Gravity does nega&ve work (takes energy away): W grav = mg(! Poten&al increases:!u grav = mg(y f " y i ) = mgh ĵ)" h( ĵ) =!mgh To go down and then up the total work done by gravity is mgh- mgh = 0, and the overall change in poten&al is - mgh + mgh = 0. These quan&&es only depend on the ini&al and final posi&ons; i.e. path independent

6 Clicker Ques/on A piece of fruit falls straight down. As it falls, A. the gravita&onal force does posi&ve work on it and the gravita&onal poten&al energy increases. B. the gravita&onal force does posi&ve work on it and the gravita&onal poten&al energy decreases. C. the gravita&onal force does nega&ve work on it and the gravita&onal poten&al energy increases. D. the gravita&onal force does nega&ve work on it and the gravita&onal poten&al energy decreases.

7 Gravity and the work energy theorem If gravity is the only force doing the work, then the work- energy theorem tells us that: W tot =!K W tot = "!U grav # $%!K = "!U Subs&tu&ng in for ΔK and ΔU grav 1 2 mv 2 f! 1 2 mv 2 i =!(mgy f! mgy i ) mgy i mv 2 i = 1 2 mv 2 f + mgy f or K i +U grav,i = K f +U grav, f = E tot (E tot is the total mechanical energy of the system) This equa&on tells us that the total mechanical energy of the system is conserved E tot = K + U grav Constant

8 Checkpoint ques/on 1 Three balls of equal mass are fired simultaneously with equal speeds from the same height h above the ground. Ball 1 is fired straight up, ball 2 is fired straight down, and ball 3 is fired horizontally. Rank in order from largest to smallest the speeds of the balls, v1, v2, and v3, just before each ball hits the ground. a) v1 > v2 > v3 b) v3 > v2 > v1 c) v2 > v3 > v1 d) v1 = v2 = v3

9 Example Conserva&on of energy A 72 kg man jumps into a pool from a 3.5 m plakorm above the water. Find his speed as he hits the water if a) He just holds his nose and drops in b) He jumps up with ini&al speed of 2.5 m/s upward c) If he runs horizontally off at 2.5 m/s Remember: K i +U i +W other = K f +U f U grav = mgy K = 1 2 mv2

10 Example Conserva&on of Energy A pendulum of mass m and length L is released from rest from a horizontal posi&on as shown. a) What is it s speed at an angle θ from the horizontal? b) What is the tension in the string at θ=90? m θ L

11 Clicker Ques/on As a rock slides from A to B along the inside of this fric&onless hemispherical bowl, mechanical energy is conserved. Why? (Ignore air resistance.) A. The bowl is hemispherical. B. The normal force is balanced by centrifugal force. C. The normal force is balanced by centripetal force. D. The normal force acts perpendicular to the bowl s surface. E. The rock s accelera&on is perpendicular to the bowl s surface.

12 Other forces that do work (like fric&on) Energy conserva&on so far has only considered the work done by gravity and its effect on the change in kine&c energy of an object. If other forces do work, we need to take those into account. If they are not posi&on dependent (i.e. non- conserva&ve) then we lump them together into W other Recall: W grav =!"U grav #% $ W tot = W other +W grav = "K&% W = W! "U = "K tot other grav K i +U grav,i +W other = K f +U grav, f If the other work is nega&ve (like fric&on), then it takes mechanical energy away from the object f i E tot < E tot If the other work is posi&ve (like an engine), it adds mechanical energy to the object E f tot > E i tot

13 Example Conserva&on of energy and work other We want to slide a 12 kg crate up a 2.5 m long ramp inclined at 30. Ignoring fric&on you calculate you can do this by giving it an ini&al speed of 5.0 m/s. But fric&on is not negligible, it only slides 1.6m up the ramp, stops, and slides back down. a) Find the magnitude of the fric&on force ac&ng on the crate, assuming its constant. b) How fast is the crate moving when it reaches the boqom? Remember: K i +U i +W other = K f +U f U grav = mgy U el = 1 2 kx2 K = 1 2 mv2 r! W! F " d r! 2 # r 1

14 Example Conserva&on of energy and work other cont. a) Find the magnitude of the fric&on force ac&ng on the crate, assuming its constant. b) How fast is the crate moving when it reaches the boqom?

15 Elas/c poten/al energy (springs) A body is elas<c if it returns to its original shape a`er being deformed. Elas<c poten<al energy is the energy stored in an elas&c body, such as a spring. If we stretch a spring, the spring does nega&ve work on the block When we go back to equilibrium the spring does posi&ve work on the block If we let W el =! 1 2 kx 2 f U el = 1 2 k(x! x 0 )2 x 0 x f Then, W el = 1 2 kx 2 f W el =!"U el x 0 x f

16 Prelecture ques/on 2 In Case 1, a mass M hangs from a ver&cal spring having spring constant k and is at rest in its equilibrium posi&on. In Case 2 the mass has been li`ed a distance D ver&cally upward. If we define the poten&al energy in Case 1 to be zero, what is the poten&al energy of Case 2? a) b) c) 1 2 kd2 MgD 1 2 kd2 + MgD

17 Checkpoint ques/on 2 A box sliding on a horizontal fric&onless surface runs into a fixed spring, compressing it a distance x 1 from its relaxed posi&on while momentarily coming to rest. If the ini&al speed of the box were doubled, how far x 2 would the spring compress? a) x 2 = (2) x 1 b) x 2 = 2 x 1 c) x 2 = 4 x 1

18 Clicker Ques/on A block aqached to a spring is oscilla&ng between point x (fully compressed) and point y (fully stretched). The spring is un- stretched at point o. At point o, which of the following quan&&es is at its maximum value? x o y a) The block s kine&c energy b) The spring s poten&al energy c) Both a) and b) d) None of the above

19 Example Springs and conserva&on of energy A 6.0kg box moving at 3.0m/s on a smooth horizontal surface runs into a light spring with a force constant of 75 N/cm. Use the work- energy theorem to find the maximum compression of the spring. v i Δx Remember: K i +U i +W other = K f +U f U el = 1 2 kx2 K = 1 2 mv2

20 Clicker Ques/on You toss a kg baseball straight upward so that it leaves your hand moving at 20.0 m/s. The ball reaches a maximum height y 2. What is the speed of the ball when it is at a height of y 2 /2? Ignore air resistance. v 2 = 0 y 2 A m/s B. less than 10.0 m/s but greater than zero C. greater than 10.0 m/s D. not enough informa&on given to decide m = kg v 1 = 20.0 m/s y 1 = 0

Classical Mechanics Lecture 8

Classical Mechanics Lecture 8 Classical Mechanics Lecture 8 Today's Concepts: a) Poten2al Energy b) Mechanical Energy Mechanics Lecture 8, Slide 1 Stuff you asked about: Gravity is the law. violators will be brought down. How were

More information

Chapter 7 Conserva.on of Energy (cont d)

Chapter 7 Conserva.on of Energy (cont d) Chapter 7 Conserva.on of Energy (cont d) Mechanical energy conserva.on Examples Work by non conserva.ve forces March 4, 2010 Recollect: Conserva.on of Energy If only conserva.ve forces are present, the

More information

Last Time: Finish Ch 5, Start Ch6 Today: Finish Ch 6

Last Time: Finish Ch 5, Start Ch6 Today: Finish Ch 6 Last Time: Finish Ch 5, Start Ch6 Today: Finish Ch 6 Monday Finish Chapter 5 o Circular mo6on o Dynamics of circular mo6on Chapter 6 o Work done by forces o Kine6c energy o Work and KE prelecture Today

More information

Chapter 7: Potential energy and energy conservation

Chapter 7: Potential energy and energy conservation Chapter 7: Potential energy and energy conservation Two types of Potential energy gravitational and elastic potential energy Conservation of total mechanical energy When What: Kinetic energy+potential

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Notices Midterm Exam Friday Feb 8 will cover stuff we do un6l today. 10 mul6ple choice + 2 problems, 2

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Karate Will not do Session 3 of Unit 8. It is a Karate thing. We will only mark Session 2 of unit 8. You

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 UNIT 10: WORK AND ENERGY Approximate Classroom Time: Three 100 minute sessions Today s Concepts: Work & Kine6c Energy ES "Knowing is not enough; we must apply. Willing is

More information

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls?

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls? Chapter 7: Energy Consider dropping a ball. Why does the ball s speed increase as it falls? Viewpoint #1: Force of gravity causes acceleration which causes velocity to change. Viewpoint #2: Force of gravity

More information

Classical Mechanics Lecture 8

Classical Mechanics Lecture 8 Classical Mechanics Lecture 8 Name St.No. - Date(YY/MM/DD) / / Section Today's Concepts: a) Poten)al Energy b) Mechanical Energy UNIT 11: ENERGY CONSERVATION Approximate Classroom Time: Two 100 minute

More information

Chapter 8 Conservation of Energy

Chapter 8 Conservation of Energy Chapter 8 Conservation of Energy 8.1: Analysis Model : Nonisolated System (Energy) 8.2: Analysis Model: Isolated System (Energy) 8.3: Situations Involving Kinetic Friction 8.4: Changes in Mechanical Energy

More information

Chapter 11. Today. Last Wednesday. Precession from Pre- lecture. Solving problems with torque

Chapter 11. Today. Last Wednesday. Precession from Pre- lecture. Solving problems with torque Chapter 11 Last Wednesday Solving problems with torque Work and power with torque Angular momentum Conserva5on of angular momentum Today Precession from Pre- lecture Study the condi5ons for equilibrium

More information

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Monday Ch 9 examples Rota:on of a rigid body Torque and angular accelera:on Today Solving problems with torque Work and power with torque Angular momentum

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Physics 211 Spring 2014 Final Practice Exam

Physics 211 Spring 2014 Final Practice Exam Physics 211 Spring 2014 Final Practice Exam This exam is closed book and notes. A formula sheet will be provided for you at the end of the final exam you can download a copy for the practice exam from

More information

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs)

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Exam 1 scores posted on Canvas: Ø Announcements If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Ø Must return regrade forms before next Wednesday, October

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

October 24, 2014 LB273 Prof. Vash9 Sawtelle. Today s Topics: Energy. Comic: Baldo, Carlos Castellanos

October 24, 2014 LB273 Prof. Vash9 Sawtelle. Today s Topics: Energy. Comic: Baldo, Carlos Castellanos October 24, 2014 LB273 Prof. Vash9 Sawtelle Today s Topics: Energy Comic: Baldo, Carlos Castellanos Announcements Homework Ch 9 &10 due tonight midnight Exam 2 on Monday Exam correc9on problem due on Wednesday

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

Electricity & Magnetism Lecture 5: Electric Potential Energy

Electricity & Magnetism Lecture 5: Electric Potential Energy Electricity & Magnetism Lecture 5: Electric Potential Energy Today... Ø Ø Electric Poten1al Energy Unit 21 session Gravita1onal and Electrical PE Electricity & Magne/sm Lecture 5, Slide 1 Stuff you asked

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Classical Mechanics Lecture 9

Classical Mechanics Lecture 9 Classical Mechanics Lecture 9 Today's Concepts: a) Energy and Fric6on b) Poten6al energy & force Mechanics Lecture 9, Slide 1 Some comments about the course Spring examples with numbers Bring out a spring!

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Today's goal: I can explain and apply concepts of work and energy (3U) to real world applicaons.

Today's goal: I can explain and apply concepts of work and energy (3U) to real world applicaons. Lesson21.notebook September 17, 2013 Work and Energy A 3U Review Today's goal: I can explain and apply concepts of work and energy (3U) to real world applicaons. What is Work? How do we calculate it? Example:

More information

University of Colorado, Boulder, 2004 CT8-3

University of Colorado, Boulder, 2004 CT8-3 University of Colorado, Boulder, 2004 CT8-3 A hockey puck slides without friction along a frozen lake toward an ice ramp and plateau as shown. The speed of the puck is 4m/s and the height of the plateau

More information

Classical Mechanics Lecture 5

Classical Mechanics Lecture 5 Classical Mechanics Lecture 5 Today s Concepts: a) Free Body Diagrams b) Force due to strings c) Force due to springs d) Force due to gravity Mechanics Lecture 5, Slide 1 Stuff you asked about:! the change

More information

Raymond A. Serway Chris Vuille. Chapter Seven. Rota9onal Mo9on and The Law of Gravity

Raymond A. Serway Chris Vuille. Chapter Seven. Rota9onal Mo9on and The Law of Gravity Raymond A. Serway Chris Vuille Chapter Seven Rota9onal Mo9on and The Law of Gravity Rota9onal Mo9on An important part of everyday life Mo9on of the Earth Rota9ng wheels Angular mo9on Expressed in terms

More information

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

PHYSICS - CLUTCH CH 07: WORK & ENERGY. !! www.clutchprep.com INTRO TO ENERGY & ENERGY FORMS ENERGY: A physical quantity without a precise definition. We don't know exactly WHAT it is, but we know HOW it works. - Energy "exists" in many forms;

More information

If rigid body = few particles I = m i. If rigid body = too-many-to-count particles I = I COM. KE rot. = 1 2 Iω 2

If rigid body = few particles I = m i. If rigid body = too-many-to-count particles I = I COM. KE rot. = 1 2 Iω 2 2 If rigid body = few particles I = m i r i If rigid body = too-many-to-count particles Sum Integral Parallel Axis Theorem I = I COM + Mh 2 Energy of rota,onal mo,on KE rot = 1 2 Iω 2 [ KE trans = 1 2

More information

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010 PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In

More information

New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/

New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/ Important Informa+on Instructor: Dr. Ty S(egler Office: ENPH 211 (Office Hours TBD) Email: tyana@physics.tamu.edu New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

Review for Exam 2. Exam Informa+on 11/24/14 Monday 7:30 PM All Sec+ons à MPHY 205 (this room, 30 min a.er class ends) Dura+on à 1 hour 15 min

Review for Exam 2. Exam Informa+on 11/24/14 Monday 7:30 PM All Sec+ons à MPHY 205 (this room, 30 min a.er class ends) Dura+on à 1 hour 15 min Review for Exam 2 Exam Informa+on 11/24/14 Monday 7:30 PM All Sec+ons 505-509 à MPHY 205 (this room, 30 min a.er class ends) Dura+on à 1 hour 15 min Ø Know your instructor s name (S+egler) and your sec+on

More information

Physics 1 Second Midterm Exam (AM) 2/25/2010

Physics 1 Second Midterm Exam (AM) 2/25/2010 Physics Second Midterm Eam (AM) /5/00. (This problem is worth 40 points.) A roller coaster car of m travels around a vertical loop of radius R. There is no friction and no air resistance. At the top of

More information

Physics x141 Practice Final Exam

Physics x141 Practice Final Exam Physics x141 Practice Final Exam Name: Partial credit will be awarded. However, you must show/explain your work. A correct answer without explanatory material will not receive full credit. Clearly indicate

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

In-Class Problems 20-21: Work and Kinetic Energy Solutions

In-Class Problems 20-21: Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 In-Class Problems 20-21: Work and Kinetic Energy Solutions In-Class-Problem 20 Calculating Work Integrals a) Work

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Chapter 8. Potential Energy and Energy Conservation

Chapter 8. Potential Energy and Energy Conservation Chapter 8. Potential Energy and Energy Conservation Introduction In Ch 7 Work- Energy theorem. We learnt that total work done on an object translates to change in it s Kinetic Energy In Ch 8 we will consider

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

ω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r

ω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r θ (t) ( θ 1 ) Δ θ = θ 2 s = θ r ω (t) = d θ (t) dt v = d θ dt r = ω r v = ω r α (t) = d ω (t) dt = d 2 θ (t) dt 2 a tot 2 = a r 2 + a t 2 = ω 2 r 2 + αr 2 a tot = a t + a r = a r ω ω r a t = α r ( ) Rota%onal

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Impulse and momentum 09-2 1 Current assignments Reading: Chapter 10 in textbook Prelecture due next Tuesday HW#8 due this Friday at 5 pm. 09-2 2 9-2.1 A crash

More information

Classical Mechanics Lecture 13

Classical Mechanics Lecture 13 Classical Mechanics Lecture 13 Today s Concepts: a) More on Elas5c Collisions b) Average Force during Collisions Mechanics Lecture 13, Slide 1 Your comments: good I'd like to go over the energy of a system

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Classical Mechanics Lecture 21

Classical Mechanics Lecture 21 Classical Mechanics Lecture 21 Today s Concept: Simple Harmonic Mo7on: Mass on a Spring Mechanics Lecture 21, Slide 1 The Mechanical Universe, Episode 20: Harmonic Motion http://www.learner.org/vod/login.html?pid=565

More information

Chapter 5/6: Newton s Laws Review

Chapter 5/6: Newton s Laws Review Chapter 5/6: Newton s Laws Review ConcepTest 5.1a Newton s First Law I A book is lying at rest on a table. The book will remain there at rest because: 1) there is a net force but the book has too much

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2.

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2. . Two objects are connected by a light string passing over a light frictionless pulley as in Figure P8.3. The object of mass m is released from rest at height h. Using the principle of conservation of

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

Chapter 8. Potential Energy

Chapter 8. Potential Energy Chapter 8 Potential Energy CHAPTER OUTLINE 8. Potential Energy of a System 8.2 The Isolated System Conservation of Mechanical Energy 8.3 Conservative and Nonconservative Forces 8.4 Changes in Mechanical

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

University of Houston Mathematics Contest: Physics Exam 2017

University of Houston Mathematics Contest: Physics Exam 2017 Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Exam 3 Results !"#$%&%'()*+(,-./0% 123+#435%%6789:% Approximate Grade Cutoffs Ø A Ø B Ø C Ø D Ø 0 24 F

Exam 3 Results !#$%&%'()*+(,-./0% 123+#435%%6789:% Approximate Grade Cutoffs Ø A Ø B Ø C Ø D Ø 0 24 F Exam 3 Results Approximate Grade Cutos Ø 75-1 A Ø 55 74 B Ø 35 54 C Ø 5 34 D Ø 4 F '$!" '#!" '!!" &!" %!" $!" #!"!"!"#$%&%'()*+(,-./% 13+#435%%6789:%!()" )('!" '!(')" ')(#!" #!(#)" #)(*!" *!(*)" *)($!"

More information

Physics 231 Lecture 12

Physics 231 Lecture 12 Physics 31 Lecture 1 Work energy theorem W Potential energy o gravity: ΔPE total = = PE KE PE KE 0 mg Conservation o energy ( y ) 0 y 0 E = KE + PE = KE 0 + PE 0 Potential energy o a spring = PE = 1 kx

More information

Lecture 16: Rotational Dynamics

Lecture 16: Rotational Dynamics Lecture 6: otational Dynamics Today s Concepts: a) olling Kine6c Energy b) Angular Accelera6on Mechanics Lecture 6, Slide I felt like every slide just had a ton of equa6ons just being used to find new

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

You are responsible for recording your 9 digit PSU Student ID on your scantron form

You are responsible for recording your 9 digit PSU Student ID on your scantron form Tuesday, July 28; 9:35AM 10:50AM in 273 Willard 20 Mul=ple Choice Ques=ons See Folder in Exam Resources Midterm 2 Informa=on You are responsible for recording your 9 digit PSU Student ID on your scantron

More information

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)]

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Physics 17 Part F Potential Energy U = mgh Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Re-written: ½ mv 2 + mgh = ½ mvo 2 + mgho Ko

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

Chapter 5. Work and Energy. continued

Chapter 5. Work and Energy. continued Chapter 5 Work and Energy continued 5.2 Work on a Spring & Work by a Spring HOOKE S LAW Force Required to Distort an Ideal Spring The force applied to an ideal spring is proportional to the displacement

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

Physics 231 Lecture 9

Physics 231 Lecture 9 Physics 31 Lecture 9 Mi Main points o today s lecture: Potential energy: ΔPE = PE PE = mg ( y ) 0 y 0 Conservation o energy E = KE + PE = KE 0 + PE 0 Reading Quiz 3. I you raise an object to a greater

More information

Electricity & Magnetism Lecture 5: Electric Potential Energy

Electricity & Magnetism Lecture 5: Electric Potential Energy Electricity & Magnetism Lecture 5: Electric Potential Energy Toay... Ø Ø Electric Poten1al Energy Unit 21 session Gravita1onal an Electrical PE Electricity & Magne/sm Lecture 5, Slie 1 Stuff you aske about:

More information

Chapter 6 Part 1 Momentum and Impulse. St. Augus:ne Preparatory School October 24, 2016

Chapter 6 Part 1 Momentum and Impulse. St. Augus:ne Preparatory School October 24, 2016 Chapter 6 Part 1 Momentum and Impulse St. Augus:ne Preparatory School October 24, 2016 Momentum Momentum is a vector quan:ty and can be defined as the quan)ty of mo)on of a moving body, measured as a product

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 10 Page 1 of 37 Midterm I summary 100 90 80 70 60 50 40 30 20 39 43 56 28 11 5 3 0 1 Average: 82.00 Page

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Chapter 8 Conservation of Energy. Copyright 2009 Pearson Education, Inc.

Chapter 8 Conservation of Energy. Copyright 2009 Pearson Education, Inc. Chapter 8 Conservation of Energy Units of Chapter 8 Conservative and Nonconservative Forces Potential Energy Mechanical Energy and Its Conservation Problem Solving Using Conservation of Mechanical Energy

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

PHYSICS 149: Lecture 17

PHYSICS 149: Lecture 17 PHYSICS 149: Lecture 17 Chapter 6: Conservation of Energy 6.7 Elastic Potential Energy 6.8 Power Chapter 7: Linear Momentum 7.1 A Vector Conservation Law 7. Momentum Lecture 17 Purdue University, Physics

More information

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket. Ch 11 ENERGY and its CONSERVATION 11.1 The Many Forms of Energy work causes a change in the energy of a system W = KE (an increase or decrease in KE) work energy theorem object + work object work increase

More information

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. K = K f K i = 1 2 mv 2 f rf = v v F dr Consider a vertical spring oscillating with mass m attached

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!!

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!! ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM' Name: CWID: Lab'section'(circle'one):' 6(W3pm) 8(W7pm) Multiplechoice: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Shortanswer: 16. 17. 18. 19. 20. 5(R7pm)

More information

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!!

ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM'! Name:!!!CWID:!!! Lab'section'(circle'one):' 6!(W!3pm)! 8!(W!7pm)!!! ANSWER'SHEET' 'STAPLE'TO'FRONT'OF'EXAM' Name: CWID: Lab'section'(circle'one):' 6(W3pm) 8(W7pm) Multiplechoice: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Shortanswer: 16. 17. 18. 19. 20. 5(R7pm)

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Classical Mechanics Lecture 13

Classical Mechanics Lecture 13 Classical Mechanics Lecture 13 Today s Concepts: a) More on Elas5c Collisions b) Average Force during Collisions Mechanics Lecture 13, Slide 1 Your comments: This section was pretty good. Easy to understand.

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night.

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. Work and kinetic energy LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. 1 Work I apply a force of 2N in the x direction to an object that moves 5m in x. How much work have I done

More information