Nonlinear Dynamics: Synchronisation

Size: px
Start display at page:

Download "Nonlinear Dynamics: Synchronisation"

Transcription

1 Nonlinear Dynamics: Synchronisation Bristol Centre for Complexity Sciences Ian Ross BRIDGE, School of Geographical Sciences, University of Bristol October 19, / 16

2 I: Introduction 2 / 16

3 I: Fireflies FIREFLY MOVIE HERE From The Trials of Life, copyright BBC (1990). 3 / 16

4 I: Applause APPLAUSE SOUND CLIP HERE From Clappers: A History of Applause, copyright BBC (2003). 4 / 16

5 I: Other examples Circadian rhythms Wing/respiration frequency of birds in flight Gait/breathing when running Muscular contractions in mammalian intestine Belousov-Zhabotinskii reaction 5 / 16

6 II: A basic example fireflies 6 / 16

7 II: Vector fields on the circle The state space Most basic abstraction of an oscillation Ignore amplitude of oscillations and concentrate on phase State space is the circle, S 1 States are parameterised by the angle θ mod 2π 7 / 16

8 II: Vector fields on the circle The setup We have a continuous-time dynamical system in the form of a one-dimensional ODE: dθ dt = f (θ). We need f (θ + 2π) = f (θ) for single-valuedness and smoothness. ON OFF 7 / 16

9 II: Vector fields on the circle A simple example dθ dt = sin θ Equilibria at f (θ ) = sin θ = 0, i.e. at θ = 0 and θ = π. The stability of the equilibria can be determined as: df df dθ > 0 θ=0 dθ < 0 θ=π unstable stable θ * = π θ * = 0 7 / 16

10 II: Vector fields on the circle Uniform oscillator dθ dt = ω with ω a constant. This has solution θ(t) = θ(0) + ωt and the period of the oscillation is T = 2π ω. 7 / 16

11 II: Vector fields on the circle Non-uniform oscillator dθ dt = ω a sin θ For a = 0, this is just the uniform oscillator. Putting a 0 introduces a non-uniformity into the flow. dθ/dt a < ω SLOW θ FAST 7 / 16

12 II: Vector fields on the circle Non-uniform oscillator dθ dt = ω a sin θ For a = 0, this is just the uniform oscillator. Putting a 0 introduces a non-uniformity into the flow. dθ/dt a = ω θ 7 / 16

13 II: Vector fields on the circle Non-uniform oscillator dθ dt = ω a sin θ For a = 0, this is just the uniform oscillator. Putting a 0 introduces a non-uniformity into the flow. dθ/dt a > ω θ * 2 θ * 1 θ * 1 θ * 2 θ 7 / 16

14 II: Vector fields on the circle Non-uniform oscillator dθ dt = ω a sin θ For a = 0, this is just the uniform oscillator. Putting a 0 introduces a non-uniformity into the flow. T T = 2π ω 2 a 2 2π/ω ω a 7 / 16

15 II: Firefly phenomonology Experimental results 770 ms 750 ms Interval (ms) Time (s) Ermentrout & Rinzel (1984), Am. J. Physiol. 246, R / 16

16 II: Firefly phenomonology Experimental results Forcing period: 770 ms Probability Phase (φ/2π) Ermentrout & Rinzel (1984), Am. J. Physiol. 246, R / 16

17 II: Firefly phenomonology Experimental results Forcing period: 750 ms Probability Phase (φ/2π) Ermentrout & Rinzel (1984), Am. J. Physiol. 246, R / 16

18 II: Firefly phenomonology Interpretation Fireflies flash at a natural interval of about 0.9 s. There is a weak coupling between different fireflies. Entrainment is possible when f drive f natural, where f drive is the driving frequency and f natural the natural frequency. For a given f = f drive f natural, we can find the frequency difference in the coupled system, F for f < δ crit, F = 0. 8 / 16

19 II: Firefly model A simple model 1 Call the firefly phase θ(t), with a flash occurring when θ = 0. The unforced system has dθ/dt = ω. Call the phase of the stimulus Θ, with dθ/dt = Ω and with a flash occurring when Θ = 0. If the stimulus is ahead of the natural cycle, the firefly speeds up. If the stimulus is behind the natural cycle, the firefly slows down. Model this as dθ = ω + A sin(θ θ) dt with A > 0, implying that if Θ is ahead of θ, i.e. 0 < Θ θ < π, the firefly speeds up (dθ/dt > ω). 9 / 16

20 II: Firefly model A simple model 2 Consider the phase shift between the stimulus and the firefly, φ = Θ θ. Then dφ dt = dθ dt dθ = Ω ω A sin φ. dt Putting τ = At, µ = (Ω ω)/a, this gives a non-uniform oscillator as we examined before: dφ = µ sin φ. dτ The parameter µ measures the frequency difference as compared to the restoring strength A for small µ, we expect entrainment. 9 / 16

21 II: Firefly model Results dφ/dτ φ µ = 0 φ = 0 lim t φ = 0 Here, the firefly eventually synchronises to the stimulus exactly, with zero phase difference. 9 / 16

22 II: Firefly model Results dφ/dτ φ 0 < µ < 1 φ > 0 lim t φ = φ = non-zero constant Here, there is also entrainment, but with a non-zero phase different the firefly lags behind the stimulus. 9 / 16

23 II: Firefly model Results dφ/dτ φ µ > 1 No φ lim t φ does not exist Here, there is no entrainment, but a continuous drift in the phase difference between the stimulus and the firefly. 9 / 16

24 II: Firefly model Predictions 1. Entrainment will occur for a range of driving frequencies given by ω A Ω ω + A, with continuous phase drift outside this range. 2. For any Ω where entrainment is possible, the phase shift between the stimulus and the firefly will be given by sin φ = Ω ω A. Both of these predictions could be tested experimentally. Real fireflies are a bit more complicated than this. Our model is good for some species (e.g. Pteroptyx cribellata), but others are able to alter their natural frequency ω and this requires a more complex model (e.g. Pteroptyx malaccae). 9 / 16

25 III: Some theory 10 / 16

26 III: Self-sustained oscillations Periodic solutions In our firefly example, we abstracted the periodic solution to a simple phase oscillator this can be done in the general case as well. Synchronisation relies on the existence of self-sustained oscillations. 11 / 16

27 III: Self-sustained oscillations Stable periodic orbits are exponentially attracting Periodic solutions of dynamical systems can be stable or unstable, just as for equilibrium points. A stable periodic orbit (or limit cycle) exponentially attracts nearby trajectories. 11 / 16

28 III: Persistence of phase perturbations Perturbations Perturb by ( ρ, φ) Exponential attraction: ρ 0 Phase perturbation, φ, persists Easy to modify phase synchronisation Zero Lyapunov exponent along the orbit 12 / 16

29 IV: Generalisations Mutual synchronisation of two oscillators Collective synchronisation of globally coupled oscillators Fractional resonances Synchronisation of chaotic systems Extended media 13 / 16

30 V: Noise and synchronisation 14 / 16

31 V: Stochastic resonance example system STOCHASTIC RESONANCE MOVIE HERE 15 / 16

32 V: Stochastic resonance example system Timestep 15 / 16

33 V: Stochastic resonance Dansgaard-Oeschger events Results with purely stochastic forcing A. Ganopolski & S. Rahmstorf (2002), Phys. Rev. Lett. 88(3), art. no / 16

34 V: Stochastic resonance Dansgaard-Oeschger events Results with combined stochastic and periodic forcing A. Ganopolski & S. Rahmstorf (2002), Phys. Rev. Lett. 88(3), art. no / 16

Synchronization and Phase Oscillators

Synchronization and Phase Oscillators 1 Synchronization and Phase Oscillators Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Synchronization

More information

Firefly Synchronization

Firefly Synchronization Firefly Synchronization Hope Runyeon May 3, 2006 Imagine an entire tree or hillside of thousands of fireflies flashing on and off all at once. Very few people have been fortunate enough to see this synchronization

More information

Nonlinear systems, chaos and control in Engineering

Nonlinear systems, chaos and control in Engineering Nonlinear systems, chaos and control in Engineering Module 1 block 3 One-dimensional nonlinear systems Cristina Masoller Cristina.masoller@upc.edu http://www.fisica.edu.uy/~cris/ Schedule Flows on the

More information

Phase Oscillators. and at r, Hence, the limit cycle at r = r is stable if and only if Λ (r ) < 0.

Phase Oscillators. and at r, Hence, the limit cycle at r = r is stable if and only if Λ (r ) < 0. 1 Phase Oscillators Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 2 Phase Oscillators Oscillations

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

An analysis of how coupling parameters influence nonlinear oscillator synchronization

An analysis of how coupling parameters influence nonlinear oscillator synchronization An analysis of how coupling parameters influence nonlinear oscillator synchronization Morris Huang, 1 Ben McInroe, 2 Mark Kingsbury, 2 and Will Wagstaff 3 1) School of Mechanical Engineering, Georgia Institute

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Firefly Synchronization. Morris Huang, Mark Kingsbury, Ben McInroe, Will Wagstaff

Firefly Synchronization. Morris Huang, Mark Kingsbury, Ben McInroe, Will Wagstaff Firefly Synchronization Morris Huang, Mark Kingsbury, Ben McInroe, Will Wagstaff Biological Inspiration Why do fireflies flash? Mating purposes Males flash to attract the attention of nearby females Why

More information

Entrainment Alex Bowie April 7, 2004

Entrainment Alex Bowie April 7, 2004 Entrainment Alex Bowie April 7, 2004 Abstract The driven Van der Pol oscillator displays entrainment, quasiperiodicity, and chaos. The characteristics of these different modes are discussed as well as

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Hysteretic Transitions in the Kuramoto Model with Inertia

Hysteretic Transitions in the Kuramoto Model with Inertia Rostock 4 p. Hysteretic Transitions in the uramoto Model with Inertia A. Torcini, S. Olmi, A. Navas, S. Boccaletti http://neuro.fi.isc.cnr.it/ Istituto dei Sistemi Complessi - CNR - Firenze, Italy Istituto

More information

Stabilization of Hyperbolic Chaos by the Pyragas Method

Stabilization of Hyperbolic Chaos by the Pyragas Method Journal of Mathematics and System Science 4 (014) 755-76 D DAVID PUBLISHING Stabilization of Hyperbolic Chaos by the Pyragas Method Sergey Belyakin, Arsen Dzanoev, Sergey Kuznetsov Physics Faculty, Moscow

More information

Physics 235 Chapter 4. Chapter 4 Non-Linear Oscillations and Chaos

Physics 235 Chapter 4. Chapter 4 Non-Linear Oscillations and Chaos Chapter 4 Non-Linear Oscillations and Chaos Non-Linear Differential Equations Up to now we have considered differential equations with terms that are proportional to the acceleration, the velocity, and

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Dynamical modelling of systems of coupled oscillators

Dynamical modelling of systems of coupled oscillators Dynamical modelling of systems of coupled oscillators Mathematical Neuroscience Network Training Workshop Edinburgh Peter Ashwin University of Exeter 22nd March 2009 Peter Ashwin (University of Exeter)

More information

Modelling biological oscillations

Modelling biological oscillations Modelling biological oscillations Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Outline Outline of Topics Van der Pol equation Van

More information

Stability of Dynamical systems

Stability of Dynamical systems Stability of Dynamical systems Stability Isolated equilibria Classification of Isolated Equilibria Attractor and Repeller Almost linear systems Jacobian Matrix Stability Consider an autonomous system u

More information

Addendum: Lyapunov Exponent Calculation

Addendum: Lyapunov Exponent Calculation Addendum: Lyapunov Exponent Calculation Experiment CP-Ly Equations of Motion The system phase u is written in vector notation as θ u = (1) φ The equation of motion can be expressed compactly using the

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

Lecture V : Oscillatory motion and spectral analysis

Lecture V : Oscillatory motion and spectral analysis Lecture V : Oscillatory motion and spectral analysis I. IDEAL PENDULUM AND STABILITY ANALYSIS Let us remind ourselves of the equation of motion for the pendulum. Remembering that the external torque applied

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Damped & forced oscillators

Damped & forced oscillators SEISMOLOGY I Laurea Magistralis in Physics of the Earth and of the Environment Damped & forced oscillators Fabio ROMANELLI Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it Damped

More information

Rotational Number Approach to a Damped Pendulum under Parametric Forcing

Rotational Number Approach to a Damped Pendulum under Parametric Forcing Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 518 522 Rotational Number Approach to a Damped Pendulum under Parametric Forcing Eun-Ah Kim and K.-C. Lee Department of Physics,

More information

Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators

Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators Will Wagstaff School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated: 13 December

More information

PH 120 Project # 2: Pendulum and chaos

PH 120 Project # 2: Pendulum and chaos PH 120 Project # 2: Pendulum and chaos Due: Friday, January 16, 2004 In PH109, you studied a simple pendulum, which is an effectively massless rod of length l that is fixed at one end with a small mass

More information

Effect of various periodic forces on Duffing oscillator

Effect of various periodic forces on Duffing oscillator PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 351 356 Effect of various periodic forces on Duffing oscillator V RAVICHANDRAN 1, V CHINNATHAMBI 1, and S RAJASEKAR

More information

1. Introduction - Reproducibility of a Neuron. 3. Introduction Phase Response Curve. 2. Introduction - Stochastic synchronization. θ 1. c θ.

1. Introduction - Reproducibility of a Neuron. 3. Introduction Phase Response Curve. 2. Introduction - Stochastic synchronization. θ 1. c θ. . Introduction - Reproducibility of a euron Science (995 Constant stimuli led to imprecise spike trains, whereas stimuli with fluctuations produced spike trains with timing reproducible to less than millisecond.

More information

Nonlinear Oscillators: Free Response

Nonlinear Oscillators: Free Response 20 Nonlinear Oscillators: Free Response Tools Used in Lab 20 Pendulums To the Instructor: This lab is just an introduction to the nonlinear phase portraits, but the connection between phase portraits and

More information

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability Journal of Physics: Conference Series PAPER OPEN ACCESS Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability To cite this article: Anastasiya V Pimenova and Denis S Goldobin 2016

More information

Entrainment and Chaos in the Hodgkin-Huxley Oscillator

Entrainment and Chaos in the Hodgkin-Huxley Oscillator Entrainment and Chaos in the Hodgkin-Huxley Oscillator Kevin K. Lin http://www.cims.nyu.edu/ klin Courant Institute, New York University Mostly Biomath - 2005.4.5 p.1/42 Overview (1) Goal: Show that the

More information

A conjecture on sustained oscillations for a closed-loop heat equation

A conjecture on sustained oscillations for a closed-loop heat equation A conjecture on sustained oscillations for a closed-loop heat equation C.I. Byrnes, D.S. Gilliam Abstract The conjecture in this paper represents an initial step aimed toward understanding and shaping

More information

2:2:1 Resonance in the Quasiperiodic Mathieu Equation

2:2:1 Resonance in the Quasiperiodic Mathieu Equation Nonlinear Dynamics 31: 367 374, 003. 003 Kluwer Academic Publishers. Printed in the Netherlands. ::1 Resonance in the Quasiperiodic Mathieu Equation RICHARD RAND Department of Theoretical and Applied Mechanics,

More information

Controlling chaotic transport in Hamiltonian systems

Controlling chaotic transport in Hamiltonian systems Controlling chaotic transport in Hamiltonian systems Guido Ciraolo Facoltà di Ingegneria, Università di Firenze via S. Marta, I-50129 Firenze, Italy Cristel Chandre, Ricardo Lima, Michel Vittot CPT-CNRS,

More information

The Nonlinear Pendulum

The Nonlinear Pendulum The Nonlinear Pendulum Evan Sheridan 11367741 Feburary 18th 013 Abstract Both the non-linear linear pendulum are investigated compared using the pendulum.c program that utilizes the trapezoid method for

More information

Transitioning to Chaos in a Simple Mechanical Oscillator

Transitioning to Chaos in a Simple Mechanical Oscillator Transitioning to Chaos in a Simple Mechanical Oscillator Hwan Bae Physics Department, The College of Wooster, Wooster, Ohio 69, USA (Dated: May 9, 8) We vary the magnetic damping, driver frequency, and

More information

Mechanical Resonance and Chaos

Mechanical Resonance and Chaos Mechanical Resonance and Chaos You will use the apparatus in Figure 1 to investigate regimes of increasing complexity. Figure 1. The rotary pendulum (from DeSerio, www.phys.ufl.edu/courses/phy483l/group_iv/chaos/chaos.pdf).

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) 8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) So far we have seen some different possibilities of what can happen in two-dimensional systems (local and global attractors and bifurcations)

More information

DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS

DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS Proceedings of IDETC/CIE 2005 ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference September 24-28, 2005, Long Beach, California USA DETC2005-84017

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

CDS 101 Precourse Phase Plane Analysis and Stability

CDS 101 Precourse Phase Plane Analysis and Stability CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok Control and Dynamical Systems California Institute of Technology Pasadena, CA, 26 September, 2002. mleok@cds.caltech.edu http://www.cds.caltech.edu/

More information

arxiv:nlin/ v1 [nlin.cd] 4 Oct 2005

arxiv:nlin/ v1 [nlin.cd] 4 Oct 2005 Synchronization of Coupled Chaotic Dynamics on Networks R. E. Amritkar and Sarika Jalan Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India. arxiv:nlin/0510008v1 [nlin.cd] 4 Oct 2005 Abstract

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

= w. These evolve with time yielding the

= w. These evolve with time yielding the 1 Analytical prediction and representation of chaos. Michail Zak a Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 91109, USA Abstract. 1. Introduction The concept of randomness

More information

Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts. (1) It induces a dipole moment in the atom or molecule.

Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts. (1) It induces a dipole moment in the atom or molecule. Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts Absorption and Dispersion v E * of light waves has two effects on a molecule or atom. (1) It induces a dipole moment in the atom

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

A Model of Evolutionary Dynamics with Quasiperiodic Forcing

A Model of Evolutionary Dynamics with Quasiperiodic Forcing paper presented at Society for Experimental Mechanics (SEM) IMAC XXXIII Conference on Structural Dynamics February 2-5, 205, Orlando FL A Model of Evolutionary Dynamics with Quasiperiodic Forcing Elizabeth

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

Midterm EXAM PHYS 401 (Spring 2012), 03/20/12

Midterm EXAM PHYS 401 (Spring 2012), 03/20/12 Midterm EXAM PHYS 401 (Spring 2012), 03/20/12 Name: Signature: Duration: 75 minutes Show all your work for full/partial credit! In taking this exam you confirm to adhere to the Aggie Honor Code: An Aggie

More information

Stability of Nonlinear Systems An Introduction

Stability of Nonlinear Systems An Introduction Stability of Nonlinear Systems An Introduction Michael Baldea Department of Chemical Engineering The University of Texas at Austin April 3, 2012 The Concept of Stability Consider the generic nonlinear

More information

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Exam 3 results Class Average - 57 (Approximate grade

More information

Common noise vs Coupling in Oscillator Populations

Common noise vs Coupling in Oscillator Populations Common noise vs Coupling in Oscillator Populations A. Pimenova, D. Goldobin, M. Rosenblum, and A. Pikovsky Institute of Continuous Media Mechanics UB RAS, Perm, Russia Institut for Physics and Astronomy,

More information

By Nadha CHAOS THEORY

By Nadha CHAOS THEORY By Nadha CHAOS THEORY What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with

More information

Lab 1: Damped, Driven Harmonic Oscillator

Lab 1: Damped, Driven Harmonic Oscillator 1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Mean-Motion Resonance and Formation of Kirkwood Gaps

Mean-Motion Resonance and Formation of Kirkwood Gaps Yan Wang Project 1 PHYS 527 October 13, 2008 Mean-Motion Resonance and Formation of Kirkwood Gaps Introduction A histogram of the number of asteroids versus their distance from the Sun shows some distinct

More information

From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys

From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys From Last Time Gravitational forces are apparent at a wide range of scales. Obeys F gravity (Mass of object 1) (Mass of object 2) square of distance between them F = 6.7 10-11 m 1 m 2 d 2 Gravitational

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION

CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION CANARDS AND HORSESHOES IN THE FORCED VAN DER POL EQUATION WARREN WECKESSER Department of Mathematics Colgate University Hamilton, NY 3346 E-mail: wweckesser@mail.colgate.edu Cartwright and Littlewood discovered

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology The Lorenz system Edward Lorenz Professor of Meteorology at the Massachusetts Institute of Technology In 1963 derived a three dimensional system in efforts to model long range predictions for the weather

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

More information

Point Vortex Dynamics in Two Dimensions

Point Vortex Dynamics in Two Dimensions Spring School on Fluid Mechanics and Geophysics of Environmental Hazards 9 April to May, 9 Point Vortex Dynamics in Two Dimensions Ruth Musgrave, Mostafa Moghaddami, Victor Avsarkisov, Ruoqian Wang, Wei

More information

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014 Synchronization of Limit Cycle Oscillators by Telegraph Noise Denis S. Goldobin arxiv:148.135v1 [cond-mat.stat-mech] 5 Aug 214 Department of Physics, University of Potsdam, Postfach 61553, D-14415 Potsdam,

More information

DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS

DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS A Thesis Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325 Foreword In order to model populations of physical/biological

More information

Matrix power converters: spectra and stability

Matrix power converters: spectra and stability Matrix power converters: spectra and stability Stephen Cox School of Mathematical Sciences, University of Nottingham supported by EPSRC grant number EP/E018580/1 Making It Real Seminar, Bristol 2009 Stephen

More information

7 Pendulum. Part II: More complicated situations

7 Pendulum. Part II: More complicated situations MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

More information

Two-Body Problem. Central Potential. 1D Motion

Two-Body Problem. Central Potential. 1D Motion Two-Body Problem. Central Potential. D Motion The simplest non-trivial dynamical problem is the problem of two particles. The equations of motion read. m r = F 2, () We already know that the center of

More information

Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion

Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion Ariën J. van der Wal Netherlands Defence Academy (NLDA) 15 th ICCRTS Santa Monica, CA, June 22-24, 2010 Copyright

More information

Chapter 15 - Oscillations

Chapter 15 - Oscillations The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

More information

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Michael Cross California Institute of Technology Beijing Normal University May 2006 Michael Cross (Caltech, BNU) Pattern Formation

More information

Daba Meshesha Gusu and O.Chandra Sekhara Reddy 1

Daba Meshesha Gusu and O.Chandra Sekhara Reddy 1 International Journal of Basic and Applied Sciences Vol. 4. No. 1 2015. Pp.22-27 Copyright by CRDEEP. All Rights Reserved. Full Length Research Paper Solutions of Non Linear Ordinary Differential Equations

More information

Chaotic Motion of the Double Pendulum

Chaotic Motion of the Double Pendulum MEGL 2016 - Mathematical Art and 3D Printing George Mason University: College of Science December 16, 2016 Table of Contents 1 The Mathematics 2 Inspiration for the Model Planning the Construction of the

More information

Residence-time distributions as a measure for stochastic resonance

Residence-time distributions as a measure for stochastic resonance W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly sis u n d S to ch a stik Period of Concentration: Stochastic Climate Models MPI Mathematics in the Sciences, Leipzig, 23 May 1 June 2005 Barbara

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle ACMAC Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond (Institut de Mathématiques de Toulouse,

More information

Attractor of a Shallow Water Equations Model

Attractor of a Shallow Water Equations Model Thai Journal of Mathematics Volume 5(2007) Number 2 : 299 307 www.math.science.cmu.ac.th/thaijournal Attractor of a Shallow Water Equations Model S. Sornsanam and D. Sukawat Abstract : In this research,

More information

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait Prof. Krstic Nonlinear Systems MAE28A Homework set Linearization & phase portrait. For each of the following systems, find all equilibrium points and determine the type of each isolated equilibrium. Use

More information

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum Reconsider the following example from last week: dx dt = x y dy dt = x2 y. We were able to determine many qualitative features

More information

Oscillating Inverted Pendulum and Applications

Oscillating Inverted Pendulum and Applications Oscillating Inverted Pendulum and Applications Ramon Driesen, Jaden Johnston, Massimo Pascale, and Evan Ridley Department of Mathematics, University of Arizona, Tucson, Arizona, 85719 (Dated: March 20,

More information

1.11 Some Higher-Order Differential Equations

1.11 Some Higher-Order Differential Equations page 99. Some Higher-Order Differential Equations 99. Some Higher-Order Differential Equations So far we have developed analytical techniques only for solving special types of firstorder differential equations.

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

Synchronization in delaycoupled bipartite networks

Synchronization in delaycoupled bipartite networks Synchronization in delaycoupled bipartite networks Ram Ramaswamy School of Physical Sciences Jawaharlal Nehru University, New Delhi February 20, 2015 Outline Ø Bipartite networks and delay-coupled phase

More information

Looking Through the Vortex Glass

Looking Through the Vortex Glass Looking Through the Vortex Glass Lorenz and the Complex Ginzburg-Landau Equation Igor Aronson It started in 1990 Project started in Lorenz Kramer s VW van on the way back from German Alps after unsuccessful

More information

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1. Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.6 m between the crests. If a wave laps against the pier every

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

Nonsmooth systems: synchronization, sliding and other open problems

Nonsmooth systems: synchronization, sliding and other open problems John Hogan Bristol Centre for Applied Nonlinear Mathematics, University of Bristol, England Nonsmooth systems: synchronization, sliding and other open problems 2 Nonsmooth Systems 3 What is a nonsmooth

More information