Dynamic Characteristics of Double-Pipe Heat Exchangers

Size: px
Start display at page:

Download "Dynamic Characteristics of Double-Pipe Heat Exchangers"

Transcription

1 Dynamic Characteristics of Double-Pipe Heat Exchangers WILLIAM C. COHEN AND ERNEST F. JOHNSON Princeton University, Princeton, N. J. The performance of automatically controlled process plants depends on the dynamic interaction of all the components in the control loop. To undertake the intelligent design of the control system necessitates knowing the dynamic characteristics of all the components in the control loop as well as having an understanding of closed-loop dynamic behavior. At present very little is known about the dynamic characteristics of the basic processes and operations in the chemical process industries. This article shows how these characteristics may be determined for a simple distributed system. The dynamic characteristics of process components and of the over-all plant may be indicated by frequency response data or by transient response data. From the control standpoint frequency response data are the more useful. It is generally easier to compute the frequency response characteristics than the transient response characteristics since the frequency response is obtained directly from the transfer function of the process, while the transient response requires the taking of inverse Laplace transforms. Furthermore graphical techniques are available for computing transient response from frequency response, and for distributed parameter systems use of these may provide savings in time over use of the inverse Laplace transformation. In general the appraisal of over-all system behavior is more easily visualized from the step response. On the basis of their frequency response behavior four types of individual process components may be distinguished: 1. Lumped-parameter components, where the phase angle reaches a limiting value with increasing frequency and the magnitude ratio decreases to zero for increasing frequency: Lumped parameter systems are those in which the components and their characteristics may be assumed to act at discrete points in the system. Ordinary differential equations govern their behavior, and control system synthesis techniques have been worked out in great detail especially where the equations have constant coefficients and are linear within the operating region. An example of a system that can be assumed to be lumped is a small thermocouple in a well-stirred bath. 2. Distributed-parameter components where the lag angle (negative phase angle) increases without limit and the magnitude ratio decreases to zero with increasing frequency: Distributed parameter systems are those for which the lumping assumption is invalid. The equations governing their behavior are partial differential equations where the space coordinates as well as time must be considered as independent variables. Such systems have been little studied and it remains to be determined to what extent lumpedparameter techniques can be applied to distributed systems. 3. Distributed-parameter components where the lag angle increases without limit as the frequency increases but the magnitude ratio approaches a limiting value greater than zero for increasing frequency, Examples of distributed systems are double-pipe heat exchangers, packed towers, and tubular flow reactors. 4. Pure dead-time components, such as those exhibiting distance-velocity lags, where the phase angle is unlimited but the magnitude ratio is constant at unity for all frequencies: This is a special case of Type 3 component.

2 Actual plant characteristics may be approximated by combinations of these basic types of components. The simplest to use are the lumped-parameter components and pure deadtime components. This article presents a study of the dynamic characteristics of double-pipe heat exchangers. Although this type problem has been treated in general terms by Gould (3), Farrington (2), and others (1, 6), it is believed that the present treatment not only offers a useful economy of expression without sacrificing rigor, but as a natural consequence leads to the response of the exchanger when simultaneously forced by steam temperature and inlet water temperature. The phenomenon of resonance observed by DeBolt (1) is readily predicted. Figure 1 shows the arrangement of an experimental heat exchanger. It is constructed of concentric 1- and 2-inch brass pipe, 11.6 feet in length mounted horizontally. Steam condenses in the annulus and heats water flowing through the inner pipe. Cold water with velocity V f flows through the inner pipe, and saturated steam condenses in the jacket. Figure 2 shows the model taken for mathematical analysis. The following simplifying assumptions are made: 1. Liquid water is incompressible, and its specific heat and density are constant. 2. Steam temperatures may vary with time but not from point to point in the exchanger at any instant. 3. Axial heat flow is negligible. 4. Outer pipe dynamics may be neglected. 5. Metal wall expansion is negligible; hence the cross-sectional area for each phase is constant. A complete description of the process would involve equations for the conservation of mass, energy, and momentum, coupled with the equations of state and equations for the rate processes occurring between the phases. These equations must be satisfied simultaneously. Without the simplifying assumptions these equations cannot be solved readily. With them, it is only necessary to consider the simultaneous interaction of the heat balances and the rate equations for heat transfer. Only the simplest of heat transfer laws will be considered here namely, that the rate of heat transfer is proportional to the bulk temperature differences between phases.

3 Equations 1 and 2 are derived from the heat balances, written on the water phase and the metal wall, respectively, for element dx: Since the steam is assumed to be a saturated condensing vapor, its temperature is specified only as a function of time, For the particular system studied the value of the constants are T 1 = 3.69 sec.; T 12 = 2.65 sec.; and T 22 = 1.05 sec. Following Gould (3), if we consider the exchanger in steady state operation at t = 0, and then consider the variation in temperature from this initial condition at any time, t, Equations 1 and 2 become

4 The steady-state terms are identically zero, and our initial conditions are that the variation in temperature from the steady state is 0 at t = 0. Hence, applying the Laplace transformation we obtain Equations 5 and 6: The simultaneous solution of Equations 5 and 6 for Θ f, leads to Equation 7 Equation 7 represents the total response of the outlet water temperature at position L to the multiple disturbances of steam temperature and inlet water temperature. It is a relationship between the Laplace transforms of the temperatures. If the inlet water temperature is held constant, Equation 7 reduces to

5 By definition this is the transfer function between the outlet the water temperature and the steam temperature. Similarly, if the steam temperature is held constant while the inlet water temperature is allowed to vary, This equation gives the transfer function between the outlet water temperature and the inlet mater temperature. Equations 8 and 9 show that, if only one type of disturbance is forcing at a time, the transfer function depends only on the system parameters and not on the type of forcing. The transient response may be obtained by substituting the Laplace transform of a unit step input- i.e., l / s, for the Laplace transform of steam temperature or inlet water temperature in Equations 8 or 9 and performing the inverse Laplace transformation. When the inverse transform is not found in the tables, a complex integration must be performed which in the general case is most difficult. The frequency response, however, is obtained simply by replacing s in the transfer function by jω, where j = 1 and ω is the angular frequency in radians per second of an impressed sine wave. The magnitude and phase of the resulting complex number corresponds to the magnitude ratio and phase angle of the frequency response. Transient response data were obtained experimentally by suddenly changing the pressure of the steam from 5 to 15 pounds per square inch gage through the valve before the exchanger. The outlet water temperature response was measured on a Leeds & Northrup Speedomax self-balancing potentiometer. Frequency response data were obtained by sinusoidal varying the set point on the controller which regulates the steam pressure in the pipeline before the exchanger. The pressure variations actually obtained were read on the pressure gage near the exchanger. Steam temperatures were obtained from the steam tables for corresponding pressures. The phase angles were determined by recording the time interval between the steam pressure peaks and the outlet water temperature peaks. In calculating the magnitude ratio from either experimental data or from the theoretical equations

6 Figure 3 shows the transient response of the heat exchanger. This behavior can be approximated by a system with a 1-second dead-time component and two non-interacting RC stages. The method of Oldenbourg and Sartorius (4) was used to determine the stage time constants. In this method a tangent line is passed through the inflection point of the response curve to define the distances T A and T C. The projection on the 100% asymptote line of the tangent from the time axis to the 100% line is T A, whereas T C is the projection from the inflection point to the 100% asymptote. These parameters give rise to two time constants for the RC stages of 1 second and 3 seconds, respectively. Thus the heat exchanger may be represented by a pure dead time of 1 second and two non-interacting RC stages having time constants of 1 and 3 seconds. Figures 4 and 5 show the frequency response characteristics of the heat exchanger plotted on Bode type diagrams. In Figure 4, circles represent the experimental data, the solid lines represent the theoretical response calculated by substitution of jω for s in Equation 8, and the dashed lines represent the approximation by a pure dead time of 1 second coupled with two RC stages of 1- and 3-second time constants as determined from the transient response. As is typical of Type 2 components the lag angle increases without limit with increasing frequency, and the magnitude ratio decreases to zero with increasing frequency. The lumped approximation for magnitude ratio (dashed line) fits the data well. On the other

7 hand the theoretically computed curve lies higher than the data. Part of this difference is due to the fact that the experimental data include the response of the temperature measuring means and the pressure measuring means, and the dynamic behavior of the outer jacket wall, while the theoretical curve indicates the response of the heat exchanger alone approximation curve. In addition to the sources of deviation in the magnitude ratio there was a distance-velocity lag between the exchanger and the thermocouple measuring the outlet temperature. Thus it is to be expected that the lag angle would be greater than that indicated from the response of the exchanger alone exclusive of outer wall dynamics. The computed curve is limited by the initial assumptions made in the derivation, and the experimental data are subject to considerable uncertainty at the higher frequencies. Unfortunately, these data do not extend to sufficiently high frequencies to exhibit the resonance indicated by the behavior near a frequency of 2 radians per second. Both the computed magnitude ratio and the computed phase angle resonate at a frequency of about 2 radians per second. These phenomena have been observed experimentally by DeBolt (1) while working with a multipass shell-and-tube steam-to-water exchanger. This resonance is believed to be characteristic of systems forced in a distributed manner. It occurs when the residence time of a slug of water flowing through the exchanger is of the same order of magnitude as the period of the impressed sine wave. Here the L/V ratio is 3 seconds which is approximately the period of the wave. The equations predict that the magnitude ratio and phase angle will show resonances at higher frequencies also.

8 The curves showing the phase angle indicate that the dashed line approximation is not in good agreement with the experimental results, nor does it indicate resonance. Again the theoretical curve lies above the experimental data, and the data indicate a more rapid falloff than either the computed curve or the approximation curve. In addition to the sources of deviation in the magnitude ratio there was a distance-velocity lag between the exchanger and the thermocouple measuring the outlet temperature. Thus it is to be expected that the lag angle would be greater than that indicated from the response of the exchanger alone. Figure 5 shows the frequency response characteristics when the steam temperature is held constant and a sinusoidal forcing is given to the inlet water temperature. These curves are obtained by substituting jω for s in Equation 9. The system is of Type 3, where the magnitude ratio lies between limits but the lag angle increases indefinitely with increasing frequency. This case was not studied experimentally. Summary Equations for the dynamic characteristics of a simple distributed system have been derived. The frequency response characteristics have been computed, and it has been

9 shown that distributed periodic forcing leads to resonance in magnitude ratio and phase angle. Typical methods of approximating plant characteristics by means of time delays and time lags give reasonably good representations but are incapable of predicting the resonance phenomena. In certain instances, therefore, this kind of approximation may be undesirable. The importance of identifying the point of application of a disturbance in a system is revealed by comparing the frequency response characteristics relating outlet and inlet water temperatures with frequency response characteristics relating outlet water and steam temperatures. In this article we have not attempted to use our characterization to design an optimum control system for the operation studied. Present knowledge of closed-loop behavior permits us to make a reasonable system design provided we know the characteristics of our process components. In general the dynamic characteristics of chemical engineering processes are not well known. The immediate and pressing need is to determine these characteristics. This article shows how these characteristics may be determined, The simple approaches used here should be generally applicable to distributed systems of all kinds.

10

11

Lesson 19: Process Characteristics- 1 st Order Lag & Dead-Time Processes

Lesson 19: Process Characteristics- 1 st Order Lag & Dead-Time Processes 1 Lesson 19: Process Characteristics- 1 st Order Lag & Dead-Time Processes ET 438a Automatic Control Systems Technology 2 Learning Objectives After this series of presentations you will be able to: Describe

More information

Distributed Parameter Systems

Distributed Parameter Systems Distributed Parameter Systems Introduction All the apparatus dynamic experiments in the laboratory exhibit the effect known as "minimum phase dynamics". Process control loops are often based on simulations

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

Overall Heat Transfer Coefficient

Overall Heat Transfer Coefficient Overall Heat Transfer Coefficient A heat exchanger typically involves two flowing fluids separated by a solid wall. Heat is first transferred from the hot fluid to the wall by convection, through the wall

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Introduction to Process Control

Introduction to Process Control Introduction to Process Control For more visit :- www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit:- www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The

More information

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

Introduction to Heat and Mass Transfer

Introduction to Heat and Mass Transfer Introduction to Heat and Mass Transfer Week 16 Merry X mas! Happy New Year 2019! Final Exam When? Thursday, January 10th What time? 3:10-5 pm Where? 91203 What? Lecture materials from Week 1 to 16 (before

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 62 CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 5.1 INTRODUCTION The primary objective of this work is to investigate the convective heat transfer characteristics of silver/water nanofluid. In order

More information

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 REFERENCES REFERENCES Streeter, Victor L., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, ISBN 07-062191-9.

More information

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

More information

Table of Laplacetransform

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

Systems Engineering and Control

Systems Engineering and Control Cork Institute of Technology Bachelor of Engineering (Honours) in Mechanical Engineering - Award (NFQ Level 8) Autumn 2007 Systems Engineering and Control (Time: 3 Hours) Answer any FIVE Questions Examiners:

More information

Process Control, 3P4 Assignment 6

Process Control, 3P4 Assignment 6 Process Control, 3P4 Assignment 6 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 28 March 204 This assignment gives you practice with cascade control and feedforward control. Question [0 = 6 + 4] The outlet

More information

N. Lemcoff 1 and S.Wyatt 2. Rensselaer Polytechnic Institute Hartford. Alstom Power

N. Lemcoff 1 and S.Wyatt 2. Rensselaer Polytechnic Institute Hartford. Alstom Power N. Lemcoff 1 and S.Wyatt 2 1 Rensselaer Polytechnic Institute Hartford 2 Alstom Power Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston Background Central solar receiver steam generators

More information

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Omar S. Al-Yahia, Taewoo Kim, Daeseong Jo School of Mechanical Engineering, Kyungpook National University

More information

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Jayant Deshmukh Department of Mechanical Engineering Sagar Institute of Research and Technology, Bhopal, M.P., India D.K. Mudaiya

More information

Department of Engineering and System Science, National Tsing Hua University,

Department of Engineering and System Science, National Tsing Hua University, 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016) The Establishment and Application of TRACE/CFD Model for Maanshan PWR Nuclear Power Plant Yu-Ting

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

PROCESS CONTROL (IT62) SEMESTER: VI BRANCH: INSTRUMENTATION TECHNOLOGY

PROCESS CONTROL (IT62) SEMESTER: VI BRANCH: INSTRUMENTATION TECHNOLOGY PROCESS CONTROL (IT62) SEMESTER: VI BRANCH: INSTRUMENTATION TECHNOLOGY by, Dr. Mallikarjun S. Holi Professor & Head Department of Biomedical Engineering Bapuji Institute of Engineering & Technology Davangere-577004

More information

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Acta Polytechnica Vol. 52 No. 3/202 Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Petr Kracík,JiříPospíšil, Ladislav Šnajdárek Brno University of

More information

The dynamic response of flow forced heat exchangers

The dynamic response of flow forced heat exchangers Retrospective Theses and Dissertations 1963 The dynamic response of flow forced heat exchangers Franklin Joe Stermole Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/rtd

More information

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Vol. 2, No. 4 Modern Applied Science Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Dr. Kaliannan Saravanan Professor & Head, Department of Chemical Engineering Kongu Engineering

More information

Analyzing Mass and Heat Transfer Equipment

Analyzing Mass and Heat Transfer Equipment Analyzing Mass and Heat Transfer Equipment (MHE) Analyzing Mass and Heat Transfer Equipment Scaling up to solving problems using process equipment requires both continuum and macroscopic knowledge of transport,

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

1 One-dimensional analysis

1 One-dimensional analysis One-dimensional analysis. Introduction The simplest models for gas liquid flow systems are ones for which the velocity is uniform over a cross-section and unidirectional. This includes flows in a long

More information

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss.

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss. Condenser Analysis Water Cooled Model: For this condenser design there will be a coil of stainless steel tubing suspended in a bath of cold water. The cold water will be stationary and begin at an ambient

More information

10 minutes reading time is allowed for this paper.

10 minutes reading time is allowed for this paper. EGT1 ENGINEERING TRIPOS PART IB Tuesday 31 May 2016 2 to 4 Paper 4 THERMOFLUID MECHANICS Answer not more than four questions. Answer not more than two questions from each section. All questions carry the

More information

Chapter 8. Design of Pressurizer and Plant Control

Chapter 8. Design of Pressurizer and Plant Control Nuclear Systems Design Chapter 8. Design of Pressurizer and Plant Control Prof. Hee Cheon NO 8.1 Sizing Problem of Pressurizer and Plant Control 8.1.1 Basic Plant Control Basic Control Scheme I : to maintain

More information

Investigations of hot water temperature changes at the pipe outflow

Investigations of hot water temperature changes at the pipe outflow Investigations of hot water temperature changes at the pipe outflow Janusz Wojtkowiak 1,*, and Czesław Oleśkowicz-Popiel 1 1 Poznan University of Technology, Faculty of Civil and Environmental Engineering,

More information

Axial profiles of heat transfer coefficients in a liquid film evaporator

Axial profiles of heat transfer coefficients in a liquid film evaporator Axial profiles of heat transfer coefficients in a liquid film evaporator Pavel Timár, Ján Stopka, Vladimír Báleš Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology,

More information

Pressure Losses for Fluid Flow Through Abrupt Area. Contraction in Compact Heat Exchangers

Pressure Losses for Fluid Flow Through Abrupt Area. Contraction in Compact Heat Exchangers Pressure Losses for Fluid Flow Through Abrupt Area Contraction in Compact Heat Exchangers Undergraduate Research Spring 004 By Bryan J. Johnson Under Direction of Rehnberg Professor of Ch.E. Bruce A. Finlayson

More information

A dynamic model of a vertical direct expansion ground heat exchanger

A dynamic model of a vertical direct expansion ground heat exchanger A dynamic model of a vertical direct expansion ground heat exchanger B. Beauchamp 1, L. Lamarche 1 and S. Kajl 1 1 Department of mechanical engineering École de technologie supérieure 1100 Notre-Dame Ouest,

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Index. INDEX_p /15/02 3:08 PM Page 765

Index. INDEX_p /15/02 3:08 PM Page 765 INDEX_p.765-770 11/15/02 3:08 PM Page 765 Index N A Adaptive control, 144 Adiabatic reactors, 465 Algorithm, control, 5 All-pass factorization, 257 All-pass, frequency response, 225 Amplitude, 216 Amplitude

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION

More information

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Process Control Hardware Fundamentals

Process Control Hardware Fundamentals Unit-1: Process Control Process Control Hardware Fundamentals In order to analyse a control system, the individual components that make up the system must be understood. Only with this understanding can

More information

HEAT TRANSFER AND EXCHANGERS

HEAT TRANSFER AND EXCHANGERS HEAT TRANSFER AND EXCHANGERS Although heat-transfer rates can be computed with reasonable accuracy for clean or new pipe, the effect of dirty or corroded pipe surfaces cannot he satisfactorily estimated.

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Time: 1 Hour HEAT AND MASS TRANSFER Note: All questions are compulsory. Q1) The inside temperature of a furnace wall ( k=1.35w/m.k), 200mm thick, is 1400 0 C. The heat transfer coefficient

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Solutions for Tutorial 10 Stability Analysis

Solutions for Tutorial 10 Stability Analysis Solutions for Tutorial 1 Stability Analysis 1.1 In this question, you will analyze the series of three isothermal CSTR s show in Figure 1.1. The model for each reactor is the same at presented in Textbook

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No - 03 First Law of Thermodynamics (Open System) Good afternoon,

More information

Numerical Simulation on Flow and Heat Transfer in Oscillating Heat Pipes

Numerical Simulation on Flow and Heat Transfer in Oscillating Heat Pipes 10th IHPS, Taipei, Taiwan, Nov. 6-9, 11 Numerical Simulation on Flow and Heat Transfer in Oscillating Heat Pipes S.F. Wang a,*, Z.R. Lin a, Z.Y. Lee b, and L.W. Zhang b a Key Laboratory of Enhanced Heat

More information

IMPROVED EVALUATION OF RECOVERY BOILER WATER CIRCULATION DESIGN WITH THE HELP OF STATE-OF-THE- ART CFD-BASED HEAT FLUX DATA

IMPROVED EVALUATION OF RECOVERY BOILER WATER CIRCULATION DESIGN WITH THE HELP OF STATE-OF-THE- ART CFD-BASED HEAT FLUX DATA IMPROVED EVALUATION OF RECOVERY BOILER WATER CIRCULATION DESIGN WITH THE HELP OF STATE-OF-THE- ART CFD-BASED HEAT FLUX DATA Antti Sirainen a, Jukka Röppänen b, Viljami Maakala b, Jari Lappalainen c, Esa

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port extruded tubes

Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port extruded tubes Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port

More information

SATHYABAMA UNIVERISTY. Unit III

SATHYABAMA UNIVERISTY. Unit III Unit III UNIT III STEAM NOZZLES AND TURBINES Flow of steam through nozzles, shapes of nozzles, effect of friction, critical pressure ratio,supersaturated flow.impulse and reaction principles, compounding,

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

CONDENSATION HEAT TRANSFER COEFFICIENT CORRELATION BASED ON SLIP RATIO MODEL IN A HORIZONTAL HEAT EXCHANGER

CONDENSATION HEAT TRANSFER COEFFICIENT CORRELATION BASED ON SLIP RATIO MODEL IN A HORIZONTAL HEAT EXCHANGER CONDENSATION HEAT TRANSFER COEFFICIENT CORRELATION BASED ON SLIP RATIO MODEL IN A HORIZONTAL HEAT EXCHANGER Seok Kim, Sung Uk Ryu, Seung Tae Lee, Dong-Jin Euh, and Chul-Hwa Song Korea Atomic Energy Research

More information

Validation of MARS-LMR Code for Heat Transfer Models in the DHRS of the PGSFR

Validation of MARS-LMR Code for Heat Transfer Models in the DHRS of the PGSFR Validation of MARS-LMR Code for Heat Transfer Models in the DHRS of the PGSFR Chiwoong CHOI, Taekeong Jeong, JongGan Hong, Sujin Yeom, Jong-Man Kim, Ji-Yeong Jeong, YongBum Lee and Kwiseok Ha Korea Atomic

More information

Transient Reactor Test Loop (TRTL) Model Development

Transient Reactor Test Loop (TRTL) Model Development Transient Reactor Test Loop (TRTL) Model Development Emory Brown WORKING GROUP MEETING FLL 2016 TSK 2 BREKOUT SESSION BOSTON, M Outline Task Description Current Model Status With model projections Preliminary

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR

More information

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms. Process Dynamics and Control Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

More information

VISIMIX TURBULENT. TACKLING SAFETY PROBLEMS OF STIRRED REACTORS AT THE DESIGN STAGE.

VISIMIX TURBULENT. TACKLING SAFETY PROBLEMS OF STIRRED REACTORS AT THE DESIGN STAGE. VISIMIX TURBULENT. TACKLING SAFETY PROBLEMS OF STIRRED REACTORS AT THE DESIGN STAGE. This example demonstrates usage of the VisiMix software to provide an Inherently Safer Design of the process based on

More information

Index Accumulation, 53 Accuracy: numerical integration, sensor, 383, Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709,

Index Accumulation, 53 Accuracy: numerical integration, sensor, 383, Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709, Accumulation, 53 Accuracy: numerical integration, 83-84 sensor, 383, 772-773 Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709, 715 input conversion, 519 reasons for, 512-517 relay auto-tuning,

More information

Chapter 8. Feedback Controllers. Figure 8.1 Schematic diagram for a stirred-tank blending system.

Chapter 8. Feedback Controllers. Figure 8.1 Schematic diagram for a stirred-tank blending system. Feedback Controllers Figure 8.1 Schematic diagram for a stirred-tank blending system. 1 Basic Control Modes Next we consider the three basic control modes starting with the simplest mode, proportional

More information

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works? HEAT EXCHANGERS 1 INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants How it works? 2 WHAT ARE THEY USED FOR? Classification according to service. Heat

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

Feedforward Control Feedforward Compensation

Feedforward Control Feedforward Compensation Feedforward Control Feedforward Compensation Compensation Feedforward Control Feedforward Control of a Heat Exchanger Implementation Issues Comments Nomenclature The inherent limitation of feedback control

More information

CHAPTER 15: FEEDFORWARD CONTROL

CHAPTER 15: FEEDFORWARD CONTROL CHAPER 5: EEDORWARD CONROL When I complete this chapter, I want to be able to do the following. Identify situations for which feedforward is a good control enhancement Design feedforward control using

More information

Chemical Engineering 140. Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013

Chemical Engineering 140. Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013 Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013 Week 0 *8/30 1. Definition of Chemical Engineering: flow sheet, reactor trains and separation processes, raw materials, power production

More information

4 Mechanics of Fluids (I)

4 Mechanics of Fluids (I) 1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

More information

Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank

Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank P.Aravind PG Scholar, Department of Control and Instrumentation Engineering, JJ College of Engineering

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

BITS-Pilani Dubai, International Academic City, Dubai Second Semester. Academic Year

BITS-Pilani Dubai, International Academic City, Dubai Second Semester. Academic Year BITS-Pilani Dubai, International Academic City, Dubai Second Semester. Academic Year 2007-2008 Evaluation Com anent: Com rehensive Examination Closed Book CHE UC441/11NSTR UC 45'1 PROCESS CONTROL Date:

More information

Simulation of a Thermo-Acoustic Refrigerator

Simulation of a Thermo-Acoustic Refrigerator Simulation of a Thermo-Acoustic Refrigerator Sohaib Ahmed 1, Abdul Rehman 1, Ammad Fareed 1, Syed Muhammad Sabih ul Haque 1, Ali Muhammad Hadi 1 1 National University of Sciences and Technology (NUST),

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

Countercurrent heat exchanger

Countercurrent heat exchanger Countercurrent heat exchanger 1. Theoretical summary The basic operating principles and the simplified calculations regarding the counter current heat exchanger were discussed in the subject Chemical Unit

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants , June 30 - July 2, 2010, London, U.K. Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants R. Mahmoodi, M. Shahriari, R. Zarghami, Abstract In nuclear power plants, loss

More information

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model

CFD Simulation of Sodium Boiling in Heated Pipe using RPI Model Proceedings of the 2 nd World Congress on Momentum, Heat and Mass Transfer (MHMT 17) Barcelona, Spain April 6 8, 2017 Paper No. ICMFHT 114 ISSN: 2371-5316 DOI: 10.11159/icmfht17.114 CFD Simulation of Sodium

More information

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz.

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz. 374 Exergy Analysis The value of the exergy of the system depends only on its initial and final state, which is set by the conditions of the environment The term T 0 P S is always positive, and it does

More information

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN 37 CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN Absorption in a chemical process refers to a mass transfer between gas and liquid which transfers one or more components from the gas phase to the

More information

PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion

PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion Archives of Control Sciences Volume 6LXII, 016 No. 1, pages 5 17 PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion JAN CVEJN The modulus optimum MO criterion can

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

B1-1. Closed-loop control. Chapter 1. Fundamentals of closed-loop control technology. Festo Didactic Process Control System

B1-1. Closed-loop control. Chapter 1. Fundamentals of closed-loop control technology. Festo Didactic Process Control System B1-1 Chapter 1 Fundamentals of closed-loop control technology B1-2 This chapter outlines the differences between closed-loop and openloop control and gives an introduction to closed-loop control technology.

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING

SRI VENKATESWARA COLLEGE OF ENGINEERING COURSE DELIVERY PLAN - THEORY Page 1 of 7 Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation:2013 PG Specialisation : NA Sub. Code / Sub. Name : CH 6605 - Process

More information

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793 HX: Energy Balance and LMTD Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000, Bangladesh http://zahurul.buet.ac.bd/

More information

Increase Productivity Using CFD Analysis

Increase Productivity Using CFD Analysis Increase Productivity Using CFD Analysis CFD of Process Engineering Plants for Performance Estimation and Redesign Vinod Taneja Vidhitech Solutions Abhishek Jain abhishek@zeusnumerix.com +91 9819009836

More information

Basic Models of Simultaneous Heat and Mass Transfer

Basic Models of Simultaneous Heat and Mass Transfer 20 Basic Models of Simultaneous Heat and Mass Transfer Keywords: Unit Models, Evaporator, Vaporizer A chemical process invariably involves energy transfer simultaneously with mass transfer. So in this

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination 2011 ProSim S.A. All rights reserved. Introduction This document presents the different steps to follow in order

More information

Experimental Analysis of Double Pipe Heat Exchanger

Experimental Analysis of Double Pipe Heat Exchanger 206 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Experimental Analysis of Double Pipe Heat Exchanger Urvin R. Patel, 2 Manish S. Maisuria, 3 Dhaval R. Patel, 4 Krunal P. Parmar,2,3,4 Assistant Professor,2,3,4

More information

Nonlinear Behaviour of a Low-Density Polyethylene Tubular Reactor-Separator-Recycle System

Nonlinear Behaviour of a Low-Density Polyethylene Tubular Reactor-Separator-Recycle System European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Nonlinear Behaviour of a Low-Density Polyethylene

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

(Refer Slide Time: 1:42)

(Refer Slide Time: 1:42) Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 21 Basic Principles of Feedback Control (Contd..) Friends, let me get started

More information

Development of an organometallic flow chemistry. reaction at pilot plant scale for the manufacture of

Development of an organometallic flow chemistry. reaction at pilot plant scale for the manufacture of Supporting Information Development of an organometallic flow chemistry reaction at pilot plant scale for the manufacture of verubecestat David A. Thaisrivongs*, John R. Naber*, Nicholas J. Rogus, and Glenn

More information