Single-Input-Single-Output Systems

Save this PDF as:
Size: px
Start display at page:

Transcription

1 TF 502 Single-Input-Single-Output Systems SIST, ShanghaiTech Introduction Open-Loop Control-Response Proportional Control General PID Control Boris Houska 1-1

2 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-2

3 Objectives In this lecture we will learn about Single-Input-Single-Output (SISO) systems Open-loop step response Proportional control of SISO systems Integral control PID control Warning: this lecture explains basic tricks to tune a controller based on physical intuition without using mathematical analysis yet (we ll discuss mathematical models later on in the lecture) Single-Input-Single-Output Systems 1-3

4 SISO Systems Recall from Lecture 1: 1. u(t) R denotes (scalar) input at time t 2. y(t) R denotes (scalar) output at time t Single-Input-Single-Output Systems 1-4

5 Example 1: oven SISO system: 1. u(t) R voltage at the heating coil 2. y(t) R temperature in the oven Single-Input-Single-Output Systems 1-5

6 Example 2: pendulum SISO system: 1. u(t) R force of the motor 2. y(t) R excitation angle of the pendulum Single-Input-Single-Output Systems 1-6

7 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-7

8 Open-loop control-response Idea: Test basic system behavior by making open-loop experiments Send signal u(t) to actuator and observe y(t) Single-Input-Single-Output Systems 1-8

9 Parameterization of control functions General affine parameterizations of the control function can be written in the form M u(t) = a i ϕ i (t). i=1 The functions ϕ 1,... ϕ M : R R are given basis functions The scalars a 1, a 2,..., a M R are the control parameterization coefficients Single-Input-Single-Output Systems 1-9

10 Parameterization of control functions General affine parameterizations of the control function can be written in the form M u(t) = a i ϕ i (t). i=1 The functions ϕ 1,... ϕ M : R R are given basis functions The scalars a 1, a 2,..., a M R are the control parameterization coefficients Single-Input-Single-Output Systems 1-10

11 Parameterization of control functions General affine parameterizations of the control function can be written in the form M u(t) = a i ϕ i (t). i=1 The functions ϕ 1,... ϕ M : R R are given basis functions The scalars a 1, a 2,..., a M R are the control parameterization coefficients Single-Input-Single-Output Systems 1-11

12 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-12

13 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-13

14 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-14

15 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-15

16 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-16

17 Example 1 Single-Input-Single-Output Systems 1-17

18 Example 1 Single-Input-Single-Output Systems 1-18

19 Example 2 Single-Input-Single-Output Systems 1-19

20 Example 2 Single-Input-Single-Output Systems 1-20

21 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-21

22 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-22

23 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-23

24 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-24

25 Example 1 Single-Input-Single-Output Systems 1-25

26 Example 1 no steady state, but periodic limit cycle Single-Input-Single-Output Systems 1-26

27 Example 2 (resonance effect) Single-Input-Single-Output Systems 1-27

28 Example 2 (resonance effect) Single-Input-Single-Output Systems 1-28

29 Bounded-Input-Bounded-Output Systems A system is called a bounded-input-bounded-output (BIBO) system if there exists for every contant C 1 < a constant C 2 < such that u L C 1 y L C 2 In words: if the input is bounded, then the output is bounded Warning: the amplification factor y L u L might be large Single-Input-Single-Output Systems 1-29

30 Bounded-Input-Bounded-Output Systems A system is called a bounded-input-bounded-output (BIBO) system if there exists for every contant C 1 < a constant C 2 < such that u L C 1 y L C 2 In words: if the input is bounded, then the output is bounded Warning: the amplification factor y L u L might be large Single-Input-Single-Output Systems 1-30

31 Bounded-Input-Bounded-Output Systems A system is called a bounded-input-bounded-output (BIBO) system if there exists for every contant C 1 < a constant C 2 < such that u L C 1 y L C 2 In words: if the input is bounded, then the output is bounded Warning: the amplification factor y L u L might be large Single-Input-Single-Output Systems 1-31

32 Resonance catastrophe Small inputs can lead to large outputs... Single-Input-Single-Output Systems 1-32

33 System Response Norms The largest possible ratio between input and output norm, sup u y u is called system response norm (largest possible amplification factor). Common choices for are L 2 or L -norms Single-Input-Single-Output Systems 1-33

34 System Response Norms The largest possible ratio between input and output norm, sup u y u is called system response norm (largest possible amplification factor). Common choices for are L 2 or L -norms Single-Input-Single-Output Systems 1-34

35 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-35

36 Set points Goal: Design the closed-loop system such that y(t ) y ref after a short transient phase T > 0 Notation: The point y ref R is called set point The function e(t) = y(t) y ref is called the tracking error Single-Input-Single-Output Systems 1-36

37 Set points Goal: Design the closed-loop system such that y(t ) y ref after a short transient phase T > 0 Notation: The point y ref R is called set point The function e(t) = y(t) y ref is called the tracking error Single-Input-Single-Output Systems 1-37

38 Feedback laws Strategy: If we observe y(t), we set u(t) = µ(y(t)) The function µ : R R is called feedback law Secret assumption : Evaluation of µ is fast compared to the system dynamics Single-Input-Single-Output Systems 1-38

39 Feedback laws Strategy: If we observe y(t), we set u(t) = µ(y(t)) The function µ : R R is called feedback law Secret assumption : Evaluation of µ is fast compared to the system dynamics Single-Input-Single-Output Systems 1-39

40 Affine feedback (P-control) Proportional control is based on affine feedback laws, µ(y(t)) = u ref + K(y(t) y ref ) = u ref + K e(t) Constant u ref R is a control offset The constant K R is called the proportional gain Single-Input-Single-Output Systems 1-40

41 Affine feedback (P-control) Proportional control is based on affine feedback laws, µ(y(t)) = u ref + K(y(t) y ref ) = u ref + K e(t) Constant u ref R is a control offset The constant K R is called the proportional gain Single-Input-Single-Output Systems 1-41

42 Affine feedback (P-control) Proportional control is based on affine feedback laws, µ(y(t)) = u ref + K(y(t) y ref ) = u ref + K e(t) Constant u ref R is a control offset The constant K R is called the proportional gain Single-Input-Single-Output Systems 1-42

43 P-control tuning: Step 1 If the system is stable: Play around with the open loop system. Adjust u(t) = u ref such that open-loop system satisfies y(t ) y ref after (a possibly long) time T. Single-Input-Single-Output Systems 1-43

44 P-control tuning: Step 1 If the system is stable: Play around with the open loop system. Adjust u(t) = u ref such that open-loop system satisfies y(t ) y ref after (a possibly long) time T. Single-Input-Single-Output Systems 1-44

45 Tuning Step 1 Single-Input-Single-Output Systems 1-45

46 Tuning Step 1 Single-Input-Single-Output Systems 1-46

47 Tuning Step 1 Single-Input-Single-Output Systems 1-47

48 P-control tuning: Step 2 Increase / decrease the control gain K and test the closed-loop behavior of the system Fine-tuning of u ref and K if needed. Single-Input-Single-Output Systems 1-48

49 P-control tuning: Step 2 Increase / decrease the control gain K and test the closed-loop behavior of the system Fine-tuning of u ref and K if needed. Single-Input-Single-Output Systems 1-49

50 Tuning Step 2 Single-Input-Single-Output Systems 1-50

51 Tuning Step 2 K = 0.25 [ ] V C Single-Input-Single-Output Systems 1-51

52 Tuning Step 2 K = 0.50 [ ] V C Single-Input-Single-Output Systems 1-52

53 Tuning Step 2 K = 2.00 [ ] V C Single-Input-Single-Output Systems 1-53

54 Tuning Step 2 K = 1.00 [ ] V C Single-Input-Single-Output Systems 1-54

55 P-control tuning If the system is unstable at the set-point: open-loop experiments are not possible / difficult pre-stabilize the system with a suitable K Tune u ref (and K) to reduce output error Single-Input-Single-Output Systems 1-55

56 P-control tuning If the system is unstable at the set-point: open-loop experiments are not possible / difficult pre-stabilize the system with a suitable K Tune u ref (and K) to reduce output error Single-Input-Single-Output Systems 1-56

57 P-control tuning If the system is unstable at the set-point: open-loop experiments are not possible / difficult pre-stabilize the system with a suitable K Tune u ref (and K) to reduce output error Single-Input-Single-Output Systems 1-57

58 Inverted pendulum: P-control u ref = 0 K = 0.5 [ ] N rad Single-Input-Single-Output Systems 1-58

59 Inverted pendulum: P-control u ref = 0 K = 1.0 [ ] N rad Single-Input-Single-Output Systems 1-59

60 Inverted pendulum: P-control u ref = 0 K = 2.0 [ ] N rad Single-Input-Single-Output Systems 1-60

61 Inverted pendulum: P-control u ref = 0 K = 4.0 [ ] N rad Single-Input-Single-Output Systems 1-61

62 Inverted pendulum: P-control u ref = 0 K = 8.0 [ ] N rad Single-Input-Single-Output Systems 1-62

63 Proportional Control Circuit Replace computer by electrical circuit (e.g. for our oven): (here y(t), y ref and K(y(t) y ref ) are voltages) Use summing amplifier (or modify above circuit) to add offset Single-Input-Single-Output Systems 1-63

64 Proportional Control Circuit Replace computer by electrical circuit (e.g. for our oven): (here y(t), y ref and K(y(t) y ref ) are voltages) Use summing amplifier (or modify above circuit) to add offset Single-Input-Single-Output Systems 1-64

65 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-65

66 Affine feedback (PI-control) Proportional-Integral (PI) control uses feedback laws of the form t u(t) = u ref + K(y(t) y ref ) + K I (y(τ) y ref ) dτ t = u ref + Ke(t) + K I e(τ) dτ The constant K I R is called the integral gain For discrete-time systems: replace integral by running sum 0 0 t 0 e(τ) dτ where δ is the samping time t/δ 1 k=0 e(kδ) δ, Single-Input-Single-Output Systems 1-66

67 Affine feedback (PI-control) Proportional-Integral (PI) control uses feedback laws of the form t u(t) = u ref + K(y(t) y ref ) + K I (y(τ) y ref ) dτ t = u ref + Ke(t) + K I e(τ) dτ The constant K I R is called the integral gain For discrete-time systems: replace integral by running sum 0 0 t 0 e(τ) dτ where δ is the samping time t/δ 1 k=0 e(kδ) δ, Single-Input-Single-Output Systems 1-67

68 Affine feedback (PI-control) Proportional-Integral (PI) control uses feedback laws of the form t u(t) = u ref + K(y(t) y ref ) + K I (y(τ) y ref ) dτ t = u ref + Ke(t) + K I e(τ) dτ The constant K I R is called the integral gain For discrete-time systems: replace integral by running sum 0 0 t 0 e(τ) dτ where δ is the samping time t/δ 1 k=0 e(kδ) δ, Single-Input-Single-Output Systems 1-68

69 Integral Gain Tuning K = 1.0 [ ] V C K I = 0.0 [ ] V C s Single-Input-Single-Output Systems 1-69

70 Integral Gain Tuning K = 1.0 [ ] V C K I = 1.0 [ V C s ] Single-Input-Single-Output Systems 1-70

71 Integral Gain Tuning K = 1.0 [ ] V C K I = 0.5 [ V C s ] Single-Input-Single-Output Systems 1-71

72 Integral Gain Tuning K = 1.0 [ ] V C K I = 0.1 [ V C s ] Single-Input-Single-Output Systems 1-72

73 Integral Gain Circuit Operational amplifier integrator: Needs to be refined for non-ideal op-amps. Single-Input-Single-Output Systems 1-73

74 Integral Gain Circuit Operational amplifier integrator: Needs to be refined for non-ideal op-amps. Single-Input-Single-Output Systems 1-74

75 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-75

76 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-76

77 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-77

78 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-78

79 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 0.1 N rad/s ] Single-Input-Single-Output Systems 1-79

80 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 0.5 N rad/s ] Single-Input-Single-Output Systems 1-80

81 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 1.0 N rad/s ] Single-Input-Single-Output Systems 1-81

82 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 4.0 N rad/s ] Single-Input-Single-Output Systems 1-82

83 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-83

84 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-84

85 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-85

86 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-86

87 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-87

88 PID-control circuit (many variants exist) Single-Input-Single-Output Systems 1-88

89 Summary / Keywords SISO systems (without using models) Control parameterization Open-loop response, step response, frequency response Steady state / periodic limit cycle BIBO systems, system response norm P, PI, PD, PID control + tuning by hand basic electrical circuits for PID control Single-Input-Single-Output Systems 1-89

Unit 8: Part 2: PD, PID, and Feedback Compensation

Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

Course Summary. The course cannot be summarized in one lecture.

Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

EE3CL4: Introduction to Linear Control Systems

1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system

Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

1 Mathematics. 1.1 Determine the one-sided Laplace transform of the following signals. + 2y = σ(t) dt 2 + 3dy dt. , where A is a constant.

Mathematics. Determine the one-sided Laplace transform of the following signals. {, t < a) u(t) =, where A is a constant. A, t {, t < b) u(t) =, where A is a constant. At, t c) u(t) = e 2t for t. d) u(t)

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami

Control CSC752: Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami March 9, 2017 Outline 1 Control system 2 Controller Images from http://en.wikipedia.org/wiki/feed-forward

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and

EL2520 Control Theory and Practice

So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems -Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998

OPerational AMPlifier lifiers Source: Understanding Operational Amplifier Specifications Source: Understanding Operational Amplifier Specifications WHITE PAPE: SLOA0 Author: Jim Karki Digital Signal Processing

Control System Design

ELEC ENG 4CL4: Control System Design Notes for Lecture #13 Monday, February 3, 2003 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca (3) Cohen-Coon Reaction Curve Method

BASIC PROPERTIES OF FEEDBACK

ECE450/550: Feedback Control Systems. 4 BASIC PROPERTIES OF FEEDBACK 4.: Setting up an example to benchmark controllers There are two basic types/categories of control systems: OPEN LOOP: Disturbance r(t)

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control Lecture 12: I/O Stability Readings: DDV, Chapters 15, 16 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology March 14, 2011 E. Frazzoli

PID controllers, part I

Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls

Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

6.003: Signals and Systems

6.003: Signals and Systems CT Feedback and Control October 20, 2011 1 Mid-term Examination #2 Wednesday, October 26, 7:30-9:30pm, No recitations on the day of the exam. Coverage: Lectures 1 12 Recitations

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Goal: understand the difference between open-loop and closed-loop (feedback)

STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 10-1 Road Map of the Lecture X Stability of closed-loop control

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic:

Control System Design

ELEC ENG 4CL4: Control System Design Notes for Lecture #15 Friday, February 6, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca (3) Cohen-Coon Reaction Curve Method

DC-motor PID control

DC-motor PID control This version: November 1, 2017 REGLERTEKNIK Name: P-number: AUTOMATIC LINKÖPING CONTROL Date: Passed: Chapter 1 Introduction The purpose of this lab is to give an introduction to

FEEDBACK CONTROL SYSTEMS

FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

(a) Find the transfer function of the amplifier. Ans.: G(s) =

126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

Control System. Contents

Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

Integrator Windup

3.5.2. Integrator Windup 3.5.2.1. Definition So far we have mainly been concerned with linear behaviour, as is often the case with analysis and design of control systems. There is, however, one nonlinear

Reglerteknik: Exercises

Reglerteknik: Exercises Exercises, Hints, Answers Liten reglerteknisk ordlista Introduktion till Control System Toolbox ver. 5 This version: January 3, 25 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Lab 3: Quanser Hardware and Proportional Control

Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

Control Systems Design

ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

(Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

EEE 184 Project: Option 1

EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginally-stable

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

Time Response Analysis (Part II)

Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

EE-202 Exam III April 6, 2017

EE-202 Exam III April 6, 207 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo--202 DeCarlo--2022 7:30 MWF :30 T-TH INSTRUCTIONS There are 3 multiple choice worth 5 points each and

7.2 Controller tuning from specified characteristic polynomial

192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic

Exam. 135 minutes + 15 minutes reading time

Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

PID Control. Objectives

PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK

Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 12: Overview In this Lecture, you will learn: Review of Feedback Closing the Loop Pole Locations Changing the Gain

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

Final Exam Solutions

EE55: Linear Systems Final Exam SIST, ShanghaiTech Final Exam Solutions Course: Linear Systems Teacher: Prof. Boris Houska Duration: 85min YOUR NAME: (type in English letters) I Introduction This exam

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

Passive control. Carles Batlle. II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July

Passive control theory II Carles Batlle II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July 18-22 2005 Contents of this lecture Interconnection and

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

Control Systems Design

ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

Section 4. Nonlinear Circuits

Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

Discrete and continuous dynamic systems

Discrete and continuous dynamic systems Bounded input bounded output (BIBO) and asymptotic stability Continuous and discrete time linear time-invariant systems Katalin Hangos University of Pannonia Faculty

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon email: callafon@ucsd.edu TA: Younghee Han tel. (858) 8221763/8223457, email: y3han@ucsd.edu class information and lab handouts will be available

Operational Amplifiers

Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

Lecture 10: Proportional, Integral and Derivative Actions

MCE441: Intr. Linear Control Systems Lecture 10: Proportional, Integral and Derivative Actions Stability Concepts BIBO Stability and The Routh-Hurwitz Criterion Dorf, Sections 6.1, 6.2, 7.6 Cleveland State

Answers to multiple choice questions Chapter 2 M2.1 (b) M2.2 (a) M2.3 (d) M2.4 (b) M2.5 (a) M2.6 (b) M2.7 (b) M2.8 (c) M2.9 (a) M2.10 (b) Chapter 3 M3.1 (b) M3.2 (d) M3.3 (d) M3.4 (d) M3.5 (c) M3.6 (c)

EEL2216 Control Theory CT1: PID Controller Design

EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportional-integral-derivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers

Lecture 4: Analysis of MIMO Systems

Lecture 4: Analysis of MIMO Systems Norms The concept of norm will be extremely useful for evaluating signals and systems quantitatively during this course In the following, we will present vector norms

Last week: analysis of pinion-rack w velocity feedback

Last week: analysis of pinion-rack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s

Root Locus Design. MEM 355 Performance Enhancement of Dynamical Systems

Root Locus Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline The root locus design method is an iterative,

Position Control Experiment MAE171a

Position Control Experiment MAE171a January 11, 014 Prof. R.A. de Callafon, Dept. of MAE, UCSD TAs: Jeff Narkis, email: jnarkis@ucsd.edu Gil Collins, email: gwcollin@ucsd.edu Contents 1 Aim and Procedure

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

Pole-placement by state-space methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target

ENGG 1203 Tutorial. Solution. Op Amps 7 Mar Learning Objectives. Determine V o in the following circuit. Assume that the op-amp is ideal.

ENGG 03 Tutorial Q Op Amps 7 Mar Learning Objectives Analyze circuits with ideal operational amplifiers News HW Mid term Revision tutorial ( Mar :30-6:0, CBA) Ack.: MIT OCW 6.0 Determine V o in the following