Single-Input-Single-Output Systems

Save this PDF as:
Size: px
Start display at page:

Download "Single-Input-Single-Output Systems"

Transcription

1 TF 502 Single-Input-Single-Output Systems SIST, ShanghaiTech Introduction Open-Loop Control-Response Proportional Control General PID Control Boris Houska 1-1

2 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-2

3 Objectives In this lecture we will learn about Single-Input-Single-Output (SISO) systems Open-loop step response Proportional control of SISO systems Integral control PID control Warning: this lecture explains basic tricks to tune a controller based on physical intuition without using mathematical analysis yet (we ll discuss mathematical models later on in the lecture) Single-Input-Single-Output Systems 1-3

4 SISO Systems Recall from Lecture 1: 1. u(t) R denotes (scalar) input at time t 2. y(t) R denotes (scalar) output at time t Single-Input-Single-Output Systems 1-4

5 Example 1: oven SISO system: 1. u(t) R voltage at the heating coil 2. y(t) R temperature in the oven Single-Input-Single-Output Systems 1-5

6 Example 2: pendulum SISO system: 1. u(t) R force of the motor 2. y(t) R excitation angle of the pendulum Single-Input-Single-Output Systems 1-6

7 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-7

8 Open-loop control-response Idea: Test basic system behavior by making open-loop experiments Send signal u(t) to actuator and observe y(t) Single-Input-Single-Output Systems 1-8

9 Parameterization of control functions General affine parameterizations of the control function can be written in the form M u(t) = a i ϕ i (t). i=1 The functions ϕ 1,... ϕ M : R R are given basis functions The scalars a 1, a 2,..., a M R are the control parameterization coefficients Single-Input-Single-Output Systems 1-9

10 Parameterization of control functions General affine parameterizations of the control function can be written in the form M u(t) = a i ϕ i (t). i=1 The functions ϕ 1,... ϕ M : R R are given basis functions The scalars a 1, a 2,..., a M R are the control parameterization coefficients Single-Input-Single-Output Systems 1-10

11 Parameterization of control functions General affine parameterizations of the control function can be written in the form M u(t) = a i ϕ i (t). i=1 The functions ϕ 1,... ϕ M : R R are given basis functions The scalars a 1, a 2,..., a M R are the control parameterization coefficients Single-Input-Single-Output Systems 1-11

12 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-12

13 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-13

14 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-14

15 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-15

16 Open-loop step response Open-loop experiment: Introduce the basis functions 1 if t < 0 ϕ 1 (t) = 0 otherwise 1 if t 0 and ϕ 2 (t) = 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called step response For a 1 = 0, a 2 = 1: y is called unit step response Single-Input-Single-Output Systems 1-16

17 Example 1 Single-Input-Single-Output Systems 1-17

18 Example 1 Single-Input-Single-Output Systems 1-18

19 Example 2 Single-Input-Single-Output Systems 1-19

20 Example 2 Single-Input-Single-Output Systems 1-20

21 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-21

22 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-22

23 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-23

24 Open-loop frequency response Open-loop experiment: Choose a test frequency ω > 0. Introduce the basis functions 1 if t < 0 ϕ 1 (t) = and ϕ sin(ωt) if t 0 2(t) = 0 otherwise 0 otherwise Choose control step parameters a 1, a 2 R Send the control input u(t) = a 1 ϕ 1 (t) + a 2 ϕ 2 (t) to actuator Associated output signal y is called frequency response Single-Input-Single-Output Systems 1-24

25 Example 1 Single-Input-Single-Output Systems 1-25

26 Example 1 no steady state, but periodic limit cycle Single-Input-Single-Output Systems 1-26

27 Example 2 (resonance effect) Single-Input-Single-Output Systems 1-27

28 Example 2 (resonance effect) Single-Input-Single-Output Systems 1-28

29 Bounded-Input-Bounded-Output Systems A system is called a bounded-input-bounded-output (BIBO) system if there exists for every contant C 1 < a constant C 2 < such that u L C 1 y L C 2 In words: if the input is bounded, then the output is bounded Warning: the amplification factor y L u L might be large Single-Input-Single-Output Systems 1-29

30 Bounded-Input-Bounded-Output Systems A system is called a bounded-input-bounded-output (BIBO) system if there exists for every contant C 1 < a constant C 2 < such that u L C 1 y L C 2 In words: if the input is bounded, then the output is bounded Warning: the amplification factor y L u L might be large Single-Input-Single-Output Systems 1-30

31 Bounded-Input-Bounded-Output Systems A system is called a bounded-input-bounded-output (BIBO) system if there exists for every contant C 1 < a constant C 2 < such that u L C 1 y L C 2 In words: if the input is bounded, then the output is bounded Warning: the amplification factor y L u L might be large Single-Input-Single-Output Systems 1-31

32 Resonance catastrophe Small inputs can lead to large outputs... Single-Input-Single-Output Systems 1-32

33 System Response Norms The largest possible ratio between input and output norm, sup u y u is called system response norm (largest possible amplification factor). Common choices for are L 2 or L -norms Single-Input-Single-Output Systems 1-33

34 System Response Norms The largest possible ratio between input and output norm, sup u y u is called system response norm (largest possible amplification factor). Common choices for are L 2 or L -norms Single-Input-Single-Output Systems 1-34

35 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-35

36 Set points Goal: Design the closed-loop system such that y(t ) y ref after a short transient phase T > 0 Notation: The point y ref R is called set point The function e(t) = y(t) y ref is called the tracking error Single-Input-Single-Output Systems 1-36

37 Set points Goal: Design the closed-loop system such that y(t ) y ref after a short transient phase T > 0 Notation: The point y ref R is called set point The function e(t) = y(t) y ref is called the tracking error Single-Input-Single-Output Systems 1-37

38 Feedback laws Strategy: If we observe y(t), we set u(t) = µ(y(t)) The function µ : R R is called feedback law Secret assumption : Evaluation of µ is fast compared to the system dynamics Single-Input-Single-Output Systems 1-38

39 Feedback laws Strategy: If we observe y(t), we set u(t) = µ(y(t)) The function µ : R R is called feedback law Secret assumption : Evaluation of µ is fast compared to the system dynamics Single-Input-Single-Output Systems 1-39

40 Affine feedback (P-control) Proportional control is based on affine feedback laws, µ(y(t)) = u ref + K(y(t) y ref ) = u ref + K e(t) Constant u ref R is a control offset The constant K R is called the proportional gain Single-Input-Single-Output Systems 1-40

41 Affine feedback (P-control) Proportional control is based on affine feedback laws, µ(y(t)) = u ref + K(y(t) y ref ) = u ref + K e(t) Constant u ref R is a control offset The constant K R is called the proportional gain Single-Input-Single-Output Systems 1-41

42 Affine feedback (P-control) Proportional control is based on affine feedback laws, µ(y(t)) = u ref + K(y(t) y ref ) = u ref + K e(t) Constant u ref R is a control offset The constant K R is called the proportional gain Single-Input-Single-Output Systems 1-42

43 P-control tuning: Step 1 If the system is stable: Play around with the open loop system. Adjust u(t) = u ref such that open-loop system satisfies y(t ) y ref after (a possibly long) time T. Single-Input-Single-Output Systems 1-43

44 P-control tuning: Step 1 If the system is stable: Play around with the open loop system. Adjust u(t) = u ref such that open-loop system satisfies y(t ) y ref after (a possibly long) time T. Single-Input-Single-Output Systems 1-44

45 Tuning Step 1 Single-Input-Single-Output Systems 1-45

46 Tuning Step 1 Single-Input-Single-Output Systems 1-46

47 Tuning Step 1 Single-Input-Single-Output Systems 1-47

48 P-control tuning: Step 2 Increase / decrease the control gain K and test the closed-loop behavior of the system Fine-tuning of u ref and K if needed. Single-Input-Single-Output Systems 1-48

49 P-control tuning: Step 2 Increase / decrease the control gain K and test the closed-loop behavior of the system Fine-tuning of u ref and K if needed. Single-Input-Single-Output Systems 1-49

50 Tuning Step 2 Single-Input-Single-Output Systems 1-50

51 Tuning Step 2 K = 0.25 [ ] V C Single-Input-Single-Output Systems 1-51

52 Tuning Step 2 K = 0.50 [ ] V C Single-Input-Single-Output Systems 1-52

53 Tuning Step 2 K = 2.00 [ ] V C Single-Input-Single-Output Systems 1-53

54 Tuning Step 2 K = 1.00 [ ] V C Single-Input-Single-Output Systems 1-54

55 P-control tuning If the system is unstable at the set-point: open-loop experiments are not possible / difficult pre-stabilize the system with a suitable K Tune u ref (and K) to reduce output error Single-Input-Single-Output Systems 1-55

56 P-control tuning If the system is unstable at the set-point: open-loop experiments are not possible / difficult pre-stabilize the system with a suitable K Tune u ref (and K) to reduce output error Single-Input-Single-Output Systems 1-56

57 P-control tuning If the system is unstable at the set-point: open-loop experiments are not possible / difficult pre-stabilize the system with a suitable K Tune u ref (and K) to reduce output error Single-Input-Single-Output Systems 1-57

58 Inverted pendulum: P-control u ref = 0 K = 0.5 [ ] N rad Single-Input-Single-Output Systems 1-58

59 Inverted pendulum: P-control u ref = 0 K = 1.0 [ ] N rad Single-Input-Single-Output Systems 1-59

60 Inverted pendulum: P-control u ref = 0 K = 2.0 [ ] N rad Single-Input-Single-Output Systems 1-60

61 Inverted pendulum: P-control u ref = 0 K = 4.0 [ ] N rad Single-Input-Single-Output Systems 1-61

62 Inverted pendulum: P-control u ref = 0 K = 8.0 [ ] N rad Single-Input-Single-Output Systems 1-62

63 Proportional Control Circuit Replace computer by electrical circuit (e.g. for our oven): (here y(t), y ref and K(y(t) y ref ) are voltages) Use summing amplifier (or modify above circuit) to add offset Single-Input-Single-Output Systems 1-63

64 Proportional Control Circuit Replace computer by electrical circuit (e.g. for our oven): (here y(t), y ref and K(y(t) y ref ) are voltages) Use summing amplifier (or modify above circuit) to add offset Single-Input-Single-Output Systems 1-64

65 Contents Introduction Open-Loop Control-Response Proportional Control General PID Control Single-Input-Single-Output Systems 1-65

66 Affine feedback (PI-control) Proportional-Integral (PI) control uses feedback laws of the form t u(t) = u ref + K(y(t) y ref ) + K I (y(τ) y ref ) dτ t = u ref + Ke(t) + K I e(τ) dτ The constant K I R is called the integral gain For discrete-time systems: replace integral by running sum 0 0 t 0 e(τ) dτ where δ is the samping time t/δ 1 k=0 e(kδ) δ, Single-Input-Single-Output Systems 1-66

67 Affine feedback (PI-control) Proportional-Integral (PI) control uses feedback laws of the form t u(t) = u ref + K(y(t) y ref ) + K I (y(τ) y ref ) dτ t = u ref + Ke(t) + K I e(τ) dτ The constant K I R is called the integral gain For discrete-time systems: replace integral by running sum 0 0 t 0 e(τ) dτ where δ is the samping time t/δ 1 k=0 e(kδ) δ, Single-Input-Single-Output Systems 1-67

68 Affine feedback (PI-control) Proportional-Integral (PI) control uses feedback laws of the form t u(t) = u ref + K(y(t) y ref ) + K I (y(τ) y ref ) dτ t = u ref + Ke(t) + K I e(τ) dτ The constant K I R is called the integral gain For discrete-time systems: replace integral by running sum 0 0 t 0 e(τ) dτ where δ is the samping time t/δ 1 k=0 e(kδ) δ, Single-Input-Single-Output Systems 1-68

69 Integral Gain Tuning K = 1.0 [ ] V C K I = 0.0 [ ] V C s Single-Input-Single-Output Systems 1-69

70 Integral Gain Tuning K = 1.0 [ ] V C K I = 1.0 [ V C s ] Single-Input-Single-Output Systems 1-70

71 Integral Gain Tuning K = 1.0 [ ] V C K I = 0.5 [ V C s ] Single-Input-Single-Output Systems 1-71

72 Integral Gain Tuning K = 1.0 [ ] V C K I = 0.1 [ V C s ] Single-Input-Single-Output Systems 1-72

73 Integral Gain Circuit Operational amplifier integrator: Needs to be refined for non-ideal op-amps. Single-Input-Single-Output Systems 1-73

74 Integral Gain Circuit Operational amplifier integrator: Needs to be refined for non-ideal op-amps. Single-Input-Single-Output Systems 1-74

75 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-75

76 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-76

77 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-77

78 Affine feedback (PD-control) Proportional-Differential (PD) control uses feedback laws of the form u(t) = u ref + Ke(t) + K D ė(τ) The function ė(t) denotes the time derivative of the error function e(t) = y(t) y ref. The constant K D R is called the differential gain Assumes that we can measure ẏ(t) directly ( velocity measurement) Single-Input-Single-Output Systems 1-78

79 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 0.1 N rad/s ] Single-Input-Single-Output Systems 1-79

80 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 0.5 N rad/s ] Single-Input-Single-Output Systems 1-80

81 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 1.0 N rad/s ] Single-Input-Single-Output Systems 1-81

82 Inverted pendulum: PD-control u ref = 0 K = 2.0 [ ] N rad [ K D = 4.0 N rad/s ] Single-Input-Single-Output Systems 1-82

83 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-83

84 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-84

85 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-85

86 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-86

87 Affine feedback (PID-control) Proportional-Integral-Differential (PID): t u(t) = u ref + Ke(t) + K I e(τ) dτ + K D ė(τ) 0 Rule-of-the-thumb based PID tuning use K to pre-stabilize system use K I to reduce /eliminate offsets use K D to reduce oscillations/overshoot Warning: there are systems which behave differently; we ll analyze this later in more detail Single-Input-Single-Output Systems 1-87

88 PID-control circuit (many variants exist) Single-Input-Single-Output Systems 1-88

89 Summary / Keywords SISO systems (without using models) Control parameterization Open-loop response, step response, frequency response Steady state / periodic limit cycle BIBO systems, system response norm P, PI, PD, PID control + tuning by hand basic electrical circuits for PID control Single-Input-Single-Output Systems 1-89

Unit 8: Part 2: PD, PID, and Feedback Compensation

Unit 8: Part 2: PD, PID, and Feedback Compensation Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

1 Mathematics. 1.1 Determine the one-sided Laplace transform of the following signals. + 2y = σ(t) dt 2 + 3dy dt. , where A is a constant.

1 Mathematics. 1.1 Determine the one-sided Laplace transform of the following signals. + 2y = σ(t) dt 2 + 3dy dt. , where A is a constant. Mathematics. Determine the one-sided Laplace transform of the following signals. {, t < a) u(t) =, where A is a constant. A, t {, t < b) u(t) =, where A is a constant. At, t c) u(t) = e 2t for t. d) u(t)

More information

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami Control CSC752: Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami March 9, 2017 Outline 1 Control system 2 Controller Images from http://en.wikipedia.org/wiki/feed-forward

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design. Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems -Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters

More information

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998 OPerational AMPlifier lifiers Source: Understanding Operational Amplifier Specifications Source: Understanding Operational Amplifier Specifications WHITE PAPE: SLOA0 Author: Jim Karki Digital Signal Processing

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #13 Monday, February 3, 2003 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca (3) Cohen-Coon Reaction Curve Method

More information

BASIC PROPERTIES OF FEEDBACK

BASIC PROPERTIES OF FEEDBACK ECE450/550: Feedback Control Systems. 4 BASIC PROPERTIES OF FEEDBACK 4.: Setting up an example to benchmark controllers There are two basic types/categories of control systems: OPEN LOOP: Disturbance r(t)

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 12: I/O Stability Readings: DDV, Chapters 15, 16 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology March 14, 2011 E. Frazzoli

More information

PID controllers, part I

PID controllers, part I Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Systems CT Feedback and Control October 20, 2011 1 Mid-term Examination #2 Wednesday, October 26, 7:30-9:30pm, No recitations on the day of the exam. Coverage: Lectures 1 12 Recitations

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Goal: understand the difference between open-loop and closed-loop (feedback)

More information

STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

STABILITY OF CLOSED-LOOP CONTOL SYSTEMS CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 10-1 Road Map of the Lecture X Stability of closed-loop control

More information

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic:

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #15 Friday, February 6, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca (3) Cohen-Coon Reaction Curve Method

More information

DC-motor PID control

DC-motor PID control DC-motor PID control This version: November 1, 2017 REGLERTEKNIK Name: P-number: AUTOMATIC LINKÖPING CONTROL Date: Passed: Chapter 1 Introduction The purpose of this lab is to give an introduction to

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics. Dynamics. University of Stuttgart Winter 2018/19 Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Control System. Contents

Control System. Contents Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

More information

Integrator Windup

Integrator Windup 3.5.2. Integrator Windup 3.5.2.1. Definition So far we have mainly been concerned with linear behaviour, as is often the case with analysis and design of control systems. There is, however, one nonlinear

More information

Reglerteknik: Exercises

Reglerteknik: Exercises Reglerteknik: Exercises Exercises, Hints, Answers Liten reglerteknisk ordlista Introduktion till Control System Toolbox ver. 5 This version: January 3, 25 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

More information

Lab 3: Quanser Hardware and Proportional Control

Lab 3: Quanser Hardware and Proportional Control Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

More information

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

More information

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

More information

EEE 184 Project: Option 1

EEE 184 Project: Option 1 EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same

More information

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginally-stable

More information

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

More information

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

EE-202 Exam III April 6, 2017

EE-202 Exam III April 6, 2017 EE-202 Exam III April 6, 207 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo--202 DeCarlo--2022 7:30 MWF :30 T-TH INSTRUCTIONS There are 3 multiple choice worth 5 points each and

More information

7.2 Controller tuning from specified characteristic polynomial

7.2 Controller tuning from specified characteristic polynomial 192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic

More information

Exam. 135 minutes + 15 minutes reading time

Exam. 135 minutes + 15 minutes reading time Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

PID Control. Objectives

PID Control. Objectives PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

More information

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,

More information

Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback

Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback Analysis and Design of Analog Integrated Circuits Lecture 12 Feedback Michael H. Perrott March 11, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Open Loop Versus Closed Loop Amplifier

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech

More information

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 12: Overview In this Lecture, you will learn: Review of Feedback Closing the Loop Pole Locations Changing the Gain

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

Final Exam Solutions

Final Exam Solutions EE55: Linear Systems Final Exam SIST, ShanghaiTech Final Exam Solutions Course: Linear Systems Teacher: Prof. Boris Houska Duration: 85min YOUR NAME: (type in English letters) I Introduction This exam

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

Passive control. Carles Batlle. II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July

Passive control. Carles Batlle. II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July Passive control theory II Carles Batlle II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July 18-22 2005 Contents of this lecture Interconnection and

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root

More information

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

Section 4. Nonlinear Circuits

Section 4. Nonlinear Circuits Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:

More information

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31 Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

More information

Discrete and continuous dynamic systems

Discrete and continuous dynamic systems Discrete and continuous dynamic systems Bounded input bounded output (BIBO) and asymptotic stability Continuous and discrete time linear time-invariant systems Katalin Hangos University of Pannonia Faculty

More information

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon email: callafon@ucsd.edu TA: Younghee Han tel. (858) 8221763/8223457, email: y3han@ucsd.edu class information and lab handouts will be available

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Lecture 10: Proportional, Integral and Derivative Actions

Lecture 10: Proportional, Integral and Derivative Actions MCE441: Intr. Linear Control Systems Lecture 10: Proportional, Integral and Derivative Actions Stability Concepts BIBO Stability and The Routh-Hurwitz Criterion Dorf, Sections 6.1, 6.2, 7.6 Cleveland State

More information

Answers to multiple choice questions

Answers to multiple choice questions Answers to multiple choice questions Chapter 2 M2.1 (b) M2.2 (a) M2.3 (d) M2.4 (b) M2.5 (a) M2.6 (b) M2.7 (b) M2.8 (c) M2.9 (a) M2.10 (b) Chapter 3 M3.1 (b) M3.2 (d) M3.3 (d) M3.4 (d) M3.5 (c) M3.6 (c)

More information

EEL2216 Control Theory CT1: PID Controller Design

EEL2216 Control Theory CT1: PID Controller Design EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportional-integral-derivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers

More information

Lecture 4: Analysis of MIMO Systems

Lecture 4: Analysis of MIMO Systems Lecture 4: Analysis of MIMO Systems Norms The concept of norm will be extremely useful for evaluating signals and systems quantitatively during this course In the following, we will present vector norms

More information

Last week: analysis of pinion-rack w velocity feedback

Last week: analysis of pinion-rack w velocity feedback Last week: analysis of pinion-rack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s

More information

Root Locus Design. MEM 355 Performance Enhancement of Dynamical Systems

Root Locus Design. MEM 355 Performance Enhancement of Dynamical Systems Root Locus Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline The root locus design method is an iterative,

More information

Position Control Experiment MAE171a

Position Control Experiment MAE171a Position Control Experiment MAE171a January 11, 014 Prof. R.A. de Callafon, Dept. of MAE, UCSD TAs: Jeff Narkis, email: jnarkis@ucsd.edu Gil Collins, email: gwcollin@ucsd.edu Contents 1 Aim and Procedure

More information

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller Pole-placement by state-space methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target

More information

ENGG 1203 Tutorial. Solution. Op Amps 7 Mar Learning Objectives. Determine V o in the following circuit. Assume that the op-amp is ideal.

ENGG 1203 Tutorial. Solution. Op Amps 7 Mar Learning Objectives. Determine V o in the following circuit. Assume that the op-amp is ideal. ENGG 03 Tutorial Q Op Amps 7 Mar Learning Objectives Analyze circuits with ideal operational amplifiers News HW Mid term Revision tutorial ( Mar :30-6:0, CBA) Ack.: MIT OCW 6.0 Determine V o in the following

More information

PID controllers. Laith Batarseh. PID controllers

PID controllers. Laith Batarseh. PID controllers Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

More information

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

EE 321 Analog Electronics, Fall 2013 Homework #3 solution EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [

More information